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Abstract

In this article, we present a technique to extract a reduced-order model of a transitional flat-plate boundary layer from simultaneous
velocity snapshots and wall-shear stress measurements. The proposed approach combines a reduction of the degrees of freedom
of the system by a projection of the velocity snapshots onto a POD basis together with a system-identification technique to obtain
a state-space model of the flow. Such a model is then used in an optimal control framework to reduce the kinetic energy of the
perturbation field and therefore delay transition.
c© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of ABCM (Brazilian Society of Mechanical Sciences and Engineering).
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1. Introduction

Closed-loop control, where actuation depends on sensor measurements, has the potential to become an effective
method to delay laminar to turbulent transition in boundary layers1,2. Yet the implementation of such closed-loop
control to realistic flows remains quite challenging. The main difficulty arises from the large number of degrees
of freedom of fluid systems (often O(106)) which are far beyond the capabilities of current control devices. As a
consequence, the full fluid system has to be properly reduced, before a controller can be designed for the reduced-
order model. In3 the model reduction is accomplished by a flow decomposition (e.g., POD or BPOD decomposition)
followed by a Galerkin projection of the equations onto the reduced basis. This methodology has been demonstrated
to yield successful control designs, see1,4, among others.

In the case of boundary layers (and generally noise amplifier flows), external perturbations strongly influence
the system dynamics. It is thus very important for the reduced-order model (ROM) to accurately capture the noise
environment. ROMs obtained by means of Galerkin projections require detailed knowledge of the spatial distribution
of the upstream noise sources. This requirement imposes great limitations, particularly in experimental situations
where information about the noise environment is not directly and sufficiently available.
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Fig. 1: Sketch of the flow configuration. The computational domain Ω = (0, 1000) × (0, 40) is represented by the
light gray box. The upstream receptivity of the boundary layer to external perturbations is modeled by the noise w
which is placed at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0) will identify incoming perturbations,
while a velocity window (represented by the dark gray box) quantifies the effect of the forcing on the velocity field.
A controller u is also introduced in the simulation at the position (xu, yu) = (250, 1).

This paper intends to provide a methodology to obtain reduced-order estimators for noise amplifier flows without
using Galerkin projections. The alternative approach is based on the extraction of the reduced-order model from
measured data using an identification technique.

The proposed methodology constitutes a reduction of the degrees of freedom of the system by (i) a projection of
the velocity fields onto a reduced basis combined with (ii) a system-identification algorithm to obtain the dynamic
operators of a reduced-order system. In particular, a link between velocity fields (e.g., from TR-PIV data) and time-
synchronous wall-shear stress measurements is established, and a dynamic observer is determined.

2. Configuration

We consider the dynamics of disturbances u around a base-flow U0, which we take as a Blasius boundary layer.
The disturbances u are additionally driven by an external forcing term, Fww(t), which acts as an upstream distur-
bance source of unknown origin. The spatio-temporal evolution of the perturbation flow-field u are governed by the
following equations

∂tu + U0 · ∇u + u · ∇U0 = −∇p + Re−1
δ∗0
Δu + Fww(t), ∇ · u = 0, (1)

where the nonlinear term u · ∇u has been omitted since only low-amplitude noise σw � 1 will be considered. This
assumption ensures a linear perturbation dynamics, as well as a linear response to the noise w. These equations (1)
are solved in a computational domain Ω of size (0, 1000)× (0, 40), sketched in figure 1.

The variables are non-dimensionalized using the displacement thickness δ∗0 of the boundary-layer at the computa-
tional inlet (x0 = 0) and the free-stream velocity U∞.Consequently, the Reynolds number is defined as Reδ∗0 = U∞δ∗0/ν.
All simulations were performed at Reδ∗0 = 1000, which ensures the presence of strong Tollmien-Schlichting instabili-
ties.

The approach proposed in this paper aims at being applicable in an experimental setting. For this reason, special
care has been taken to only use data which is readily available in an experiment. We consider two elements to obtain
information from the flow: a wall-friction sensor s and velocity snapshots usnap in a given domain Ωsnap(see figure 1).
In an experimental setup, the velocity snapshots could be obtained by a PIV technique.

3. A dynamic observer using system-identification techniques

A dynamic observer consists of a mathematical model of a fluid system which accurately predicts the dynamics of
a flow from the measurement of a localized sensor. In this section we introduce a data-driven approach to obtain such
a model, based on system identification techniques, that solely relies on observations of the system.
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Fig. 2: (a) First 100 POD eigenvalues λi of the correlation matrix. (b) Contours of the streamwise velocity component
of the first (Φ1) and tenth (Φ10) POD-mode.

3.1. Input and outputs of the system

System-identification techniques represent a family of algorithms which efficiently determine the coefficients of
an underlying model directly from observed input-output data via a statistical learning process. In this case, the true
input of the system is the driving term w(t), while the true output is the velocity snapshot usnap at each time instant.
However, a direct identification of the system from them is not possible and different inputs and outputs must be
considered.

