
JOURNAL OF COMBINATORIALTHEORY,S~~~~~ B 33,27-Sl(1982) 

On the Ramsey Numbers R(3,8) and R(3,9)* 

CHARLES M. GRINSTEAD AND SAM M. ROBERTS 

Department of Mathematics, Virginia Polytechnic Institute and State University, 
Blacksburg, Virginia 24061, and 

Department of Mathematics, Dartmouth College, 
Hanover, New Hampshire 03755 

Communicated by R. L. Graham 

Received March 17, 1981 

Using methods developed by Graver and Yackel, and various computer 
algorithms, we show that 28 < R(3, 8) < 29, and R(3,9) = 36, where R(k, I) is the 
classical Ramsey number for 2coloring the edges of a complete graph. 

In this paper we consider the Ramsey numbers associated with a partition 
of the edges of a complete graph into two sets. We consider such partitions 
to be represented by a graph, where one set of the partition is represented by 
the edges, and the other set is represented by the edges, and the other set is 
represented by the non-edges. 

Our notation will follow that of Graver and Yackel [2], except for the 
definition of the Ramsey number R(k, I). This difference is noted below. We 
now give some standard definitions, easy lemmas, and tables of numerical 
results. 

DEFINITION 1. Given a graph G, we let V(G) denote the set of vertices 
of G. Also, we let (G( and 1 V(G)] denote the number of edges and vertices, 
respectively, in G. 

A set of vertices of a graph G is called an independent set if no pair of 
vertices in the set are adjacent, and it is called a clique if every pair of 
vertices in the set are adjacent. The independence number I(G) and the 
clique number C(G) are the sizes of the largest independent set and clique, 
respectively, in G. 
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DEFINITION 2. If G is a graph with C(G) < k, I(G) ( 1, and G has n 
vertices and e edges, then G will be called a (k, I, n, e)-graph, or a (k, 1, n)- 
graph, or a (k, &graph. 

DEFINITION 3. The Ramsey number R(k, /) is the smallest integer n such 
that no (k, I, n)-graph exists. 

We remark that this definition is different from that in [2], but conforms 
with most of the literature (see [l-S]). In fact, our values of R(k, I) are all 
one larger than those in [2]). We also remark that it is easy to see that 
R(k, 1) = R(l, k), and that R(2, l) = 1. 

DEFINITION 4. The number e(k, 1, n) is the minimum number of edges in 
any (k, 1, n)-graph. 

Section 1 below consists of the main lemmas needed to show that 28 < 
R(3,S) < 29, and R(3,9) = 36. Section 2 contains an exposition of the 
computer programs which were used in the proofs of the above statements. 
Section 3 contains various structural results needed in the calculation of 
certain of the edge numbers e(k, 1, n). Section 4 contains some open questions 
in the area. Finally, the appendix contains lists of some of the more 
important graphs. 

TABLES OF NUMERICAL RESULTS 

Exact values or bounds for R(k, I) 

kl 3 4 5 6 I 8 9 10 

3 6 9 14 18 23 28-29 36 3944 
4 9 18 25-28 34-44 
5 14 25-28 42-55 5 l-94 

Exact values or bounds for e(3,1, n) 

I n 43, 1, n) I n e(3,L n) 1 n e(%l, n) 

3 4 2 5 11 15 6 17 40 
3 5 5 5 12 20 7 19 31 
4 6 3 5 13 26 7 20 44 
4 7 6 6 12 11 7 21 51 
4 8 10 6 13 15 7 22 60 
5 8 4 6 14 20 8 26 71-74 
5 9 7 6 15 25 8 21 81-87 
5 10 10 6 16 32 8 28 90-98 
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One of the most fruitful ideas in the attempt to obtain good bounds for 
R(k, r> and e(k, Z, n) is the idea of preferring a vertex. Given a (k, I)-graph G, 
and a vertex u in G, we can partition G into three subgraphs: the vertex I), 
the subgraph H,(v) generated by the neighbors of o, and the subgraph H,(u) 
generated by the remaining vertices. The vertex z, is said to be the preferred 
vertex. 

LEMMA 1. If G is a (k, I)-graph, (and u is a vertex in G, rhen H,(u) is a 
(k - 1, l)-graph) and H,(u) is a (k, I- 1)-graph. 

Proof: Any clique of size x in H,(u) becomes a clique of size x + 1 when 
u is added, and any independent set of size y in H,(u) becomes an 
independent set of size y + 1 when u is added. 

DEFINITION 5. Let G be a (3, I)-graph. We let vi = I- 1 - i, and we 
define Si to be the number of vertices of G of degree ui. 

We remark that in a (3, &graph, H,(u) is an independent set for each 
vertex u (this follows from Lemma 1). Therefore, the maximum possible 
degree in a (3, &graph is l- 1, so in the above definition, i > 0. Thus, the 
subscript i is the difference between the degree of the vertex and the 
maximum possible degree in G. Note that the value of u[ depends on 1 as well 
as on i. 

Given a (k, 1, n)-graph, and a vertex u of degree d, we have seen that H,(u) 
is a (k, 1- 1, n-d- 1)-graph. So, we must have ]Hz(u)] > 
e(k, I - 1, n - d - 1). This prompts the next definition. 

DEFINITION 6. A vertex u of degree d in a (k, Z, n)-graph is called full if 
( HZ(u)1 = e(k, I - 1, n - d - 1). 

In a (3, I)-graph, if a vertex u is preferred, then each edge is either in H,(u) 
or is adjacent to exactly one vertex in H,(u), since H,(u) is an independent 
set. 

