Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion

Tasawar Hayat, Taseer Muhammad, Ahmed Alsaedi, Bashir Ahmad

1. Introduction

The investigations on boundary-layer flows past a stretching surface are significantly enhanced during the past few decades due to their practical significance in industrial and technological processes. Such flows commonly involve in extrusion of plastic sheets, paper production, wire drawing, drawing of plastic films, hot rolling, glass fiber production and several others. Sakiadis [1] provided an analysis to examine the flow induced by a continuously moving plate. Then Crane [2] continued the work of Sakiadis [1] for stretching sheet and provided an exact solution for velocity field. After the innovative work of Crane, several researchers have investigated different problems of stretching surface. Most of the investigations in the literature deal with the two-dimensional flow past a stretching surface. There are scarce studies available in the literature regarding three-dimensional (3D) flow by a stretching surface. With this viewpoint, Wang [3] discussed three-dimensional flow of viscous nanofluid by an exponentially stretching surface. Recently Hayat et al. [6], Liu et al. [7] studied three-dimensional (3D) flow of viscous liquid due to an exponentially stretching surface. Recently Hayat et al. [8] examined Soret and Dufour effects in three-dimensional flow over a stretching surface. The resulting nonlinear systems are solved. Graphs have been sketched in order to investigate how the temperature and concentration profiles are affected by distinct physical flow parameters. Further the skin friction and heat and mass transfer rates are numerically computed and discussed. Our findings depict that temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

The phenomenon of heat transfer happens if there exists difference in temperature between the bodies or between the components of the similar body. This phenomena has vast technological and industrial use, for example, in microelectronics, cooling of atomic reactors, fuel cells, power generation, pasteurization of food, energy production etc. The well-known law of heat conduction changed the Cattaneo theory [10] by replacing the time derivative with a relaxation time. This term overcomes the “paradox of heat conduction”. Christov [11] further changed the Cattaneo theory [10] by replacing the time derivative with Oldroyd upper-convected derivative. This theory is termed as Cattaneo–Christov heat flux theory. Straughan [12] employed heat flux model by Cattaneo–Christov expression to explore thermal convection in horizontal layer of Newtonian liquid. Carletta and Straughan [13] showed the structural stability and uniqueness of solutions for an energy equation with heat flux by...
Cattaneo–Christov expression. Haddad [14] discussed the thermal instability in the Brinkman porous medium by employing heat flux with Cattaneo–Christov expression. Han et al. [15] addressed the stretched flow of Maxwell material through heat flux by Cattaneo–Christov expression. Mustafa [16] used heat flux through Cattaneo–Christov expression in order to explore heat transfer for flow of viscous nanoliquid induced by a stretching surface. Section flows of nanofluids can be seen in the investigations [25–50].

Our inspiration in present attempt is covered by four novel aspects. Firstly to model and analyze the three dimensional (3D) flow of viscous nanoliquid induced by a stretching surface. Secondly to examine the heat and mass transfer attributes through the generalized Fourier's and Fick's laws, namely Cattaneo–Christov double diffusion expressions. Thirdly to employ the Buongiorno's model of nanofluids. Thermophoretic and Brownian motion aspects are considered. Fourth to derive convergent solutions for the velocities, temperature and concentration through optimal homotopy analysis method (OHAM) [51–60]. The contributions of various pertinent parameters are studied and discussed. Further skin friction and heat and mass transfer rates at the surface are also analyzed through numerical values.

2. Formulation

We intend to elaborate the three dimensional (3D) flow of viscous nanoliquid over a linear stretching sheet with constant surface temperature and concentration. The Brownian motion and thermophoresis aspects are taken into consideration. Here x- and y-axes are along the stretching surface while z-axis is normal to the sheet. Let \(U_w(x) = \alpha x \) and \(V_w(y) = \beta y \) be the stretching velocities along the x- and y-directions respectively. The heat and mass transfer mechanisms are examined through Cattaneo–Christov double diffusion expressions. Resulting equations of mass, momentum, energy and concentration for boundary layer considerations are

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0, \\
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= \frac{\partial^2 u}{\partial y^2}, \\
\frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= \frac{\partial^2 v}{\partial z^2}.
\end{align*}
\]

