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Abstract

This paper study generalized Serre problem proposed by Lin and Bose in multidimensional
system theory context [Multidimens. Systems and Signal Process. 10 (1999) 379; Linear Alge-
bra Appl. 338 (2001) 125]. This problem is stated as follows. Let F ∈ Al×m be a full row rank
matrix, and d be the greatest common divisor of all the l × l minors of F . Assume that the
reduced minors of F generate the unit ideal, where A = K[x1, . . . , xn] is the polynomial ring
in n variables x1, . . . , xn over any coefficient field K . Then there exist matrices G ∈ Al×l

and F1 ∈ Al×m such that F = GF1 with det G = d and F1 is a ZLP matrix. We provide
an elementary proof to this problem, and treat non-full rank case.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Since the basic structure of multidimensional system theory was studied by Youla
and Gnavi [13], there exist a number of research papers towards studying vari-
ous prime factorizations of multivariate polynomial matrix problems [1,3–9,11,12].
Because many multidimensional systems and signal processing problems can be
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formulated as problems about multivariate polynomial matrices, it is an important
topic to apply results of computational algebra into realm of multidimensional linear
system theory.

In this paper, we study a problem on multivariate polynomial matrix factorizations
proposed by Lin and Bose [5,7]. As pointed out in [7], there are some applications
when matrices are not full rank. We study thus general cases without restriction to
full rank.

The contents of this paper are as follows. In Section 2, we introduce some basic
concepts, and state the Lin–Bose problem. In Section 3, we give a simple proof to
Lin–Bose problem.

2. Statement of problem and result

In this section, we give some concepts which will be needed in the discussion
of this paper, and state the main research problem.

Let n � 2 be an integer. Let K be a field, and A = K[x1, . . . , xn] be the polyno-
mial ring in variables x1, . . . , xn over the field K . Al×m the module of l × m matrices
with entries in A. We also write A1×m as Am which is a free module of rank m

over A.
We first recall the following basic definitions:

Definition 2.1. Let F ∈ Al×m be a full row rank matrix with l � m. Then F is said
to be:

(i) zero left prime (ZLP) if all the l × l minors of F generate the unit ideal;
(ii) minor left prime (MLP) if all the l × l minors of F are relatively prime, i.e.,

their greatest common divisor (g.c.d.) is a non-zero constant;
(iii) factor left prime (FLP) if in any polynomial matrix decomposition F = F1F2

with F1 ∈ Al×l , F1 is necessarily a unimodular matrix, i.e., det(F1) is a non-
zero constant in K .

Zero right prime (ZRP) and minor right prime (MRP) etc. can be similarly defined
for matrices F ∈ Am×l with m � l.

If K is an algebraically closed field, then ZLP ⇒ MLP ⇒ FLP. When n = 2,
MLP and FLP are equivalent, and when n � 3, these concepts are pairwise
different.

The following definition gives an invariant for multivariate polynomial matrices
when the matrices are of full rank [7]:

Definition 2.2. Let F ∈ Al×m be a matrix with rank r , and let a1, . . . , aβ denote all
the r × r minors of the matrix F . Let d be the greatest common divisor (g.c.d) of
a1, . . . , aβ , and bi such that
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ai = dbi, i = 1, . . . , β.

Then b1, . . . , bβ are called the “reduced minors” of F .

Now we give the following problem proposed by Lin and Bose [5,7]:

Lin–Bose problem. Let F ∈ Al×m be a full row rank matrix, d be the g.c.d of all
the l × l minors of F . If the reduced minors of F generate unit ideal A, then there
exists a factorization F = GF1 with G ∈ Al×l , F1 ∈ Al×m, such that det G = d and
F1 is a ZLP matrix.

In [7], the authors proved equivalence of above problem and the following so
called generalized Serre problem:

Generalized Serre problem. Let F ∈ Al×m be a full row rank matrix, d the greatest
common divisor of all the l × l minors of F . There exists a matrix E ∈ A(m−l)×m

such that det
[

F
E

] = d .

Pommaret gave a proof to Lin–Bose problem using complicated homological
algebra tools in [9]. We feel that Lin–Bose conjecture can be proved by means of
an elementary argument by using Quillen–Suslin theorem.

In this paper we will study a slight general case without restriction to full rank
case, i.e., we prove the following theorem:

Theorem 2.1. Let F ∈ Al×m be of rank r, and d be the g.c.d of all the r × r minors
of F . If all the reduced minors generate unit ideal A. Then F have a factorization
F = G1F1 such that G1 ∈ Al×r and F1 ∈ Ar×m is a ZLP matrix.

As an immediately corollary of Theorem 2.1, we obtain a proof for Lin–Bose
conjecture:

Theorem 2.2. Let F ∈ Al×m be a full row rank matrix, d be the g.c.d of all the
l × l minors of F . If all the reduced minors generate unit ideal A, then F have a
factorization F = GF1 such that det G = d and F1 is a ZLP matrix.