The large number of degrees of freedom in the snapshots usnap makes direct application of identification techniques
excessively, or prohibitively, expensive. It is thus necessary to reduce the dimensionality of the measured data. In this
article, we use the proper orthogonal decomposition (POD) modes 5,6 to form a reduced basis.

We consider a sequence of m velocity snapshots extracted from the Ωsnap-domain in the presence of the upstream
noise w. The proper orthogonal decomposition then enables us to compute a ranked orthonormal basis {Φi}i=1..m

of flow fields, satisfying
〈
Φi,Φ j

〉
= δi j, i, j = 1, 2, ...,m, which can be expressed most conveniently as a linear

combination of these m snapshots. Here, the scalar-product 〈·〉 is associated with the energy-based inner product:〈
u1

snap, u
2
snap

〉
=
∫
Ωsnap

(u1
snapu2

snap + v1
snapv2

snap) dx dy. Any velocity field V in Ωsnap can then be projected onto the first k

POD modes according to

yi = 〈Φi,V〉 , i = 1, 2, ..., k, (2a)

V′ =
k∑

i=1

Φiyi, (2b)

to produce the approximate flow field V′. Properties of the POD guarantee that, for all k, the error ‖V − V′‖2 =
〈V − V′,V − V′〉 is minimal for the set of m measured snapshots. For the subsequent derivations, we define the
reduced state vector given by the k POD coefficients by Y =

[
y1, y2, ..., yk

]T and denote the reduced POD basis by
U = [Φ1,Φ2, ...,Φk].

Figure 2(a) shows the corresponding eigenvalues of the correlation matrix, confirming a steady decay over about
three decades in the first thirty modes (95 % of the energy is contained in the first ten modes). Two selected POD
modes,Φ1 andΦ10, are displayed in figure 2(b). The velocity snapshots usnap are then projected onto these modes to
obtain the time-evolving POD coefficients Y(n) which constitute the new output of the system.

On the other hand, it is critical to accurately account for the disturbance environment w(t), as it both triggers
and sustains the dynamics of the system. Despite this requirement, in an experimental setup, access to accurate
information about the noise environment is, at best, very difficult or, in most cases, impossible. We thus have to
introduce an observer where the noise source-term w(t) is replaced by a measurement term s(t) which drives, as best
as possible, the estimated state of the system.
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Fig. 3: Learning dataset: (a) the measurement s capturing the influence of external noise and (b) and (c) the POD
coefficients yi obtained by projecting the flow field onto the POD modesΦ1 andΦ10, respectively.

An approximation Ye of the temporal evolution of the reduced state vector Y can be obtained by time marching a
dynamic observer equation of the form

Ye(n + 1) = AsYe(n) + Ls(n). (3)

The quantities As, L and C will be obtained with system identification techniques that solely rely on knowledge of
input-output datasets {s(n),Y(n)}n=1..m .

3.2. System identification based on subspace techniques

Subspace identification algorithms are a very convenient choice when dealing with multiple-input-multiple-output
(MIMO) systems, such as the one given in Eq. (3). In general, we have u(n) as known inputs, w(n) as unknown white
plant noise and y(n) as known outputs corrupted by unknown white noise v(n). We aim at determining the system
matrices (A,B,C andD), which govern a state x(n) such that

x(n + 1) = Ax(n) + Bu(n) + w(n), (4a)

y(n) = Cx(n) +Du(n) + v(n). (4b)

The coefficients of the system matrices are chosen such that the estimated output ye(n), obtained by time-marching
(4) with w(n) = v(n) = 0, is as close as possible to the measured output y(n) (subject to the white-noise sources w(n)
and v(n)), knowing the inputs u(n). A comprehensive description of these techniques is given in 7,8. In this study, the
N4SID algorithm9 has been used to obtain all the models.

A relation between the elements of the dynamic observer (3) and the general formulation of subspace algorithms (4)
can straightforwardly be defined as As = CAC

−1 and L = CB, assuming thatD = 0.

3.3. DNS-dataset for learning and testing

We obtain data by performing a linearized direct numerical simulation of the boundary layer in the presence of
unknown noise. We use a sampling interval Δt = 5 for the velocity snapshots and the shear-stress measurements s.
The datasets to be processed are composed of the input signal from the sensor s and several outputs yi corresponding
to the projection of the snapshots onto the set of POD modes {Φi} (figure 3). Using the N4SID algorithm9, the model
parameters As and L are then determined by fitting the model output to the true, measured output, as the model is
forced by the recorded input. A reduced-order model has been determined with k = 90 POD modes and a learning
data set of length Nsnap = 2000.
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Fig. 4: Validation dataset: performance of the system-identified model, initialized by Y = 0 at t = 2000. The input
data from the wall shear-stress sensor s is shown in (a); the remaining flow variables are recovered solely from this
measurement signal using the identified model. (b-d) Comparison between the DNS (black) and the model prediction
(red) for four variables from the testing dataset: (b) the energy of the system, (c) and (d) the POD coefficients yi for
the first and tenth modes, respectively.