DEFINITION 7. If a vertex u is preferred in a (k, /)-graph, we define Z(u) 
to be the sum of the degrees of the neighbors of u. If Z(u) = s, we will 
sometimes say that u has Z-sums. 

DEFINITION 8. Given a graph G, if u is a vertex of degree d, then we say 
that u is a d-vertex. The subgraph of G generated by all of the d-vertices is 
called the d-subgraph. 

The following lemma appears in [2] as Proposition 4. 
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LEMMA 2. Let G be a (k, I, n, e)-graph. Let 

A=ne- c (e(3,Z- 1,1t--~- l)+vf]si. 

Then, A > 0, and there are at least n - A fill vertices in G. 

Proof: For all i and j, define 

pii = (the number of vertices in 
H,(v) of degree uj) 

=o 

if deg(v) = Vi) 

otherwise. 

We note that CUpij(u) is the number of edges between vertices of degree ui 
and vj, so Cv/?ij(u) = Cv/?ji(~). If v is of degree vi, and is preferred, then 

e = [H*(V)/ + (Vi)* + C (i - j) Pij(V)* 
i>O 

If we sum this over all vertices of G, we have 

ne = 2 IHz(V)l + (Vi)’ Si + 1 x C (i - j) pij(V)* (1) 
0 i>O u j>0 

In all cases, we have 

IH,(v)l >, e(3, I - 1, n - vi - l), (2) 

and if v is a full vertex, then this is an equality. 
If i and j are fixed, then the sum C, /Iij(v) occurs in (1) with a coefficient 

of (i - j), and the sum CU/Iji(u) occurs with a coefficient of (j - i). 
Recalling the remark at the beginning of the proof, we see that these two 
sums cancel in (1). Thus, using (2) in (l), we have 

ne > C e(3,1- 1, n - Vi - 1) Si + (Vi)’ Si 

i>o 

= C {e(3,l- l,n-vi- l)+(vi)‘}si. 
i>O 

This is equivalent to the statement that A > 0, and it is easily seen that each 
vertex which is not full contributes at least 1 to A, so there must be at least 
(n - A) full vertices. This completes the proof. 

In [2], it was shown that 2’7 <R(3,8) < 30. We now develop some 
lemmas on the structure of (3,8,29)-graphs, which will allow us to show 
that no such graphs exist, thereby showing that R(3,8) ,< 29. 
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LEMMA 3. If G is a (3,8,29)-graph, then G contains a 6-vertex v with 
I4(vl< 59. 

Proof: In [2], it was shown that e(3,8,29) > 99. If G contained a vertex 
w  of degree 5 or less, then H,(w) would be a (3,7)-graph with more than 22 
vertices, which is impossible, since R(3,7) = 23. Thus, every vertex is of 
degree 6 or 7. If edges are counted, and we recall that there are s, vertices of 
degree 6, then ]G] = 101 - j(s, - 1). This implies that s, = 1, 3, or 5. 

Case 1. s, = 1. 
Let v be the unique 6-vertex. Then the neighbors of v are all 7-vertices, so 

Z(v) = 42, and so ]Z&(v)l = 101 - 42 = 59. 

Case 2. s, = 3. 
There must be a 6-vertex v with at most one 6-vertex as neighbor, for 

otherwise the three 6-vertices would form a triangle. So, Z(v) > 41, and so 
IH*(v)l < 100 - 41 = 59. 

Case 3. s, = 5. 
If v is a 6-vertex with at least three 6-vertices as neighbors, then each of 

these three 6-vertices are adjacent to at most two 6-vertices, since there are 
no triangles. Hence, in any case, G contains a 6-vertex v with at most two 6- 
vertices as neighbors. So, Z(v) > 40, and so ]EZJv)l < 99 - 40 = 59. 

LEMMA 4. If G is a (3, 7,22, e)-graph, and e < 62, then G contains no 
vertices of degree less than five. 

Proo$ If v is a 4-vertex, then H,(v) is a (3,6, 17)-graph. All such graphs 
are known (see [5]). The computer algorithms used to rule out the values of 
e < 61 are described in Section 2. 

The following lemma appears in [lo]. It is very similar to Lemma 2. 

LEMMA 5. In any graph G, we have xi=-, sivf = C, Z(v). 

Proo$ We have 

c Z(v) =c c d&4 
” u 

hl,&G 

= c (deg(w))* 
w  

= c siv;. 
i>O 

582b/33/1-3 



32 GRINSTEAD AND ROBERTS 

LEMMA 6. If G is a (3, 7,22)-graph, then G has at least 60 edges. 

ProoJ Lemma 4 implies that G contains only vertices of degree 5 and 6. 
By counting edges, we find that s0 = 8 and s, = 14. We now assume that G 
contains no full 5 vertices. For each 5-vertex, the Z-sum is at most 26, and 
since e(3,6, 15) = 25, we have that the Z-sum for each 6-vertex is at most 
34. so, 

1 Z(v) < 14.26 + 8.34 = 636. 
u 

On the other hand, 

r s,v; = 14.25 + 8.36 = 638. 
C+G 

This contradicts Lemma 5. 
In Section 2, we show that no (3, 7,22,59)-graph can have a full 5-vertex. 

This establishes the lemma. 

THEOREM 1. 28 < R(3,8) < 29. 

Proof. Lemmas 3 and 6 together imply that there are no (3,8,29)- 
graphs. The appendix gives a (3,8,27,87)-graph. 

We now turn our attention to R(3,9). In [Z], it is shown that 36 < 
R(3,9) < 37, and that if G is a (3,9, 36)-graph, then it is a regular graph of 
degree 8. If any vertex v is preferred, then Hz(v) is a (3,8,27,80)-graph. The 
remainder of this section is devoted to establishing results on the structure of 
(3,8,27,80)-graphs. 

