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Abstract

Recently, the Heisenberg’s uncertainty principle has been extended to incorporate the existence of a large (cut-off) length scale in de Sitter or
anti-de Sitter space, and the Hawking temperatures of the Schwarzshild–(anti) de Sitter black holes have been reproduced by using the extended
uncertainty principle. I generalize the extended uncertainty to the case with an absolute minimum length and compute its modification to the
Hawking temperature. I obtain a general trend that the generalized uncertainty principle due to the absolute minimum length “always” increases
the Hawking temperature, implying “faster” decay, which is in conformity with the result in the asymptotically flat space. I also revisit the black
hole-string phase transition, in the context of the generalized uncertainty principle.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Heisenberg’s uncertainty principle provides a basic lim-
itation of measuring the classical trajectories in the atomic or
sub-atomic scale. But here, there is no absolute minimum or
maximum uncertainty in the position and momentum them-
selves, though there is “conditional” minimum in them when
one of them is fixed. So, in this regards, there have been argu-
ments that the Heisenberg’s uncertainty principle needs some
modifications when the gravitational interaction is considered
in quantum mechanics since there is an absolute minimum un-
certainty in the position of any gravitating quantum [1,2]. And
also, its several interesting implications have been studied in the
literatures. Especially, it has been found that the generalized un-
certainty principle (GUP) increases the Hawking temperature,
resulting in “faster” decay of Schwarzschild black holes in any
dimension [3,4].

However, the GUP does not have any limitation on the maxi-
mum uncertainty in the position such as it cannot be naively ap-
plied to the case with the large (cut-off) length scales, like as in
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de Sitter or anti-de Sitter space. Actually, the Hawking tempera-
ture of black holes in (anti) de Sitter space cannot be reproduced
by the Heisenberg’s uncertainty principle or the GUP. Recently,
an extended uncertainty principle (I will call this “EUP”, sim-
ply) has been introduced to incorporate the existence of the
large length scales and it is found that the Hawking tempera-
tures of the Schwarzshild–(anti) de Sitter black holes have been
correctly reproduced [5].

In this Letter, I generalize the EUP to the case with an ab-
solute minimum uncertainty in the position as well and compute
its modification to the Hawking temperature. I obtain a gen-
eral trend that the generalized uncertainty principle due to the
absolute minimum length always increases the Hawking tem-
perature, implying faster decay, which is in conformity with the
result of the asymptotically flat space. I also revisit the black
hole-string phase transition, in the context of the generalized
uncertainty principle.

2. The GUP and Hawking temperature in asymptotically
flat space

In this section, I review, with some new interpretations and
remarks, the GUP and the derivation of Hawking temperature
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from the uncertainty principle in the asymptotically flat space
[3,4].

The GUP is given by

(1)�xi�pj � h̄δij

[
1 + α2l2

P

(�pj )
2

h̄2

]
,

where xi and pj (i, j = 1, . . . , d −1) are the spatial coordinates
and momenta, respectively; lP = (h̄G)1/(d−2) is the Planck
length and α is a dimensionless real constant of order one [1].
In the absence of the second term in the right-hand side, this
reduces to the usual Heisenberg’s uncertainty principle without
any “absolute” bound of �xi nor �pj themselves. But, in the
presence of the second term, there exists an absolute minimum
in the position uncertainty

(2)�xi � 2αlP

and the uncertainty in the momentum is given by

h̄�xi

2α2l2
P

[
1 −

√
1 − 4α2l2

P

(�xi)2

]

(3)� �pi � h̄�xi

2α2l2
P

[
1 +

√
1 − 4α2l2

P

(�xi)2

]
.

The left inequality in (3) provides some small corrections to the
Heisenberg’s uncertainty principle for �xi � αlP (i.e., semi-
classical regime),

(4)�pi � h̄

�xi

+ h̄α2l2
P

(�xi)3
+O

(
h̄α4l4

P

(�xi)5

)
.