The validity of the identified parameters is subsequently confirmed by using a different data set (referred to as the
testing data set) and by comparing the model output to the true output. As this testing data set has not been used in the
identification of the model, we can assess the predictive capability of the identified model in this manner. The kinetic
energy defined as E(t) =

〈
usnap, usnap

〉
≈ Y∗Y is an important variable of the system since it represents the global

dynamics of the flow. The quality of fit between the energy of the DNS, denoted by E(t), and the value predicted by
the model, denoted by Ẽ(t), can be stated as

FIT[%] = 100

⎛⎜⎜⎜⎜⎜⎝1 −
∥∥∥E(t) − Ẽ(t)

∥∥∥
‖E(t) −mean(E(t))‖

⎞⎟⎟⎟⎟⎟⎠ (5)

and can be used to quantify the performance of the estimator. Figure 4(a) displays the measured input signal s from the
wall shear-stress sensor, from which all subsequent flow variables (figure 4(b-d)) can be derived using the identified
model. In our case, we show the evolution of energy (b) and the first and tenth POD coefficient. After a short
transient period, the predicted flow variables closely track their true DNS-equivalents, which yields a relative match
of FITener = 93.72% when evaluated over the time interval t ∈ [4000, 10000].From the POD coefficients in Ye the full
flow field can be reconstructed from the basis U. Two examples of this reconstruction, visualized by the streamwise
velocity component, are shown in figure 5 and compared to the equivalent full DNS simulation. The first instant at
t = 3000 has been taken during the transient phase and shows a promising but incomplete match over the entire flow
domain; a second instant at t = 4000 displays an excellent agreement between the flow structure recovered from s(t)
via the identified model and the full DNS solution.
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Fig. 5: Snapshots of the streamwise disturbance velocity component obtained (a) from the DNS and (b) recovered
from s(n) via the model for t = 3000 and t = 4000.

4. Optimal control

The successful recovery of full-state information from single wall shear-stress measurements by a dynamic ob-
server enables the design of a variety of effective control schemes, which we demonstrate next. For this purpose, a
control signal u is placed at (xu, yu) = (250, 1) (downstream of the sensor s), which constitutes a feedforward control
configuration. The governing equations (3) of the dynamic observer are modified to reflect this addition. We have

Ye(n + 1) = AsYe(n) + Ls(n) + Buu(n). (6)

Following10, the system is excited with a frequency-rich signal u in order to identify the new term Bu. The un-
known system matrices As, L and Bu may then be determined in a similar way as described in Sec. 3. These matri-
ces are then used for the design of an LQR-optimal controller u(n) = KY(n), which minimizes the cost functional∑∞

n=0 Y(n)∗QY(n) + �2|u(n)|2, where Q is a positive definite weight matrix and � is a user-specified parameter to bal-
ance disturbance energy and exerted control energy. Following standard procedure (see11), the control gain K can be
obtained by solving a Riccati equation involving As, Bu, Q and �.

The suppression of the perturbation energy E(t) inside the velocity window (Q = I) has been considered as the
control objective. We use a model that comprises 50 modes computed on a shorter domain (Ωsnap = (200, 700) ×
(0, 40)). In the controlled simulation, the measurement s is used to reconstruct the full perturbation field Ye based on
the identified model, and the control law is obtained by applying the control gain K to this state. Results are shown
in figure 6 together with the control signal u(t) and the friction-sensor signal s. The energy E(t) has been reduced by
nearly two orders of magnitude (a reduction of 96.81% in the mean perturbation energy).

5. Conclusion

A dynamic observer recovering full state information from single wall shear-stress measurements has been de-
signed that relies on a POD basis (from measured snapshots) and system identification techniques. For noise-amplifier
flows, it successfully reproduces the perturbation dynamics (velocity fields) throughout the full sampling domain and
furnishes information about the flow that can subsequently be used, by itself, for flow diagnostics or, in a second step,
for LQR-control design.

Within the limits of linear perturbation dynamics, the design process for the dynamic observer extracts the system
matrix from a sequence of snapshots; this system matrix describes a globally stable flow configuration that is sustained
by selectively amplified random perturbations from the noise environment. The proposed method thus successfully
separates the intrinsic, stable perturbation dynamics from the external noise excitation, which previously could only
be quantified in its entirety.
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Fig. 6: Results of the LQR-control design based on the dynamic observer. (a) Temporal evolution of the perturbation
energy E(t) for the uncontrolled simulation (red) and the controlled simulation targeting the energy (black), (b) the
control signal u(t) and (c) the time signal of the friction sensor s(t) used to estimate the state.

A wide variety of flow analyses is possible once the system matrix has been extracted. In the present case, we
chose to design a closed-loop control scheme which, owing to the known system matrix, could now be accomplished
using full information control (LQR) algorithms. As a consequence, a significant reduction of the perturbation energy
could be achieved.
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