LEMMA 7. If G is a (3, 7, 19,36)-graph, then G contains either a full 3- 
vertex or a full 4-vertex. 

Proof: If v is a full 2-, 3-, or 4-vertex, then Z(v) = 4, 11, or 16, respec- 
tively. There are no l-vertices, since e(3,6, 17) = 40. If G contains any 2- 
vertices, then the Z-vertices form a component of G, since no Z-vertex v can 
have anything but Z-vertices as neighbors, as Z(v) < 4. Let the 2-subgraph 
be G,. Then we have I(G) = I(G,) + I(G - G2). But G has 19 vertices, and it 
is easy to check that for all possible partitions of 19 into two integers m and 
n, where ) V(G,)j = llz and 1 V(G - G,)l = n, we must have I(G) > 7. So there 
are no Z-vertices. 

We now apply Lemma 2. We have the following system: 

A = 684 - 34s, - 36s, - 4Os, - 47s, > 0, 

72 = 3s, + 4s, + 5s, + 6so, 

19=s,+s,+s,+s,. 

(1) 
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We now assume that there no full 3- or 4-vertices. From Lemma 2, it 
follows that 19 -A = s, + s, , or A 2 s1 + sj . This relation, together with (l), 
implies that 

so = 2s, + s2 - 23, (2) 

85 > 9s, + 4s,. (3) 

From (2), we obtain 2s, + s2 > 23, which implies that 8s, + 4s, > 92. This 
contradicts (3), which completes the proof of the lemma. 

LEMMA 8. e(3,7, 19) = 37. 

Proof. In [2], it was shown that 36 < e(3,7, 19) Q 37. The computer 
algorithms in Section 2 show that the situation described in Lemma 7 cannot 
occur, so e(3, 7, 19) > 37, which completes the proof. 

LEMMA 9. If G is a (3, 7,21,50)-graph, thkn G contains a full 4-vertex 
with two 4-vertices and two 5-vertices as neighbors. 

Proof We recall that e(3,6, 17) = 40, so if a 3-vertex v in G is preferred, 
then Z(v) < 10, which implies that v must have at least two 3-vertices, say, 
w, and w2, as neighbors. If w1 is preferred, then w1 has at most two edges to 
other vertices in H,(w,). But H,(w,) is a (3, 6, 17)-graph, and since 
R(3,5) = 14, H,(w,) can have no vertices of degree 2 or less. So G contains 
no 3-vertices. 

We now apply Lemma 2 to obtain the following system: 

A = 1050 - 56s, - 5Os, - 48s, > 0, 

100 = 6s, + 5s, + 4s,, 

21=s,+s,+s,. 

If we solve this system, we obtain 

s,=5 +sg, 

s, = 16 - 2s,, 

A = 10 - 4s,. 

Since A > 0, we must have s,, Q 2. 
To establish the lemma, we need only show that some 4-vertex v has at 

most two 4-vertices as neighbors. To see why this suffices, note that since 
e(3,6, 16) = 32, we must have Z(v) < 18. If v has at most two 4-vertices as 
neighbors, then Z(v) > 4 + 4 + 5 + 5, so equality must hold, and so v has 
exactly two 4-vertices and two 5-vertices as neighbors. 
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We now assume that every 4-vertex has at least three 4-vertices as 
neighbors. Then the 4-subgraph is a triangle-free graph with every vertex of 
degree at least 3. There are no such graphs with fewer than six vertices, and 
the only such graphs on six and seven vertices are K,,, and K,,,, respec- 
tively. Since s2 = 5 + s,, we only need to consider these two cases. 

In the first case, let the 4vertices be partitioned into sets T, and T, such 
that IT,I=/TJ=3, and such that every vertex in T, is adjacent to every 
vertex in T,. There are three edges from vertices in T, to vertices in G - 
(T, U T,), so there are at least 12 vertices in G - (T, U T,) which are not 
adjacent to any vertex in T,. From this set of 12 vertices, we can choose an 
independent set Tj of size 4, since R(3,4) = 9. Then T, U TX is an 
independent set of size 7 in G, which is impossible. 

In the second case, if the 4-subgraph is partitioned into sets T, and T,, as 
before, with ] T, I = 3 and I T, I = 4, then by using a similar argument, it is 
easy to show that T, is part of an independent set of size 7. This completes 
the proof of the lemma. 

LEMMA 10. e(3, 7,21) = 5 1. 

ProoJ In [2], it was shown that 50 & e(3,7,21) < 51. The computer 
algorithms in Section 2 show that the situation described in Lemma 9 cannot 
occur, so e(3,7,21) > 51, which completes the proof. 

LEMMA 11. If G is a (3,8,27,80)-graph, then G has no vertices of 
degree less than 5. 

Proof: In this proof, we assume that e(3, 7, 19) = 37, e(3, 7, 20) = 44, 
e(3,7, 21) = 51, and e(3, 7,22) = 60. The first, third, and fourth equalities 
are Lemmas 8, 10, and 4, and the third equality is given in [2]. 

If G contained a vertex v of degree less than 4, then HZ(v) would be a 
(3, 7, n)-graph, where n > 23, which is impossible. 