On the other hand, the right inequality implies that �pi can-
not be arbitrarily large in order that the correction in (1) makes
sense. Of course, this upper bound can be higher with the
higher order terms in the right-hand side of the GUP (1), but
the absolute minimum in �xi can be also lowered or even
disappeared, depending on the parameters [6]. Another more
interesting interpretation would be that the upper bound corre-
sponds to the limit where the quantum gravity effects are very
strong such as a black hole-string phase transition can occur
[7]. Actually, the inequality can be written also as

(5)�pi � h̄�xi

α2l2
P

,

which can be directly derived also from the high momentum
uncertainty �pj limit in (1), and it is saturated by the linear
relation �pi = h̄�xi/α

2l2
P , which coincides with that of strings

at the high energy limit, by identifying the string scale lS ≈ αlP
[2,5].

Now, let me derive the Hawking temperature from the un-
certainty principle and general properties of black holes. To this
end, let me first consider a d-dimensional Schwarzshild black
hole with a metric given by

(6)ds2 = −N2 dt2 + N−2 dr3 + r2 dΩ2
d−2,

where

(7)N2 = 1 − 16πGM

d−3
(d − 2)Ωd−2r
and Ωd−2 is the area of the unit sphere Sn−2 [8]. By modeling
a black hole as a black box with linear size r+, the uncertainty
in the position of an emitted particle by the Hawking effect is

(8)�xi ≈ r+
with the radius of the event horizon r+. In the absence of the
GUP effect, the horizon radius is given by r+ = [16πGM/

(d − 2)Ωd−2]1/(d−3) from the metric (6). On the other hand, in
the presence of the GUP effect, the precise form of the horizon
radius r+ = r+(M,αlP ) is not known unless the GUP corrected
metric is known, which is beyond the scope of this Letter. How-
ever, I note that the relation (8) would be generally valid even
with the GUP effect, with understanding r+ as the GUP cor-
rected horizon already. Then, the uncertainty in the energy of
the emitted particle is (by neglecting the mass of the emitted
particle)1

(9)�E ≈ �pi.

By assuming that �E, which can be identified as the charac-
teristic temperature of the Hawking radiation, saturates the left
inequality,2 one can obtain the Hawking temperature

(10)TGUP =
(

d − 3

4π

)
h̄r+

2α2l2
P

[
1 −

√
1 − 4α2l2

P

r2+

]
.

Here, the “calibration” factor ‘(d −3)/4π ’ has been introduced
in order to have agreements with the usual Hawking tempera-
ture of the Schwarzschild black hole in the leading term, for a
large black hole, i.e., r+ � αlP [8,9]:

(11)TGUP =
(

d − 3

4π

)[
h̄

r+
+ h̄α2l2

P

r3+
+O

(
h̄α4l4

P

r5+

)]
.

Before finishing this section, I remark first that the formula (8),
as a result (10), is still valid even for the small black holes
up to the absolute minimum, which is order of Planck length
lP , though the series formula (11) is valid only for a large r+.
The black hole evaporation stops at r+ = 2αlP , where the curve
ends, and this would correspond to a “melting” of the black hole
which is followed by the string phase, according to the new in-
terpretation [7]. Second, the effect of the GUP with an absolute
minimum length increases the Hawking temperature always
and this implies that it decays faster than the usual Schwarz-
schild black hole without the GUP (Fig. 1).

3. The EUP and Hawking temperature in (A)dS space

The GUP cannot be naively applied to the space with the
large length scales like as in (A)dS space.3 In this section,

1 There might exist high energy modifications in the dispersion relation (9)
generally [10]. But, I will not consider this possibility in this Letter.

2 This assumption would correspond to the Bekenstein bound of the entropy

of an arbitrary bounded system S(= ∫
T −1 dM) � SBH(= ∫

T −1
BH dMBH)

whose upper bound is saturated by that of black holes, SBH, for a given mass
M = MBH [11].

3 This has been noted earlier by Konishi et al. also [2]. See also Ref. [12] for
another related work.
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Fig. 1. Hawking temperature (divided by ‘(d − 3)/4π ’) vs. the horizon radius
r+ (denoted by ‘a’ in the plot) in the asymptotically flat space. In the absence
of the GUP, there is no absolute minimum radius for the black hole evaporation
(thin line). With the GUP, the Hawking temperature becomes hotter, implying
faster decay, and also there is a minimum radius r+ = 2αlP where the curve
ends, implying that the black hole evaporation stops (thick line). Here, I have
plotted the cases with h̄ = lP = 1, α = 0.5 and the GUP curve stops at r+ = 1.