Note that \(u, v \) and \(w \) represent the components of velocity in x-, y- and z-directions respectively while \(v = \mu / \rho_f \), \(\mu \) and \(\rho_f \) denote kinematic viscosity, dynamic viscosity and density of base liquid respectively. The Cattaneo–Christov double diffusion theory has been introduced in characterizing thermal and concentration diffusions with heat and mass fluxes relaxations respectively. Then the frame indifferent generalization regarding Fourier's and Fick's laws (which is named as Cattaneo–Christov anomalous diffusion expressions) are derived as follows:

\[
\begin{align*}
\mathbf{q} + \lambda E \left(\frac{\partial \mathbf{q}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{q} - \mathbf{q} \cdot \nabla \mathbf{V} + (\nabla \cdot \mathbf{V}) \mathbf{q} \right) &= -k \nabla T, \\
\mathbf{J} + \lambda E \left(\frac{\partial \mathbf{J}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{J} - \mathbf{J} \cdot \nabla \mathbf{V} + (\nabla \cdot \mathbf{V}) \mathbf{J} \right) &= -D_b \nabla C,
\end{align*}
\]

where \(\mathbf{q} \) and \(\mathbf{J} \) stand for heat and mass fluxes respectively, \(k \) for thermal conductivity, \(D_b \) for Brownian diffusivity, \(\lambda_E \) and \(\lambda_C \) for relaxation time of heat and mass fluxes respectively. Classical Fourier's and Fick's laws are deduced by inserting \(\lambda_E = \lambda_C = 0 \) in Eqs. (4) and (5). By considering the incompressibility condition \(\nabla \cdot \mathbf{V} = 0 \) and steady flow with \(\left(\frac{\partial}{\partial y} = 0 \right) \) and \(\left(\frac{\partial}{\partial z} = 0 \right) \), Eqs. (4) and (5) can be rewritten as

\[
\begin{align*}
\mathbf{q} + \lambda_E \left(\mathbf{V} \cdot \nabla \mathbf{q} - \mathbf{q} \cdot \nabla \mathbf{V} \right) &= -k \nabla T, \\
\mathbf{J} + \lambda_C \left(\mathbf{V} \cdot \nabla \mathbf{J} - \mathbf{J} \cdot \nabla \mathbf{V} \right) &= -D_b \nabla C.
\end{align*}
\]

The three dimensional energy and concentration equations take the following forms [45]:

\[
\begin{align*}
\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} + \lambda E \Phi_E &= \alpha_0 \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + 2uv \frac{\partial^2 T}{\partial y \partial z} + 2wv \frac{\partial^2 T}{\partial y \partial x} \
+ 2uv \frac{\partial^2 T}{\partial y \partial z} \right) + \frac{D_f}{T} \left(\frac{\partial^2 T}{\partial y^2} \right) \right), \\
\frac{\partial C}{\partial x} + \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} + \lambda C \Phi_C &= D_b \left(\frac{\partial^2 C}{\partial y^2} \right) + \frac{D_f}{T} \left(\frac{\partial^2 C}{\partial y^2} \right).
\end{align*}
\]

Here one has the following prescribed conditions:

\[
\begin{align*}
\mathbf{u} &= \mathbf{U}_w(x) = \alpha x, \mathbf{v} = \mathbf{V}_w(y) = \beta y, w = 0, T = T_w, C = C_w, \text{at } z = 0, \\
\mathbf{u} &\to 0, \mathbf{v} \to 0, T \to T_w, C \to C_w, \text{as } z \to \infty,
\end{align*}
\]

where

\[
\begin{align*}
\Phi_E &= \left(u \frac{\partial^2 T}{\partial x^2} + v \frac{\partial^2 T}{\partial y^2} + w \frac{\partial^2 T}{\partial z^2} + 2uv \frac{\partial^2 T}{\partial y \partial z} + 2wv \frac{\partial^2 T}{\partial y \partial x} + \left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) \frac{\partial T}{\partial x} + \left(\frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) \frac{\partial T}{\partial y} + \left(\frac{\partial w}{\partial z} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) \frac{\partial T}{\partial z}. \tag{12}
\end{align*}
\]
and

\[\Phi_c = u_1 \frac{\partial^2 C}{\partial x^2} + u_2 \frac{\partial^2 C}{\partial y^2} + w^2 \frac{\partial^2 C}{\partial z^2} + 2uv \frac{\partial^2 C}{\partial x \partial y}, \]

\[+ 2nv \frac{\partial^2 C}{\partial y \partial z} - 2uw \frac{\partial^2 C}{\partial x \partial z} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \frac{\partial C}{\partial x} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \frac{\partial C}{\partial y} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \frac{\partial C}{\partial z}. \]