If v is a 4-vertex with two 4-vertices, say, w, and w?, as neighbors, then 
w2 is in H,(w,), and w2 has degree at most 3 in this subgraph. But H,(w,) is 
a (3, 7,22)-graph, and R(3, 6) = 18, so H,(w,) can have no 3vertices. 
Therefore, each 4-vertex in G has at most one 4-vertex as neighbor. So, if v 
is a 4-vertex, then Z(v) > 19. Therefore, /HZ(v)1 < 61. Lemma 4 implies that 
H,(v) has no 4-vertices in it, so G has at most two 4-vertices, namely, v and 
perhaps one of its neighbors. 

Using Lemma 2, we have the following system: 

A = 2160 - 86s, - 8Os, - 76s, - 76s, > 0, 

160 = 7s, + 6s, + Ss, + 4s,, 

27 = s, + s, + sz + sj. 
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To solve this system, we take 2 cases: 

Case 1. s1 = 2. 
A = 2008 - 86s, - 8Os, - 76s, > 0, 

152 = 7s, + 6s, + 5s2, 

25=s,+s,+s,. 

If s,, and s1 are eliminated, we get 2s, < -4. This is impossible. 

Case 2. s3 = 1. 
By solving the system we get s2 < 2. Thus, the 4-vertex v has Z-sum at 

least 5 + 5 + 6 + 6 = 22, so IHz(v)l < 58. But H*(U) is a (3, 7,22)-graph, 
and e(3,7,22) = 60, so we have a contradiction. This completes the proof of 
the lemma. 

LEMMA 12. If G is a (3,8,27, 80)-graph, then G contains either a full 6- 
vertex with six 6-vertices as neighbors, or a full 5-vertex with four 6-vertices 
and one 5-vertex as neighbors. 

Proof: We use the system of inequalities given in the proof of Lemma 11, 
but we set sj = 0. From this we obtain 

s, = sg + 2, 

s,=25-2s,, 

A = 8 - 2s, > 0. 

Thus, s, <4, and 2 <s, < 6. We note that since e(3, 7,20) =44 and 
e(3, 7, 21) = 51, if v is a 5-vertex, then Z(v) < 29, and if v is a 6-vertex, then 
Z(v) < 36. In particular, the number of (5,6)-edges is at least as great as the 
number of (6, 7)-edges, for otherwise some 6-vertex v would have more 7- 
vertices than 5-vertices as neighbors, which would force Z(v) > 36. 

Case 1. s, < 4. 
Each 5-vertex has at most four 6-vertices as neighbors, and no 6-vertex is 

adjacent to a 7-vertex and nor to a 5-vertex, so there are at most 16 6- 
vertices adjacent to either a 5-vertex or a ‘I-vertex. But there are at least 21 
6-vertices, so there is a 6-vertex with six 6-vertices as neighbors. 

Case 2. s2 = 5. 
If no 6-vertex exists with six 6-vertices as neighbors, then each 6-vertex is 

adjacent to at least one 5-vertex, and since there are 19 6-vertices, there must 
be at least 19 (5,6)-edges. But there are only five 5-vertices, so some f-vertex 
v has at least four 6-vertices as neighbors. Since Z(v) < 29, v must have 
exactly four 6-vertices and one 5-vertex as neighbors. 
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FIGURE 1 

Case 3. s2 = 6. 
In this case, A = 0, so Lemma 2 implies that all of the vertices are full. If u 

is a 7-vertex, then Z(V) = 43, so v must have at least one 7-vertex as 
neighbor. Thus, there are only four possibilities for the 7-subgraph; they are 
given in Fig. 1. 

If u is a 7-vertex which has i 7-vertices as neighbors, then u has (i - 1) 5 
vertices as neighbors, since Z(v) = 43. So, in any of the four cases, there are 
at most four (5, 7)-edges. Since there are six 5-vertices, there must be a 5 
vertex w  with no 7-vertices as neighbors. Since Z(w) = 29, w  must have four 
6-vertices and one 5-vertex as neighbors. This completes the proof of the 
lemma. 

LEMMA 13. e(3,8,27) > 81. 

Proof: In [2] it is shown that e(3,8,27) > 80. In Section 2, computer 
algorithms are described which enable us to show that the conditions given 
in Lemma 12 cannot occur, so e(3,8,27) > 81. 

THEOREM 2. R(3,9)=36. 

Proof: By the remark made before the statement of Lemma 7, the non- 
existence of a (3,8,27,80)-graph implies that R(3,9) = 36. 

2 

In this section we describe the computer algorithms which are used in the 
proofs of Lemmas 4, 6, 8, 10, and 13. 

The first algorithm generates a list of all independent sets of size j in a 
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graph G, for any j < I(G). This algorithm is a standard backtrack procedure, 
and is well-known. 

We illustrate the other algorithms by going through a proof of Lemma 6. 
We assume that G is a (3,7,22,59)-graph, and that u is a full 5vertex. 
Lemma 4 states that G has no 4-vertices, and since Z(u) = 27, u must have 
three 5vertices, say, wi, w2, and wj, and two 6-vertices, say, wq and w5, as 
neighbors. We wish to show that it is impossible to join the vertices of H,(v) 
to the vertices of H*(u) in such a way that the resulting graph is a (3,7)- 
graph. We point out that given a preferred vertex u, a list of vertex degrees in 
H,(v), and the graph H*(Y), the following algorithm will generate all possible 
graphs with this structure, if any exist. 

In the specific case above, we note that HZ(u) is a (3,6, 16,32)-graph. A 
complete list of these graphs is given in the appendix. We choose one of the 
graphs, say, Hi6=, and proceed. In order to avoid triangles while 
constructing G, it is enough to join each vertex wi in H,(v) to an independent 
set Si in H,6a. If wi is an m-vertex in G, then Si is an independent set of size 
(m - 1). 