I consider an extension of the uncertainty principle in order to
incorporate the large-length scales and derivation of Hawking
temperature from the uncertainty principle.

The extended uncertainty principle (EUP) is given by4

(12)�xi�pj � h̄δij

[
1 + β2 (�xi)

2

l2

]
,

where l is the characteristic, large length scale and β is a dimen-
sionless real constant of order one [5].5 (For some gedanken
experiments’ derivation, even without considering black holes,
see also Ref. [16].) Then, it is easy to see that there is an ab-
solute minimum in the momentum uncertainty

(13)�pi � h̄

�xi

+ h̄β2�xi

l2
� 2h̄β

l
.

Here, I note that the first inequality is an “exact” relation drawn
from (12), without considering any limit as in (4).

Now, using the approach in Section 2, it is straightforward
to see that the Hawking temperature of the Schwarzshild–AdS
black holes from the EUP (13).6 To this end, let me first con-
sider a d-dimensional Schwarzshild–AdS black hole with the
metric function

(14)N2 = 1 + r2

l2
AdS

− 16πGM

(d − 2)Ωd−2rd−3

in the metric (6) and a cosmological constant Λ = −(d − 1) ×
(d − 2)/2l2

AdS [13]. Then, with the same identifications (8)
and (9) for the Hawking-emitted particles, which do not de-
pends on the large scale behaviors but only on the local struc-
ture near the horizon, one can obtain the Hawking temperature

4 The parameter β in Ref. [5] is related to here’s by βThere = (lP / l)βHere.
5 This has been considered earlier by Kempf et al. also [15], but its physical

consequences have not been studied.
6 For an alternative derivation from the laws of classical physics and Heisen-

berg’s uncertainty principle, see Ref. [17]. But, there is no room for the GUP in
that derivation.
Fig. 2. Hawking temperature vs. the horizon radius r+ in the AdS space.
The EUP, but without the GUP, produces correctly the usual Hawking tem-
perature of the Schwarzshild–AdS black holes (thin line). The existence of
the absolute minimum in the temperature is a general consequence of the
EUP. But, as in the case of the flat space, there is no absolute minimum ra-
dius in the absence of the GUP. With the GUP, the Hawking temperature
becomes hotter also, implying faster decay, and there is a minimum radius
r+ = 2αlP /[1 − 4α2l2

P
(d − 1)/(d − 3)l2AdS]1/2 where the curve ends, imply-

ing that the black hole evaporation stops (thick line). Here, I have plotted the
cases with h̄ = lP = 1, α = 0.2, lAdS = 2, d = 4.

TEUP ≈ �pi ,

(15)TEUP(AdS) =
(

d − 3

4π

)
h̄

[
1

r+
+

(
d − 1

d − 3

)
r+
l2
AdS

]
,

with the same calibration factor ‘(d − 3)/4π ’ as in the as-
ymptotically flat case, implying its universality, and β =√

(d − 1)/(d − 3), l = lAdS; r+ is the radius of the event hori-
zon which solves N2(r) = 0. Here, the existence of the absolute
minimum in �pi and so in TEUP(AdS) is a general consequence
of the EUP of (12) (see Fig. 2 (thin line)).

So far, I have shown that the EUP in (12) applies to the AdS
space. Now, the EUP for the dS space can be easily constructed
by considering l2 → −l2 in (12):

(16)�xi�pj � h̄δij

[
1 − β2 (�xi)

2

l2

]
.

Then, in contrast to (12), there is an absolute maximum in �xi

as

(17)�xi � l

β

in order that �pi is not negative,7

(18)�pi � h̄

�xi

− h̄β2�xi

l2
� 0.

Note that the absolute maximum in �xi does not have h̄ such
as this is a purely classical result.

