Lipid emulsions used in parenteral nutrition induce endothelial dysfunction in porcine coronary artery rings: role of oxidative stress and cyclooxygenase-derived vasoconstrictors

Amisis Said (1), Julie Boisramé-Helms (2), Mélanie Burban (1), Sherdad Rashid (1), Cyril Auger (1), Florence Toti (1), Merhat Meziani (2), Valérie B. Schini-Kerth (1)
(1) UMR CNRS 7213, Université de Strasbourg, Illkirch, France – (2) NHC, Réanimation Médicale, Strasbourg, France

Lipid emulsions are used to provide a source of calories and essential fatty acids for patients requiring parenteral nutrition. They have been associated with hyperglycemia, hypercholesterolemia and metabolic stress, which may promote the development of endothelial dysfunction. The aim of the present study was to determine the possibility that five different commercial lipid emulsions affect the endothelial function of coronary arteries, and, if so, to investigate the underlying mechanism.

Porcine coronary arteries were incubated with lipid emulsions for 30 minutes before the determination of vascular reactivity in organ chambers and the level of oxidative stress using the redox-sensitive fluorescent dye dihydroethidium (DHE). Incubation of coronary artery rings with either Lipidem®, Meditek®, or Clinoleic® (long-chain triglycerides), but not with Intralipid® or Clinoleic® (long-chain triglycerides), significantly reduced the bradykinin-induced endothelium-dependent relaxations mediated by nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH). In contrast, Lipidem® did not affect endothelial-independent relaxations to sodium nitroprusside. The endothelial dysfunction induced by Lipidem® was significantly improved by indoethacin, a cyclooxygenase (COX) inhibitor, and by inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, L-histidine, desferoxamine). Lipidem® markedly increased the vascular oxidative stress as indicated by increased DHE signal throughout the arterial wall. The present findings indicate that several but not all lipid emulsions induce an endothelial dysfunction in coronary artery rings, involving both blunted NO- and EDH-mediated relaxations. The Lipidem®-induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

Blackcurrant juice prevents endothelial dysfunction and vascular oxidative stress in the mesenteric artery of cirrhotic rats with hepatopulmonary syndrome

Sherdzad Rashid (1), Noëdredine Idris Khodja (1), Cyril Auger (1), Mahmoud Alhosin (1), Nelly Boehm (2), Monique Oswald-Mammosser (3), Valérie B. Schini-Kerth (1)
(1) UMR CNRS 7213, Université de Strasbourg, Illkirch, France – (2) NHC, Réanimation Médicale, Strasbourg, France – (3) Hôpitaux Universitaires de Strasbourg, Physiologie et Explorations Fonctionnelles, Strasbourg, France

The aim of the present study was to determine whether the ingestion of a polyphenol-rich Blackcurrant juice (PRBJ) improves the endothelial dysfunction and vascular oxidative stress in the chronic bile duct ligation (CBDL) rats, an experimental model of hepatopulmonary syndrome (HPS), one of the serious complications of liver cirrhosis. Male Wistar rats received either control drinking water or water containing a 60 mg/kg of PRBJ for 7 weeks. After 3 weeks, the rats underwent either ligation and resection of the common bile duct (CBDL) or sham surgery (sham). Vascular reactivity was assessed in organ chambers, the expression level of proteins by immunofluorescence, and the vascular formation of reactive oxygen species by dihydroethidium. Plasma levels of pro-inflammatory cytokines were evaluated by flow cytometry. Both the nitric oxide (NO)- and the endothelium-dependent hyperpolarization (EDH)-mediated relaxations in mesenteric rings were significantly reduced in CBDL compared to sham. Impaired endothelium-dependent relaxations were associated with a reduced vascular expression of connexin 37 (Cx37) and small conductance calcium-dependent K+ channels (SKCa), and an increased expression of eNOS. In aortic sections of CBDL, an increased vascular oxidative stress and expression of NADPH oxidase subunits was observed. The endothelial dysfunction in CBDL was significantly prevented by PRBJ, and this effect was associated with the normalization of the vascular expression of Cx37, SKCa, and eNOS. PRBJ treatment also reduced vascular oxidative stress in the aorta, and the increased plasma level of pro-inflammatory cytokines in CBDL.

Altogether, these results indicate that PRBJ ingestion prevented the blunted NO- and EDH-mediated endothelium-dependent relaxation in the mesenteric artery of CBDL most likely by preventing the excessive oxidative stress in the arterial wall.