Given two vertices w, and wj in H,(u) it is usually impossible to have 
Si = Sj, and the condition which insures this is easy to check by hand. We 
proceed as follows: If Si = Sj, then wi and wj have the same neighbors. If wi 
and wj are simultaneously preferred then G is partitioned into three graphs: 
(wi, wj}, H,(wJ (=H,(wj)), and H2(wi) - wj (=H,(wj) - wi). This last graph 
we will call H,(wi, wj). It is easy to see that since w, and wZ are not 
adjacent, H,(wi, wj) must be a (3, 5)-graph. Furthermore, H,(wi) has at most 
six vertices, so H,(w,, wj) has at least 22 - 6 - 2 = 14 vertices. But no 
(3, 5, 14)-graphs exist, since R(3, 5) = 14. 

In order to construct G, we must choose three different 4-independent sets 
S, , S,, and S,, and two different 5-independent sets S, and S, , join wi to 
each vertex in S,, and then check to see if the resulting graph has any 7- 
independent sets. If there are no 7-independent sets, then G is a (3, 7,22,59)- 
graph. 

Given a selection of sets Si, where can the 7-independent sets be in the 
resulting graph G? If T is a 7-independent set in G, and T contains tr, then T 
contains none of the vertices in H,(u). So, T - {u} is a 6-independent set in 
H*(U), which is impossible. If T contains less than two vertices in H,(v), the 
same problem occurs. So, T must contain at least two vertices in H,(o). 

Now assume that T is a 7-independent set in G, as before, and assume that 
T contains exactly k vertices wi,, wi *,..., wlk in H,(u), where k > 2. Let Vz = 
V(H,(u)). Then T - {wi ,,..., wi,} is a (7 - k)-independent set in V, - 
(Si, U S[* U *** U Si,). Conversely, if the k sets Si,,..., Six have the property 
that when they are removed from V,, a (7 - k)-independent set S remains, 
then S U {wit,..., wik} is a ‘I-independent set in G. Thus, a necessary and 
sufficient condition that the selection {S, , S, ,..., S,} represents a (3,7)-graph 
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is that for each subselection {Si,,..., SiJ, where k > 2, we have that the set 
V, - (Si, U “. U S,,) contains no (7 - k)-independent set. 

Let us say that the sets S, and Sj form a “good” pair if V, - (Si U Sj) has 
no 5-independent sets. From above, we see that if the selection {S, ,..., S,} 
represents a (3, 7)-graph, then it is necessary (but not sufficient) that each 
pair of sets Si, S, be a good pair. The property of being a good pair depends 
only on HJv), which in this case is Hi,,. 

We now construct three matrices Mb4, Ma5, and M,, . The first algorithm 
above gives us lists of 4- and 5-independent sets. Let us call them 
{S;: i < d4} and {Sj: i < d5}, where G contains d, 4-independent sets and d, 
5-independent sets. If i < j, then we define the ijth entry in Md4 to be 1 if Sq 
and Sy form a good pair, and 0 otherwise. The matrix M,, is defined 
similarly. For all i and j, we define the ijth entry in M,, to be 1 if Sf and Sj 
form a good pair, and 0 otherwise. An efficient way to generate these 
matrices will be described below. 

From these matrices, we generate a list of all sets of the form A = 
{Sz, Sl, S:, Si, S:}, where each pair in the set A is a good pair. To obtain 
all sets of this form, we pick the first row M/f/ in the matrix Md4, and pick 
the tirst column j for which the 0th entry is a 1. We have now “picked” 
the sets Sy and Sj”. Next, the “and” operation, written A, is applied to the 
first and the jth rows, and the first nonzero entry in the result, say, in the kth 
column, is chosen. This corresponds to picking S:. Note that in the set 
{S:, S;, St}, all three pairs are good pairs. We now must pick two 5- 
independent sets. From the matrix Md5, we select the first, jth, and kth rows, 
and take their “and.” Let us assume that in the result, the first 1 occurs in 
the Ith column. Then the 5-independent set Sf forms a good pair with each 
of the three 4-independent sets already chosen. Finally, the result of the last 
“anding” operation is “anded” with the Ith row of M,, . If the mth column in 
the result is 1, then the set Si can be added to complete the set A. All 10 
pairs in the set A are good pairs. We then backtrack. 

If any sets of the form of A exist, then we check each set to see if for all 
choices of k sets from A, k > 3, when these k sets are removed from V,, 
there are no (7 - k)-independent sets remaining. If this is the case, then the 
set A represents a (3, 7, 22, 59)-graph. 

We now describe how the matrices Mij are constructed. We first construct 
the matrix N4 (and in a similar way, Ns). The matrix N4 is a d4 X d5 matrix. 
A 1 is placed in the (bc)th position of N4 if and only if Sin St = 0. A 1 is 
placed in the (bc)th position of N5 if and only if Sin Sz = 0. 

Let the kth row of Ni be denoted Ni (@. To find the (kl)th entry of the 
matrix M44, where k < I, we look at the rows Nik’ and N$‘). If Nik’ A Ni” has 
any ones in it, then the (kl)th entry of Md4 is given the value 1. To see why 
this works, note that there are no ones in Nik’ A Nil’ if and only if every 5- 
independent set Sj intersects either Sik) or $‘I. This happens if and only if 
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the pair (Sik’, Sv’) is a good pair, which is true if and only if the (kl)th entry 
of Md4 is a 1. 