3. Proof of main theorem

In this section, we will give a proof of main theorem. We first recall a concept
from commutative algebra [2].

Let B be an arbitrary commutative Noetherian ring, and M be a finitely generated
B-module.
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Let Bl φ→ Bm → M → 0 be a presentation of B-module M , where φ acts on the
right on row vectors, i.e., φ(u) = uF for u ∈ Bl , where F is a matrix corresponding
to linear mapping φ.

Definition 3.1. Let φ is defined by the matrix F for some choice of bases of Bl

and Bm. For all i, we denote by Ii(F ) the ideal of B generated by the determi-
nants of the i × i submatrices of F , with the convention I0(M) = B. The ideals
Fj (M) = Im−j (F ) of B are called j th Fitting ideal of M .

Note that the Fitting ideals Fj are independent of the choice of the bases of Bl

and Bm, and depend on the module M not on its presentation.
Now it is obvious that a full row rank matrix F ∈ Al×m is a ZLP if and only if

Fm−l (M) = A, where M = Am/K , and K = rowspace(F ) is the submodule gener-
ated by all the row vectors of F .

From now on, we will assume that the ring B is a local integral domain, i.e., B

have only a unique maximal ideal, and the product of any two non-zero elements is
non-zero.

Let M be a finitely generated module over B, and have a presentation:

Bl φ→ Bm → M → 0. (3.1)

Let Torsin(M) = {u | au = 0, 0 /= a ∈ B} be the torsion submodule of M . Thus
if M = Bm/K , then Torsion(M) = {u + K | au ∈ K, 0 /= a ∈ B}.

We first prove the following lemma which can be thought as a generalization
of Proposition 20.8 in [2].

Lemma 3.1. With above notation. Let B be a local integral domain, and M be a fi-
nitely generated module over B with above presentation (3.1). If Fm−r (M) is a prin-
cipal ideal 〈d〉 and Fm−r−1(M) = 0. Then we have Torsion(M) = (K ′ : d)/K ′, and
M = Torsion(M) ⊕ Bm−r , where K ′ = Image(φ). In particular, M/Torsion(M) =
Bm/(K ′ : d) is a free module of rank m − r .

Proof. Let F be the matrix corresponding to the mapping φ. Let all the r × r minors
of F be a1, . . . , aβ , and d1 is the greatest common divisor of a1, . . . , aβ . Let ai =
d1bi for 1 � i � β. Since a1, . . . , aβ generate ideal 〈d〉, we have that d is a divisor
of ai , 1 � i � β. Hence d | d1. On the other hand, by 〈a1, . . . , aβ〉 = 〈d〉, we have

d = ∑β

i=1 aici for some ci ∈ B. Thus d = d1
∑β

i=1 bici . Hence d1 | d . Therefore
d1 = dε, ε is a unit in B. Thus 〈b1, . . . , bβ〉 = B.

Since B is a local ring, there exists some i such that bi is an invertible element in
B. Thus by bases change of Bl and Bm, we may assume b1 = 1, and we may assume
that representation matrix F has the following type:

F =
(

C0 C1
C2 C3

)
,
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where C0 ∈ Br×r with det C0 = db1 = d , C1 ∈ Br×(m−r), C2 ∈ B(l−r)×r ,
C3 ∈ B(l−r)×(m−r).

Now we note that C2C
−1
0 is a matrix with entries in B, because C2C

−1
0 = C2 adj C0

d
,

and every element of C2 adj C0 is just a r × r-minor (up to a sign), hence a multiple
of d . Similarly C−1

0 C1 is a matrix with entries in B.
We note the following equation:(

Ir 0
−C2C

−1
0 Il−r

) (
C0 C1
C2 C3

)(
Ir −C−1

0 C1
0 Im−r

)
=

(
C0 0
0 C

)
,

where C ∈ B(l−r)×(m−r) is a matrix.
Hence we may choose bases of Bl and Bm such that the representation matrix of

φ is of type
(

C0
0

0
C

)
.

Note that the representation matrix of φ has the rank r , thus we have C = 0.
Thus K ′ = image(φ) = {(vC0, 0) | v ∈ Br} = (K1, 0), where K1 = {vC0 | v ∈

Br}. Hence we have M = Bm/K ′ ∼= Br/K1 ⊕ Bm−r .
By Cramer’s rule, we have dBr ⊆ K1, and no non-zero element of Bm−r is

a torsion element, hence (K ′ : d)/K ′ ∼= (K1 : d)/K1 = Br/K1, and Torsion(M) =
Br/K1 = (K ′ : d)/K ′. Thus M/Torsion(M) = Bm/(K ′ : d) ∼=Bm−r is a free
module of rank m − r . �

Remark 3.1. Above lemma can also be obtained as a corollary of Lemma 1 in [10],
which is pointed out to us by the referee of this paper.