Sweet beverages-related acute hyperglycemia and vascular nitric oxide-dependent endothelial dysfunction: can exercise training be a preventive strategy?

Cindy Meziat, Sylvain Battault, Sandrine Gaynard, Cyril Reboul, Gregory Meyer, Guillaume Walther
Université d’Aix en Provence, Pôle Sportif case 12, Aix, France

The main objective of our study was to explore the effects of sweets beverages-related acute hyperglycemia (HG) on vascular endothelial function and the potential role of nitric oxide (NO) signaling pathway in macro- and micro-circulation vascular beds. As several investigators reported that exercise improves NO pathway and endothelial function, we also examined whether regular moderate physical activity could protect vascular endothelial function during hyperglycemia. Laser Doppler blood flow measurements associated to transcutaneous iontophoresis of vasoactive drugs was used to evaluate endothelial function in vivo i) in normoglycemic condition (NG) and ii) during an acute hyperglycemic stress (2g/kg of glucose, i.p.; HG). Ex vivo, endothelial function was evaluated on isolated rat aortic rings before and after an hyperglycemic stress (2h, glucose 30mM). The potential role of oxidative stress and NO pathway were evaluated i) pharmacologically by the use, in-vivo, of a non specific antioxidant (N-Acetylcysteine, NAC), or of the eNOS cofactor tetrahydrobiopterin (BH4), and ii) with the evaluation of the endothelial NOSsynthase (eNOS) activation state (phosphorylation at ser1177) by western blot. In response to HG an altered endothelium-dependent vasodilation was markedly obvious in microcirculation and to a lesser extent in macrocirculation. Oxidative stress and alteration of the coupling state of eNOS seem to be involved in such result, since the use of NAC or BH4 prevented HG-induced alteration of endothelial function. However, acute hyperglycemic stress has no effect on eNOS phosphorylation state. Finally, chronic aerobic exercise (70% maximal aerobic velocity, 5days/week for 5 weeks) was able to prevent the deleterious effect of HG stress on endothelial function. To conclude, we demonstrated here that in vivo acute HG-related endothelial dysfunction seems to be explained by nitro-oxidative stress, and could be prevented by moderate exercise training.

The Crataegus extract WS1442® retards replicative endothelial senescence by preventing eNOS down-regulation: role of NADPH oxidase and COX-mediated redox-sensitive expression of p53/p21 and p16

Noëdredine Idris Khodja, Thaïs Porto Ribeiro, Grazielle Silva, Malak Abbas, Marouane Kheloufi, Cyril Auger, Jung-Ok Lee, Valérie B. Schini-Kerth
UMR CNRS 7213, Université de Strasbourg, Illkirch, France

Endothelial cell senescence promoting endothelial dysfunction has been suggested to contribute to the development of age-related vascular disorders. Endothelial senescence is characterized by an irreversible cell cycle arrest involving the p53/p21 and p16 pathways, oxidative stress and down-regulation of endothelial nitric oxide synthase (eNOS). The present study has evaluated whether the Crataegus special extract WS1442®, a rich source of polyphenols and a potent activator of eNOS, prevents replicative senescence in cultures of porcine coronary artery endothelial cells, and, if so, to elucidate the underlying mechanism. Replicative senescence was induced by sequential passaging of primary cultures of endothelial cells up to the fourth passage (P4). Senescence was assessed using senescence-associated β-galactosidase (SA-β-gal) activity, the formation of reactive oxygen species (ROS) using dihydroethidium (DHE) by flow cytometry, and the level of protein expression by Western blot analysis. Passingage of cultures of endothelial cells was associated with a gradual increase in the SA-β-gal activity, the DHE signal and the level of p53, p21 ad
p16, and the down-regulation of eNOS from P1 to P4. The increased DHE signal was prevented by apocynin and indomethacin, and associated with an increased expression of the NADPH oxidase subunits gp91 phox, p47 phox, p22 phox, COX-1 and COX-2. The Crataegus extract, apocynin and indomethacin prevented the increase in SA-ß-gal activity, the DHE signal, the up-regulation of gp91 phox, p47 phox, p22 phox, COX-1, COX-2, p53, p21 and p16, and the down-regulation of eNOS in cells at P3. In conclusion, the present findings indicate that the Crataegus extract WS1442® delays endothelial cell replicative senescence most likely by preventing oxidative stress, which promotes the down-regulation of eNOS expression and the up-regulation of the p53/p21 and p16 and pathways leading to cell cycle arrest.