(13)

in which \(\alpha_m = \frac{k}{\rho C_p}, \rho, \) and \(\frac{1}{\rho C_p} \) stand for thermal diffusivity, heat capacity of liquid and effective heat capacity of nanoparticles respectively, \(D_f \) for Brownian diffusivity, \(T \) for temperature, \(C \) for concentration, \(D_t \) for thermophoretic diffusion coefficient, \(T_w \) and \(C_w \) for constant surface temperature and concentration respectively and \(T_a \) and \(C_a \) represent the ambient fluid temperature and concentration respectively. Selecting

\[u = ax' \phi(\zeta), \quad v = ay' \phi(\zeta), \quad w = -\left(av' \right)^{1/2} f(\zeta) + g(\zeta), \]

\[\theta(\zeta) = \frac{1 - T}{T_c - T}, \quad \phi(\zeta) = \frac{C - C_c}{C_0 - C_c}, \quad \zeta = (g)^{1/2} z. \]

(14)

Eq. (1) is identically verified and Eqs. (2), (3) and (8)–(13) have been reduced to

\[f'' + \left(f + g' \right) f' - f^2 = 0, \]

\[g'' + \left(f + g' \right) g' - g^2 = 0, \]

\[\frac{1}{Pr} \theta'' + \frac{N_b}{N_c} \theta' + \frac{N_c}{Sc} \theta'' + \left(f + g \right) \theta' - \delta_i \left(f + g \right) \left(f' + g' \right) \theta' + \left(f + g \right)^2 \theta'' = 0, \]

\[\frac{1}{Sc} \phi'' + \frac{N_b}{N_c} \phi' + \frac{N_c}{Sc} \phi'' = 0, \]

\[f(0) = g(0) = 0, \quad f'(0) = 1, \quad g'(0) = \alpha, \quad \theta(0) = \alpha, \quad \phi(0) = 1, \]

\[f'(\infty) \rightarrow 0, \quad g'(\infty) \rightarrow 0, \quad \theta(\infty) \rightarrow 0, \quad \phi(\infty) \rightarrow 0, \]

(19)

(20)

where \(\alpha \) stands for ratio parameter, \(Pr \) shows Prandtl number, \(N_b \) depicts Brownian motion parameter, \(N_c \) gives thermophoresis parameter, \(Sc \) stands for Schmidt number and \(\delta_i \) represents the nondimensional concentration relaxation parameter. These parameters can be specified by using the definitions given below:

\[\alpha = \frac{k}{\rho c}, \quad Pr = \frac{\nu}{\kappa}, \quad \delta_i = \frac{\alpha_{\phi_k,\delta_i}}{\alpha_{\phi_k}}, \quad \frac{N_b}{N_c} = \frac{\alpha_{\phi_k,\delta_i}}{\alpha_{F}}. \]

(21)

Dimensionless expressions of skin-friction coefficients are as follows:

\[R\xi_1 C_{f_x} = -f''(0), \]

\[R\xi_2 C_{f_y} = -\alpha \frac{1}{2} g''(0), \]

(22)

where \(R_{f_x} = U_W x / v \) and \(R_{f_y} = V_W y / v \) depict the local Reynolds numbers.