The above programs were run on a Honeywell Level 66 computer at 
Dartmouth College. This computer can perform 2 x IO6 instructions per 
second, and we estimate the amount of time used in the search for R(3,9) to 
be 2.5 x lo4 seconds. Thus, the number of instructions was about 5 x 10”. 
The time needed could be significantly reduced in several ways. The 
programs would run much more quickly on a machine which has extended 
bit-string operations, e.g., the ability to find the “and’ of two 800-bit vectors. 
A reduction in time would occur if the machine were able to process the 
programs in parallel. Finally, a fast bit-string index function, i.e., a fast 
method for determining the position of the first 1 after a given position in a 
vector, would also make the programs faster. 

3 

This section contains many lemmas describing the structure of (3, Q- 
graphs with the minimum possible number of edges. These lemmas are used 
with the algorithms described in the previous section to calculate e(3,1, n) 
and to find all (3,1, n)-graph with e(3,1, n) edges, for various values of 1 
and n. 

DEFINITION 9. If G is a (3,1, n, e)-graph with e = e(3,1, n), then G is 
called a minimum (3,1, n)-graph. Let G be a (3,1, n)-graph with the property 
that if any edge is removed, then the resulting graph contains an independent 
set of size 1. In this case, we call G a minimal (3,1, n)-graph. 

We note that every minimum graph is minimal, but not vice versa. If the 
graph G is minimum and has n vertices, then we follow [2] and denote G by 
H,, and we use further subscripting if there is more than 1 minimum graph. 
For example, there are five minimum (3,6, 16)-graphs, which we denote 
H H16e’ 16a ,--*v If G is a (3,1, n)-graph which is not minimum, then we usually 
denote it .T,, with further subscripting if necessary. No confusion arises, since 
the number n usually determines the values of 1. 

LEMMA 14. The following parameters have unique minimum graphs 
associated with them. In all cases, if the graph has n vertices it is denoted 

H,* 

(1) (3,3,5,5) (5) (395, 11, 15) 
(2) (3,4,g, 10) (6) (335, 12720) 
(3) (3,5,9,7) (7) (376, 13, 15) 
(4) (395, 10, 10) (8) (3,6, 15,25) 
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Proof: These results were all proved in [2]. We note that the 
(3, 6, 13, 15)graph is called Hi3, even though there is a (3, 5, 13)graph. The 
latter graph is not of much use in constructing larger graphs. 

LEMMA 15. If G is a (3, 5, 11, 16)-graph, then G contains a vertex v of 
degree 2 with 5 < Z(v) < 6. Furthermore, the neighbors of v are either 2-, 3-, 
or 4-vertices. 

ProoJ Since R(3,4) = 9, every vertex in G must have degree at least 2. 
The average degree of the vertices in G is 32/l 1, so G must have a vertex of 
degree 2. Assume that G is the (disjoint) union of two or more connected 
components, say, G = G, U G, U . + - u G,. At least one component, say, 
G,, has less than six vertices. If ] V(G,)I < 3, then ] V(G - G,)I > 8, so 
I(G - G,) > 4, and so I(G) > 5, which is a contradiction. If 3 < 1 V(G,)] < 5, 
then I(G,) > 2, and Z(G - G,) > 3, so I(G) > 5, which again is a 
contradiction. Therefore, G is connected. 

Since G is connected, there is a 2-vertex v which is adjacent to a vertex of 
larger degree. So, Z(v) > 5. Since e(3,4, 8) = 10, we must have Z(v) < 6. 
The final statement in the lemma now follows easily. 

The computer algorithms in Section 2 can be applied, using the above 
lemma, to find all (3, 5, 11, 16)-graphs. There are six such graphs, and they 
are listed in the appendix. We note that three of these graphs come from H,, 
by the addition of an edge, and the other three are minimal. 

LEMMA 16. If G is a (3,6, 16, 32)-graph, then either G has a full vertex 
or G is regular of degree 4. 

Prooj Since R(3,4) = 14, G has no vertices of degree less than 2. If G 
has a 2-vertex v, then HI(v) is a (3, 5, 13)-graph, and there is only one such 
graph (see [2, 31) and it has 26 edges. So, Z(v) = 6, and so there are four 
edges between H,(v) and H,(v). Thus, there are at least nine vertices in 
Hz(v) which are not adjacent to any vertices in H,(v). Since R(3,4) = 9, it is 
possible to choose an independent set S of size 4 from these nine vertices. 
Then SU V(H,(v)) is an independent set of size 6, which is impossible. 
Hence, G has no 2-vertices. 

We now apply Lemma 2, to obtain the following system: 

A=512-35s,-31s,-29s,>O, 

64 = 5s, + 4s, = 3s,, and 

16=s,+s, +s,. 

If we solve this system, we obtain 
s, = 16 - 2s2, 

so=s2, 
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and 

A= 16-2~~. 

If A < 16, then G contains a full vertex. If A = 16, then s2 = 0, hence s, = 0, 
and so G is regular of degree 4. 

Again, the computer algorithms in Section 2 can be applied, using the 
above lemma, to find all (3,6, 16,32)-graphs. Note that if G is regular, and 
u is any vertex in G, then H,(v) is a (3,5, 11, 16)-graph, which is the reason 
that Lemma 15 is needed. There are five (3,6, 16,32)-graphs, two of which 
are regular, and they are listed in the appendix. 

LEMMA 17. If G is a (3, 6, 15,26)-graph, then G contains a fill vertex 
of degree 2, 3, or 4. 

Proof. Since e(3,5, 13) = 26, G contains no vertices of degree less 
than 2. Using Lemma 2, we obtain 

and 

A = 390 - 32s, - 26s, - 26s, - 24s, > 0, 

52 = 5s, + 4s, + 3s, + 2s3, 

From this we obtain 

s, = 23 - 2s, - 3s,, 

so = s2 + 2s, - 8, 

and 

A=48-6s,- lOs,. 