0126
Pharmacological activities of CORM-401, a redox sensitive carbon monoxide-releasing molecule, in H9C2 cardiomyocytes
Sarah Fayad Kobeissi (1), Jayne Louise Wilson (1), Brian Michel (2), Jean-Luc Dubois-Randé (3), Roberto Motterlini (1), Roberta Foresti (1)
(1) Inserm U955, Université Paris-Est, Créteil, France – (2) University of California, California, Berkeley, Etats-Unis – (3) CHU Hôpital Henri Mondor-APhV, Créteil, France

Carbon monoxide (CO) is an important signaling mediator in living organisms. To exploit the beneficial properties of CO in a therapeutic context, we developed CO-releasing molecules (CO-RMs), a class of metal carbonyls that release controlled amounts of CO in biological systems. CO-RMs elicit distinct pharmacological activities, including vasodilatation and cardioprotection against ischemia-reperfusion injury. In addition, certain CO-RMs stimulate respiration in isolated cardiac mitochondria when used at low micromolar concentrations. Here we investigated the effects of CORM-401, a new manganese-containing CO-RM, against oxidative damage and modulation of respiration in H9C2 cardiomyocytes. Using a new fluorescent probe highly sensitive to CO, we found that CORM-401 delivers higher amounts of CO to cardiomyocytes compared to CORM-3, supporting our previous findings showing that CORM-401 liberates three times more CO than CORM-3. Challenges of H9C2 cells with H2O2 induced significant loss of cell viability while co-treatment with CORM-401 rendered cells more resistant to oxidative damage. Inactive CORM-401, which does not release CO, also exerted protection against the damage caused by H2O2, suggesting a potential anti-oxidant role for the manganese metal. We measured respiration in intact cardiomyocytes and found that CORM-401 reverses the reduction in O2 consumption caused by oligomycin (inhibitor of ATP synthase) and diminishes the increase of respiration elicited by FCCP, a mitochondrial uncoupler. These effects suggest potential mitochondrial uncoupling properties of CORM-401. Interestingly, only high CORM-401 concentrations decreased cellular ATP production. In summary, CORM-401 can protect from oxidative damage, although this effect may be partially mediated by the manganese metal contained in the compound. The ability of CORM-401 to modulate cardiomyocyte respiration supports an important role for CO in the control of cellular energy production and metabolism.

0179
Polyphenol-rich blackcurrant juice induces NO-mediated relaxation in porcine coronary artery rings via a copper- and iron-dependent redox-sensitive activation of the Src/P13-kinase/Akt/eNOS pathway
Cyril Auger, Brigitte Pollet, Céline Marx, Damia Benchabane, Valérie B. Schini-Kerth UMR CNRS 7213, Université de Strasbourg, Illkirch, France

The beneficial cardiovascular effect of polyphenol-rich food and beverages has been attributed, at least in part, to the improvement of the vascular function through the induction of two major endothelial vasoprotective mechanisms. The aim of the present study is to determine whether a polyphenol-rich blackcurrant juice (PRBJ, 2.7 g/l), improves the vasoprotective endothelial function, and, if so, to characterize the underlying mechanism. The reactivity of porcine coronary artery rings was assessed in organ chambers, and the expression and phosphorylation levels of proteins in cultured porcine coronary endothelial cells by Western blot analysis. PRBJ caused potent endothelium-dependent relaxations that were significantly reduced by an eNOS inhibitor, not affected by inhibition of endothelium-dependent hyperpolarization, and abolished by both treatments. PRBJ-induced NO-mediated relaxations were significantly reduced by chelators of either copper or iron, membrane permeant analogues of superoxide dismutase and catalase, inhibitors of either Src or P13-kinase, and by calmidazolium, a calmodulin inhibitor. The NO-mediated relaxation was not affected by inhibitors of either PKC, EGFR, IGFR, or of several endogenous enzymes involved in the formation of ROS (NADPH oxidase, xanthine oxidase, mitochondrial respiration chain, cytochrome P450). In cultured endothelial cells, PRBJ increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy. Moreover, PRBJ induced the phosphorylation of Akt and eNOS on activator sites, which were inhibited membrane permeant analogues of superoxide dismutase and catalase and inhibitors of either Src or P13-kinase. PRBJ is a potent inducer of endothelium-dependent NO-mediated relaxations in porcine coronary artery rings. The NO-mediated relaxation involves an intracellular copper- and iron-dependent redox-sensitive activation the Src/P13-kinase/Akt pathway leading to activation of eNOS and subsequent formation of NO.