The Hawking temperature of the Schwarzshild–dS black
hole with a cosmological constant Λ = +(d − 1)(d − 2)/2l2

dS

[14] is similarly computed as, by considering l2
AdS → −l2

dS

7 This is compared with Refs. [16,18], where the EUP (12) is considered for
the particle or cosmological horizon, by giving the absolute minimum in �pi .
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Fig. 3. Hawking temperature vs. the horizon radius r+ in the dS space.
The EUP of (16) produces correctly the usual Hawking temperature of the
Schwarzshild–dS black holes (thin line), which vanishes at the Nariai bound
r+ �

√
(d − 1)/(d − 3)ldS; this defines the absolute maximum of the black

hole horizon, but there is no absolute minimum radius. With the GUP, the
Hawking temperature becomes hotter also, implying faster decay, and there is
a minimum radius r+ = 2αlP /[1 + 4α2l2

P
(d − 1)/(d − 3)l2dS]1/2 where the

curve ends, implying that the black hole evaporation stops (thick line). Here, I
have plotted the cases with h̄ = lP = 1, α = 0.2, ldS = 2, d = 4.

in (15),

(19)TEUP(dS) =
(

d − 3

4π

)
h̄

[
1

r+
−

(
d − 1

d − 3

)
r+
l2
dS

]
.

Here, the maximum bound reads (l = ldS, β =√
(d − 1)/(d − 3) )

(20)r+ �
√

(d − 1)/(d − 3)ldS,

which is the Nariai bound where the black hole horizon and
the cosmological horizon meet [19]. So, the condition (17) re-
flects the fact that the uncertainty in the position cannot exceed
the cosmological horizon, which is the size of the casually con-
nected world in a dS space (see Fig. 3 (thin line)).

4. The generalized EUP (GEUP)

In the EUP (12), there is an absolute minimum in the uncer-
tainty of the momentum. In this section, I generalize the EUP
to have a minimum length scale as well, by combining the GUP
and the EUP, and study the effect of the minimum length to the
Hawking temperature from the EUP, i.e., the Hawking temper-
ature of Schwarzshild–(A)dS black holes.

The generalized EUP (GEUP) is given by

(21)�xi�pj � h̄δij

[
1 + α2l2

P

(�pj )
2

h̄2
+ β2 (�xi)

2

l2

]
,

where I have considered the case of the AdS space, first. Then,
by inverting (21), one has the inequalities,

�p
(−)
i � �pi � �p

(+)
i ,

(22)�p
(±)
i = h̄�xi

2α2l2
P

[
1 ±

√
1 − 4α2l2

P

(�xi)2

[
1 + β2 (�xi)2

l2

]]

and
�x
(−)
i � �xi � �x

(+)
i ,

(23)

�x
(±)
i = l2�pi

2h̄β2

[
1 ±

√
1 − 4β2h̄2

l2(�pi)2

[
1 + α2l2

P (�pi)2

h̄2

]]
.

Here, one finds that there are, now, both the absolute minimum
in �xi and �pi

(24)(�xi)
2 �

4α2l2
P

1 − 4α2l2
P β2/l2

,

(25)(�pi)
2 � 4h̄2β2/l2

1 − 4α2l2
P β2/l2

,

from the reality of �p
(±)
i and �x

(±)
i , respectively, with the con-

dition

(26)β2 <
l2

4α2l2
P

.

The left inequality in (22), as in (3) of the GUP, provides some
small corrections to the Heisenberg’s uncertainty principle, due
to the minimum length and momentum, for αlP � �xi � l/β ,

�pi �
(

1 + 2α2l2
P β2

l2

)
h̄

�xi

+ h̄β2�xi

l2

(27)+ h̄α2l2
P

(�xi)3
+O

(
h̄α4l4

P

(�xi)5
,
h̄α2l2

P β4�xi

l4

)
.

By repeating the same arguments as in the GUP and the EUP
cases (with understanding that r+ as the GUP corrected hori-
zon), one can obtain the Hawking temperature TGEUP ≈ �p

(−)
i

TGEUP(AdS) =
(

d − 3

4π

)
h̄r+

2α2l2
P

(28)

×
[

1 −
√

1 − 4α2l2
P

r2+

[
1 +

(
d − 1

d − 3

)
r2+
l2
AdS

]]
,

with the usual calibration factor ‘(d − 3)/4π ’ and β =√
(d − 1)/(d − 3), l = lAdS such as this agrees with the EUP

result (15) for a semiclassical black hole with αlP � r+ �√
(d − 3)/(d − 1)lAdS,

TGEUP(AdS) ≈
(

d − 3

4π

)
h̄

[{
1 +

(
d − 1

d − 3

)
2α2l2

P

l2
AdS

}

(29)× 1

r+
+

(
d − 1

d − 3

)
r+
l2
AdS

+ α2l2
P

r3+

]
.