Since so 2 0, we must have s2 + 2s, 2 8, or equivalently, Ss, + lOs, > 40. 
But, 

0 Q A = 48 - (5s, + lOs,) -s, < 8 - s2 < 8, 

so Lemma 2 implies that there are at least seven full vertices. If so > 7, then 
by counting edges, it is easy to show that sJ 2 7, which implies that A < 0, 
which is impossible. So, so < 7, which means that there is a full vertex which 
is not a 5-vertex. 

LEMMA 18. There are exactly seven (3,6, 15,26)-graphs. 

ProoJ Lemma 17 gives enough conditions on such graphs so that the 
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computer algorithms in Section 2 can be used to generate a complete list of 
(3, 6, 15,26)-graphs. These graphs are listed in the appendix. 

LEMMA 19. If G is a (3, 7,20,44)-graph, then G contains either a full 
vertex or a 4-vertex v with Z(v) = 18. 

. 
ProoJ: Since R(3, 6) = 18, G can have no vertices of degree less than 2. 

If G has a vertex v of degree 2, then Z(v) < 4, since e(3,6, 17) = 40. So the 
2subgraph of G forms a component of G. The same argument as that used 
at the beginning of Lemma 15 shows that it is impossible for G to be discon- 
nected, so G has no vertices of degree 2. 

Using Lemma 2, we obtain the following system: 

and 

A=880-51s,-45s,-41s,-41s,>O, 

88 = 6s, + 5s, + 4s, + 3s3, 

20 = s, + s, + s* + s3. 

Solving this system, we obtain 

A=52-2s,-8s,, 

s, = 32 - 2s, - 3s,, 

and 

so = s2 + 2s, - 12. 

We now assume that G does not contain a full vertex. Thus, A > 20. By 
recalling the proof of Lemma 2, we see that there can be no more than 
(A - 20) vertices v such that Z(v) is 1 less than the Z-sum of a full vertex of 
the same degree. So, if s, > (A - 20), then some 4-vertex v has Z(v) = 18. 

By solving the above system, we obtain nine solutions, all of which have 
s, > A - 20, which completes the proof. 

LEMMA 20. There are exactly 15 (3, 7,20,44)-graphs. 

Proof: If G is a (3, 7,20,44)-graph, and v is a 4-vertex with Z(v) = 18, 
then H,(v) is a (3,6, 15,26)-graph. Lemma 18 gave a complete list of such 
graphs. The computer algorithms in Section 2 can be applied to these graphs, 
and to the minimum graphs Hi,, H,4, H,, , H,6a ,..., Hi,,. A complete list of 
(3, 7,20,44)-graphs, named Hzoo,..., HzoO, is given in the appendix. 

LEMMA 21. Zf G is a (3, 7, 21, 5 1)-graph, then G has a full vertex. 
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ProoJ Since R(3,6) = 18, G has no vertices of degree less than 3. If v is 
a 3-vertex, then Z(u) Q 11, since e(3, 6, 17) = 40. In this case, there are at 
most eight edges between H,(u) and H,(v), so there are at least nine vertices 
in H,(u) which are not adjacent to any vertex in H,(u). Since R(3,4) = 9, 
there is an independent set S of size 4 in this set of nine vertices. But then 
SU V(H,(u)) is an independent set of size 7 in G, which is impossible. So, 
s, =o. 

From Lemma 2, we obtain 

A = 1071 - 48s, - 5Os, - 56s, > 0, 

102 = 4s, + 5s, t 6s,,, 

and 
21 =s* ts, ts,. 

If we solve this system, we obtain 

A=27-4s,, 

and 

s2 = s, t 3, 

s,= 18-2s,. 

If A < 21, then G has a full vertex, so we may assume that A > 2 1. This 
implies that s,, = 0 or 1. 

Case 1. s0 = 0. 
In this case s2 = 3, so at least one 4-vertex u has no more than one 4- 

vertex as neighbor. So, Z(u) > 4 + 5 t 5 t 5, so u is a full vertex. 

Case 2. so = 1. 
We assume towards a contradiction that G contains no full vertices. We 

have sz = 4, s, = 16, and each 4-vertex has at least two 4-vertices as 
neighbors. Thus, the 4-subgraph must be a quadrilateral, with edges {(a, b), 
(b, c), (c, d), (d, a)}, say. Let u be the 6-vertex in G. Since the 4-vertices have 
Z-sum at most 18, they each must be adjacent to two 5-vertices. So, u is 
adjacent to six 5-vertices, say, u, ,..., ug. Since none of the 5-vertices are full, 
their Z-sums are at most 25, so each of the vertices u, ,..., ug must be 
adjacent to at least one 4-vertex. Therefore, at least one of the sets {a, c), 
{b, d}, has at least three neighbors in H,(u). Without loss of generality, say 
{a, c} has this property. Then there is at most one 5-vertex from outside of 
H,(u) which is adjacent to either a or c, so there are at least nine 5-vertices 
which are adjacent to none of u, a, and c. Thus, an independent set S of size 
4 can be found in this set of nine vertices. But then the set S U {u, a, c} is an 
independent set of size 7, which is a contradiction. This completes the proof. 
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LEMMA 22. There are exactly four (3, I, 2 1, 5 1 )-graphs. 

Proof The computer algorithms in Section 2, together with Lemma 21, 
can be used to generate a complete list of (3, 7, 21, 5 1)-graphs. These graphs, 
denoted H2,o ,..., HZld, are listed in the appendix. 