3. Solutions by OHAM

Our purpose here is to develop the convergent homotopic solutions through the optimal homotopy analysis method (OHAM). Suitable initial approximations and the auxiliary linear operators for homotopic solutions are given by

\[f_0(\zeta) = 1 - \exp(-\zeta), \quad g_0(\zeta) = \alpha(1 - \exp(-\zeta)), \]

\[\theta_0(\zeta) = \exp(-\zeta), \quad \phi_0(\zeta) = \exp(-\zeta). \]

(23)

\[\mathcal{L}_f = \frac{d^2 f}{d \zeta^2} - \frac{d f}{d \zeta}, \quad \mathcal{L}_g = \frac{d^2 g}{d \zeta^2} - \frac{d g}{d \zeta}, \]

\[\mathcal{L}_\theta = \frac{d^2 \theta}{d \zeta^2} - \frac{d \theta}{d \zeta}, \quad \mathcal{L}_\phi = \frac{d^2 \phi}{d \zeta^2} - \frac{d \phi}{d \zeta}. \]

(24)

The above linear operators satisfy the following characteristics

\[\mathcal{L}_f [A_{1j} + A_{2j} \exp(\zeta) + A_{3j} \exp(-\zeta)] = 0, \]

\[\mathcal{L}_g [A_{1j} + A_{2j} \exp(\zeta) + A_{3j} \exp(-\zeta)] = 0, \]

\[\mathcal{L}_\theta [A_{1j} \exp(\zeta) + A_{3j} \exp(-\zeta)] = 0, \]

\[\mathcal{L}_\phi [A_{1j} \exp(\zeta) + A_{10} \exp(-\zeta)] = 0. \]

(25)

in which \(A_{1j} (j = 1 \cdots N) \) stand for arbitrary constants.

4. Optimal convergence control parameters

Note that the non-zero convergence control parameters \(h_f, h_g, h_\theta, \) and \(h_\phi \) in approximate homotopic solutions regulate the convergence zone and also rate of homotopic solutions. To obtain the optimal values of \(h_f, h_g, h_\theta, \) and \(h_\phi, \) we have employed the idea of minimization by representing the average squared residual errors as suggested by Liao [51].

\[e_{m_{\text{fr}}} = \frac{1}{k + 1} \sum_{j=0}^{k} \left[\mathcal{L}_f \left(\sum_{i=0}^{m} \frac{f(\zeta)}{\zeta-\alpha_j} \right) \right]^2, \]

\[e_{m_{\text{fg}}} = \frac{1}{k + 1} \sum_{j=0}^{k} \left[\mathcal{L}_g \left(\sum_{i=0}^{m} \frac{g(\zeta)}{\zeta-\alpha_j} \right) \right]^2, \]

\[e_{m_{\text{t}}} = \frac{1}{k + 1} \sum_{j=0}^{k} \left[\mathcal{L}_\theta \left(\sum_{i=0}^{m} \frac{\theta(\zeta)}{\zeta-\alpha_j} \right) \right]^2, \]

\[e_{m_{\text{ph}}} = \frac{1}{k + 1} \sum_{j=0}^{k} \left[\mathcal{L}_\phi \left(\sum_{i=0}^{m} \frac{\phi(\zeta)}{\zeta-\alpha_j} \right) \right]^2, \]

(26)

(27)

(28)

(29)

Following Liao [51]

\[e_{m_{\text{fr}}} = e_{m_{\text{fr}}} + e_{m_{\text{fg}}} + e_{m_{\text{t}}} + e_{m_{\text{ph}}}, \]

(30)

where \(e_{m_{\text{fr}}} \) stands for total squared residual error, \(k = 20 \) and \(\delta^* = 0.5 \). The total average squared residual error is minimized by employing Mathematica package BVPH2.0. A case has been considered where \(\alpha = N_b = 0.1, N_c = 0.3, \delta_i = 0.2 \) and \(Pr = Sc = 1.0 \). The optimal values of convergence-control parameters at 2nd order of approximations are \(h_f = -1.64104, h_g = -1.02624, h_\theta = -0.933309 \) and \(h_\phi = -0.946239 \) and the total averaged squared residual error is \(e_{m_{\text{fr}}} = 2.61 \times 10^{-4}. \) Table 1 shows the individual average squared residual error employing the optimal values of convergence control parameters at \(m = 2 \). It is observed that the averaged squared residual error reduces with higher order approximations.