We also need the following easy lemma:

Lemma 3.2. Let M be a finitely generated module over A, and T = Torsion(M).
∀p ∈ Spec(A), we have Tp = Torsion(Mp), where Mp denotes the localization of
M at p.

Proof. ∀p ∈ Spec(A). Let m = t
s

∈ Tp, where s ∈ A \ p, and t ∈ T . Since t ∈
T , there exists some 0 /= a ∈ A such that at = 0. Hence am = at

s
= 0. Thus m ∈

Torsion(Mp) which implies Tp ⊆ Torsion(Mp).

Let m′
s′ ∈ Torsion(Mp), where m′ ∈ M , s′ ∈ A \ p. There exists a non-zero ele-

ment a1
s1

such that a1
s1

m′
s′ = 0. Hence there exists an element s ∈ A \ p such that

sa1m
′ = 0. Because of sa1 /= 0, we have m′ ∈ Torsin(M) = T . Hence m′

s′ ∈ Tp. We
have Torsion(Mp) ⊆ Tp. Thus Tp = Torsion(Mp). �

Now we can obtain the following main theorem:

Theorem 3.1. Let F ∈ Al×m be a matrix with rank r, d the greatest common divi-
sor of all the r × r minors of F, and b1, . . . , bβ the reduced minors of F . Let
K = rowspace(F ), and M = Am/K . Assume that b1, . . . , bβ generate unit ideal A.



284 M. Wang, D. Feng / Linear Algebra and its Applications 390 (2004) 279–285

Then Torsion(M) = (K : d)/K and M/Torsion(M) = Am/(K : d) is a free module
of rank m − r .

Proof. Since b1, . . . , bβ generate the unit ideal, we have Fm−r (M) = 〈d〉, and
Fm−r−1(M) = 0.

Let T = Torsion(M), then we have (K : d)/K ⊆ T .
∀p ∈ Spec(A), we have Tp = Torsion(Mp) by Lemma 3.2. Now all the condi-

tions of Theorem 3.1 are still true when we pass from A and A-module M to its
localization Ap of A at p, and corresponding Ap-module Mp, i.e., from Fm−r (M) =
〈d〉 and Fm−r−1(M) = 0 in A we can obtain Fm−r (Mp) = 〈d〉 and Fm−r−1(Mp) =
0 in Ap.

Hence by Lemma 3.1 we have (Kp : d)/Kp = Tp, and Mp/Tp is a Ap-free mod-
ule of rank m − r .

Since p is an arbitrary prime ideal of A, by the local-global principle for the
submodule of M , we have T = (K : d)/K . Moreover M/T is a locally free module
of constant rank m − r , hence a projective module over A. Thus M/T is a free
module of rank of m − r by Quillen–Suslin theorem. �

By Theorem 3.1 we can easily obtain the following theorem:

Theorem 3.2. Let F ∈ Al×m be a matrix with rank r, d the greatest common divisor
of all the r × r minors of F, and the reduced minors of F generate unit ideal A. Then
there exist matrices G1 ∈ Al×r and F1 ∈ Ar×m such that F = G1F1 with F1 being
a ZLP matrix.

Proof. Let K = rowspace(F ), and K1/K = Torsion(Am/K). By Theorem 3.1,
Am/K1 = (Am/K)/(K1/K) is a free module of rank m − r . Hence K1 is a free
module of rank r and K1 ⊇ K .

Now F defines a linear mapping φ from Al to Am such that Image(φ) = K , i.e.,
φ(u) = uF from u ∈ Al . Taking a system of generators of K1 with r elements and
form a r × m matrix F1. Then F1 also defines a linear mapping φ1 from Ar to Am

such that Image(φ1) = K1. Since K ⊆ K1, φ can be thought as a mapping from Al

to K1. Since Al is a free module, there exists a linear mapping ϕ from Al to Ar such
that φ = ϕφ1. Considering the matrix corresponding to standard bases of Al and Am

we have F = G1F1, where G1 is the matrix corresponding to mapping ϕ, and F1 is
a ZLP because Am/K1 is a free A-module. �

As an immediately corollary of Theorem 3.2, we obtain the following result:

Theorem 3.3. Let F ∈ Al×m be a full row rank matrix, d the greatest common
divisor of all the l × l minors of F . If the reduced minors of F generate the unit
ideal, then there exist G ∈ Al×l and F1 ∈ Al×m such that F = GF1, det G = d and
F1 is a ZLP matrix.
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Remark 3.2. Theorem 3.3 gives an answer for Lin–Bose problem.

Remark 3.3. From proof of above theorems, we see that a factorization for a multi-
variate polynomial matrix F ∈ Al×m may be obtained as follows: (i) Compute K : d

to obtain F1, where K is the submodule generated by all the rows of F . (ii) Do
a lifting to obtain G in the factorization. When F is full row (or column) rank,
we do not need do the lifting, which have been proved in author’s another paper
“On multivariate polynomial matrix factorization problems”.
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