Here, the third term is purely the GUP correction and the sec-
ond term in the first bracket { } is the GEUP effect, and these
correction terms are all positive. This shows that the Hawking
temperature of the AdS black hole is increased also by the min-
imum uncertainty in the position, with the GUP.

The analysis for the dS case is also straightforward. From
the GEUP with l2 → −l2, one has
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�p
(−)
i � �pi � �p

(+)
i ,

(30)�p
(±)
i = h̄�xi

2α2l2
P

[
1 ±

√
1 − 4α2l2

P

(�xi)2

[
1 − β2 (�xi)2

l2

]]
,

with the minimum uncertainty in �xi (but none in �pi )

(31)(�xi)
2 �

4α2l2
P

1 + 4α2l2
P β2/l2

.

Moreover, in order that �p
(−)
i is not negative one obtains the

same condition as (17) which is unchanged by the GUP effect
(i.e., no α dependence), in contrast to the lower bound in (31).
Then, one finds the Hawking temperature

TGEUP(dS) =
(

d − 3

4π

)
h̄r+

2α2l2
P

(32)×
[

1 −
√

1 − 4α2l2
P

r2+

[
1 −

(
d − 1

d − 3

)
r2+
l2
dS

]]
,

which gives

TGEUP(dS) ≈
(

d − 3

4π

)
h̄

[{
1 −

(
d − 1

d − 3

)
2α2l2

P

l2
dS

}

(33)× 1

r+
−

(
d − 1

d − 3

)
r+
l2
dS

+ α2l2
P

r3+

]
,

for semiclassical dS black holes with αlP � r+ �√
(d − 3)/(d − 1)ldS. Here, note that the maximum bound of

the black hole horizon (20) is not changed by the existence of
the minimal length but the temperature is always increasing:
The second term in the first bracket { } gives a negative correc-
tion but this is dominated by the third term, which is always
positive.

Now, one finds a quite general trend that the GUP due to
a minimal length increases always the Hawking temperature
(Figs. 2, 3), regardless of being asymptotically flat or (A)dS
space. This can be traced back to the universal appearance of
the term “+α2lP /r3+” in the temperature formula, which makes
the decay to be faster. This seems to be also true in other forms
of the deformation of the uncertainty principle [20].

Finally, two remarks are in order. First, one might consider
the first law of thermodynamics to compute the GUP corrected
black hole entropy from the same ADM mass formula as that
of the case without the GUP [3]. But, it still unclear how to
fix uniquely the GUP corrected mass formula from the GUP
corrected Hawking temperature, without knowing the precise
form the GUP corrected gravity and its black hole solutions.

Second, I note that, in the d = 3 limit of the AdS black holes
(i.e., the BTZ black hole limit), one has the Hawking tempera-
ture

(34)T
(d=3)
GEUP(AdS) ≈ h̄

4π

[
4α2l2

P

l2
AdS

1

r+
+ 2r+

l2
AdS

]
,

from the series formula (29), though it needs a scale tuning
lAdS → ∞, d → 3, with ‘

√
d − 3lAdS = a fixed large number’.

This shows also an increase of the temperature, implying faster
decay from the GUP effect, compared to that of the usual BTZ
black hole, TBTZ = h̄r+/(2πl2
AdS). But, remarkably, there is a

minimum temperature at r+ = √
2αlP and growing tempera-

ture for smaller black holes, in contrast to the monotonically
decreasing temperature as r+ becomes smaller in the BTZ black
hole without the GUP. If this were true, the Hawking–Page
transition [13] would occur even in three-dimensional AdS
space, due to the GUP effect. But, this does not seem to oc-
cur from (24), which implies r+ � 2αlP for consistency of the
exact formula (22), such as the evaporation stops before reach-
ing the absolute minimum of the temperature at r+ = √

2αlP .
This needs more rigorous analysis which can be well-defined in
the three dimension, from the start [20].
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