LEMMA 23. If G is a (3, 7,22, 60)-graph, then G contains a full vertex 
or a 6-vertex v with Z(v) = 34. 

ProoJ From Lemma 4, we know that G contains only 5vertices and 6- 
vertices. By counting edges, we see that s, = 12, s, = 10. Using Lemma 2, we 
can show that A = 26. So, either there is a full vertex, or else all but four of 
the vertices have Z-sums which are 1 less than the maximum possible Z- 
sum. Since there are 12 6-vertices, there must be a 6-vertex v with Z(v) = 34, 
if there are no full vertices. 

LEMMA 24. There is a unique (3, 7, 22,60)-graph, and so 
e(3, 7,22) = 60. 

Proof: Using Lemmas 18 and 23, and the computer programs in 
Section 2, we can show that there is exactly one (3, 7,22,60)-graph. This 
graph is denoted Hz2, and is given in the appendix. Lemma 6 states that 
e(3, 7,22) > 60, so the equality holds. 

4 

In this section, we give some unsolved problems in the area, as well as 
some interesting numerical phenomena which arose while this research was 
being done. 

Let us define a graph G to be bicritical if the addition of any edge of G 
increases C(G), and the deletion of any edge increases I(G), and neither G 
nor c is a complete graph. At the Graph Theory meeting in Kalamazoo in 
1980, M. Albertson and D. Berman asked if there were any bicritical graphs 
other than the pentagon. Suppose that there is a unique (k, @graph G on n 
vertices. Then G must be a bicritical graph, since if any edge is added to G, 
the resulting graph G’ i no longer a (k, &graph, so C(G’) > k > C(G), and 
similarly, if any edge is deleted from G, the resulting graph must have 
independence number at least 1. There are four known examples of such 
graphs, namely, the graphs with parameters (3,3,5), (3, 5, 13), (4,4, 17), 
and (3,9,35). We note that all of these graphs are cyclic graphs; i.e., they 
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all have a 1 V(G)I-cycle in the automorphism group. Also, in each case, the 
number of vertices is one less than the corresponding Ramsey number. Are 
there any other cyclic bicritical graphs? Is every bicritical graph a cyclic 
graph? We point out that we do not know that there is only one (3,9)-graph 
on 35 vertices, but it is easy to check that the only one known is bicritical. 

We have shown that e(3,8,27) > 81, but the smallest known (3, 8,27)- 
graph has 87 edges. In all previous cases, the lower bound for e(3,1, n) given 
by the methods of Graves and Yackel has been within 2 of the correct value. 
Thus, we feel that it is likely that e(3,8, 27) < 87. We can also show that 
e(3,8,28) > 90, but we have not found any (3,8,28)-graphs. 

The following table gives some interesting information about the 15 
(3,7,20,44)-graphs. The number d, is the number of i-independent sets. 
Several paterns are evident, including the fact that all four columns form 
arithmetic progressions. Also we note that 504 = 4 + (z), 882 = 7 . (i), 
756 = 6 . (,‘), and 252 = 2 . (I). The numbers become even more striking 
when we point out that the nine graphs given in the first row of the table 
have live different degree sequences among them. 

Graphs 4 4 4 4 

H 2Qa,b,c,d.f,j,lm.o 504 882 756 252 
H ZOg,h,i,k,n 502 871 736 240 
H 20e 500 860 716 228 

APPENDIX 

Figure 2 gives the nine graphs listed in Lemma 14. Table 1 gives many of 
the graphs used in the preceding sections. We illustrate the notation with an 
example. The graph HZOd is a (3, 7, 20,44)-graph, with the 20th vertex being 
preferred. The middle columns give us that the neighbors of this vertex are 
the vertices 19, 18, and 17, and that these vertices are also adjacent to the 
vertices {7, 16}, {6,8,9}, and (7, 13, 14, 15), respectively. The H,-graph for 
vertex 20 is given in the last column. In this case, H,(20) = Hleb. 

Table 2 gives graphs which arise from the addition of one or more edges 
to a graph which has already been given. For example, J1,, is obtained from 
H,,, by the addition of the edges (3, 7) and (4,8). 

Finally, Table 3 gives the unique (3, 7,22,60)-graph Hz2, and a 
(3,8,27,87)-graph. 
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TABLE II 

Graph Parameters Description 

(33% 11, 16) HI, u ((134)) 
(335, 11, 16) H,, u I(L8)l 
(3,5, 11, 16) H,, U ((L5)1 
(3,5, 12,21) H,, U ((4,811 
(336, 15326) H,, u i(L5)1 
(3,6. 15, 26) H,, U ((1, ‘31 
(3,6. 15, 26) H,,U i(L14)t 
(3,6. 15.26) H,, u i(L8)l 
(3,6, 17,41) Hi,, U ((3,8)1 
(3,6, 17741) H,,, u ((498)) 
(3,6, 17742) H,,, u 1(3,8), (4,Tt 
(3,6, 17,42) H,,,u ((3,7), (4,Vt 
(3, 6, 17-41) H,mU ((3, 7)) 

TABLE III 

Graph Parameters 

HZ2 (337,227 60) 

Neighbors of Vertices in H,(v) 

21-5, 11, 13, 14 
20-6, 12, 13, 14 
19-1,3, 7, 12, 15 

18-2,4, 7, 11, 15 
17-3,5,8, 10, 15 

16.4,6,8, 9, 15 

Hz(v) 

J I5.e 

J 270 (398,273 87) 26-1,5, 7, 11, 20 HZ2 
25.1,3,6,9, 13, 18 

24-2,4,6, 12, 17,21 

23-2, 5, 8, 10, 14, 19 
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