5. Discussion

This portion explores the impacts of various pertinent parameters like ratio parameter (\(\alpha \)), Prandtl number (\(Pr \)), Schmidt number (\(Sc \)), Brownian motion parameter (\(N_b \)), thermophoresis parameter (\(N_c \)), thermal relaxation parameter (\(\delta_i \)) and concentration relaxation parameter (\(\delta_i \)) on temperature \(\theta(\zeta) \) and concentration \(\phi(\zeta) \) distributions. Fig. 1 presents that the larger values of ratio param-
parameter (α) lead to lower temperature $\theta(\zeta)$ and less thermal layer. Further two-dimensional (2D) flow case is obtained when $\alpha = 0$. Fig. 2 demonstrates that how the temperature field $\theta(\zeta)$ is get effected by Prandtl number (Pr). It is observed that by enhancing Prandtl number (Pr), the temperature field $\theta(\zeta)$ and thermal layer thickness reduces. Physically, as Prandtl number (Pr) is an integral part of thermal diffusivity, therefore, thermal diffusivity is responsible for lower temperature. Greater values of Prandtl number (Pr) yields weaker thermal diffusivity which corresponds to lower temperature field and less thickness of thermal layer. Fig. 3 shows the variation in temperature field $\theta(\zeta)$ for distinct values of Brownian motion parameter (N_b). It has been clearly noted that by increasing Brownian motion parameter (N_b), an enhancement appeared in temperature field $\theta(\zeta)$ and its related thermal layer thickness.
Fig. 4 is drawn to depict the influence of thermophoresis parameter \((N_t) \) on temperature field \(\theta(\zeta) \). Increasing values of thermophoresis parameter \((N_t) \) constitutes a higher temperature field and thermal layer thickness. The reason behind this argument is that an enhancement in \((N_t) \) yields a stronger thermophoretic force which allows deeper migration of nanoparticles in the fluid which is far away from the surface forms a higher temperature field and thickness of thermal layer. Fig. 5 presents variation in the temperature field \(\theta(\zeta) \) for different values of thermal relaxation parameter \((\delta_t) \). It has been clearly examined that an enhancement in the value of thermal relaxation parameter \((\delta_t) \) shows decreasing behavior for temperature field \(\theta(\zeta) \) and thermal layer thickness. Here \((\delta_t = 0) \) represents that the present model is reduced to classical Fourier’s law. Fig. 6 depicts that increasing values of ratio parameter \((\alpha) \) presents a weaker concentration distribution \(\phi(\zeta) \) and associated less thickness of concentration layer. Fig. 7 presents that the greater Schmidt number \((Sc) \) forms a reduction in the concentration field \(\phi(\zeta) \). Physically Schmidt number is based on Brownian diffusivity. An increase in Schmidt number \((Sc) \) yields weaker Brownian diffusivity. Such weaker Brownian diffusivity corresponds to lower concentration field \(\phi(\zeta) \). From Fig. 8, it is clearly examined that a weaker concentration field \(\phi(\zeta) \) is generated by using larger Brownian motion parameter \((N_b) \). Fig. 9 shows that the higher thermophoresis parameter \((N_t) \) produce a stronger concentration field \(\phi(\zeta) \). Fig. 10 presents how concentration relaxation parameter \((\delta_c) \) effects concentration field \(\phi(\zeta) \). By increasing \((\delta_c) \), both concentration \(\phi(\zeta) \) and thickness of concentration layer decreases. Here \((\delta_c = 0) \) represents that the present model is reduced to classical Fick’s law. Table 2 is developed to analyze the coefficients of skin-friction \(\frac{C_0}{Re^{1/2}} = \frac{C_{f}(x)}{Re^{1/2}} \) and \(\frac{C_{f}(x)}{Re^{1/2}} = \frac{C_{f}(y)}{Re^{1/2}} \) for several values of \(\alpha \). It is seen that the coefficients of skin-friction show opposite behavior for larger ratio parameter \((\alpha) \). Table 3 is calculated in order to investigate the numerical computations of heat transfer rate \(-\theta'(0) \) for distinct values of thermal relaxation parameter \((\delta_t) \). Here we examined that the heat transfer rate has higher values by incrementing \((\delta_t) \). Table 4 depicts the numerical values of mass transfer rate \(-\phi'(0) \) for distinct values of concentration relaxation parameter \((\delta_c) \). Here we observed that the values of
The key points of presented analysis are listed below:

- Increasing values of ratio parameter (α) depict decreasing behavior for temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$.
- An increment in Prandtl number (Pr) shows decreasing trend in temperature $\theta(\zeta)$ and thermal layer thickness.
- Both temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$ fields show opposite behavior for larger Brownian motion parameter (N_b).
- By increasing the thermophoresis parameter (N_t), an enhancement is observed in both temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$ fields.
- Both temperature field $\theta(\zeta)$ and its associated thermal layer thickness decrease by increasing thermal relaxation parameter (δ_t).
- Higher concentration relaxation parameter (δ_c) causes a decay in the concentration field $\phi(\zeta)$.
- Skin friction coefficients show opposite trend for increasing values of ratio parameter (α).
- Both heat and mass transfer rates at the surface are higher for larger thermal (δ_t) and concentration (δ_c) relaxation parameters.

References

[8] Hayat T, Muhammad T, Shehzad SA, Alsaedi A. Soret and Dufour effects in three-dimensional flow of viscous nano-fluid by a linear stretching surface with Cattaneo–Christov double diffusion expressions of heat and mass transfer has been examined. The key points of presented analysis are listed below:

Table 2

Numerical data for coefficients of skin-friction $-\operatorname{Re}^{1/2}C_{f_h}$ and $-\operatorname{Re}^{1/2}C_{f_p}$ for several values of α.

<table>
<thead>
<tr>
<th>α</th>
<th>0.1</th>
<th>0.4</th>
<th>0.7</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\operatorname{Re}^{1/2}C_{f_h}$</td>
<td>1.02026</td>
<td>1.07579</td>
<td>1.12640</td>
<td>1.17372</td>
</tr>
<tr>
<td>$-\operatorname{Re}^{1/2}C_{f_p}$</td>
<td>2.11389</td>
<td>1.38037</td>
<td>1.23711</td>
<td>1.17372</td>
</tr>
</tbody>
</table>

Table 3

Numerical values of heat transfer rate $-\phi'(0)$ for different values of δ_t when $\beta - N_t = 0.1, N_b = 0.3, \delta_t = 0.2$ and Pr = Sc = 1.0.

<table>
<thead>
<tr>
<th>δ_t</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\phi'(0)$</td>
<td>0.51107</td>
<td>0.51884</td>
<td>0.52697</td>
<td>0.53541</td>
</tr>
</tbody>
</table>

Table 4

Numerical values of mass transfer rate $-\psi'(0)$ for different values of δ_t when $\beta - N_t = 0.1, N_b = 0.3, \delta_t = 0.2$ and Pr = Sc = 1.0.

<table>
<thead>
<tr>
<th>δ_t</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\psi'(0)$</td>
<td>0.50540</td>
<td>0.51536</td>
<td>0.52574</td>
<td>0.53673</td>
</tr>
</tbody>
</table>

6. Conclusions

Three dimensional (3D) boundary-layer flow of viscous nano-fluid by a linear stretching surface with Cattaneo–Christov double diffusion expressions of heat and mass transfer has been examined. The key points of presented analysis are listed below:

- Increasing values of ratio parameter (α) depict decreasing behavior for temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$.
- An increment in Prandtl number (Pr) shows decreasing trend in temperature $\theta(\zeta)$ and thermal layer thickness.
- Both temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$ fields show opposite behavior for larger Brownian motion parameter (N_b).
- By increasing the thermophoresis parameter (N_t), an enhancement is observed in both temperature $\theta(\zeta)$ and concentration $\phi(\zeta)$ fields.
- Both temperature field $\theta(\zeta)$ and its associated thermal layer thickness decrease by increasing thermal relaxation parameter (δ_t).
- Higher concentration relaxation parameter (δ_c) causes a decay in the concentration field $\phi(\zeta)$.
- Skin friction coefficients show opposite trend for increasing values of ratio parameter (α).
- Both heat and mass transfer rates at the surface are higher for larger thermal (δ_t) and concentration (δ_c) relaxation parameters.

