COMMUNICATION

A CORRESPONDENCE BETWEEN TWO CATALAN SETS

E.J.F. PRIMROSE
Department of Mathematics, University of Leicester, United Kingdom

Communicated by T. Brylawski
Received 13 January 1987

Abstract

We set up a one-to-one correspondence between two sets whose cardinalities are both equal to the nth Catalan number, namely, the set of triangulations of a convex ($n+2$)-gon and the set of symmetric positive definite unimodular tridiagonal matrices of order n considered in [1].

1. Leighton and Newman [1] prove that if S_{n} is the set of positive definite unimodular matrices of the form

$$
A=\operatorname{td}\left(a_{1}, \ldots, a_{n}\right)=\left[\begin{array}{ccccccc}
a_{1} & 1 & & & & & \\
1 & a_{2} & 1 & & & & \\
& & & \ddots & & & \\
& & & & 1 & a_{n-1} & \\
& & & & & 1 & 1 \\
& & & & & & a_{n}
\end{array}\right]
$$

where a_{1}, \ldots, a_{n} are positive integers, then the cardinality of S_{n} is equal to the Catalan number $C_{n}=\binom{2 n}{n} /(n+1)$. This suggests that there might be a one-to-one correspondence between S_{n} and one of the other well-known sets that have cardinality C_{n}. It turns out that there is such a correspondence, the other set being the one that originally gave rise to the Catalan numbers, namely the set of triangulations of a convex $(n+2)$-gon by means of nonintersecting diagonals (here we use the term diagonal to denote any line joining nonadjacent vertices of the polygon).
2. The correspondence is very simple. Label the vertices of the $(n+2)$-gon successively (say clockwise) $V_{0}, V_{1}, \ldots, V_{n}, V_{n+1}$, and regard $V_{0} V_{n+1}$ as the base (preferably drawn horizontally). Then, if we have any triangulation of the $(n+2)$-gon, $a_{i}(1 \leqslant i \leqslant n)$ is the number of triangles that meet at V_{i}. However, we have to prove that
(i) the matrix corresponding to a given triangulation belongs to S_{n};
(ii) any matrix of S_{n} gives rise to a unique triangulation.

The key results are Lemmas 2 and 3 of [1], which both have analogues in the geometry.

Lemma 2 says that if $A \in S_{n}$, then $a_{k}=1$ for at least one value of k $(1 \leqslant k \leqslant n)$. This corresponds to the fact that there is at least one vertex V_{k} ($1 \leqslant k \leqslant n$) that belongs to only one triangle, that is, in the triangulation there is no diagonal through V_{k}. This follows geometrically from the fact that the graph formed by the diagonals in the triangulation and the vertices they join is clearly connected, and since there are $n-1$ diagonals, the number of vertices in the graph is at most n. Therefore, there are at least two vertices that have none of the diagonals through them, and these cannot be both V_{0} and V_{n+1}, and so the result follows.

Lemma 3 says that if $a_{k}=1$, then $A=\operatorname{td}\left(a_{1}, \ldots, a_{n}\right)$ is integrally congruent to the direct sum of the matrices [1] and $B=\operatorname{td}\left(a_{1}, \ldots, a_{k-1}-1, a_{k+1}-\right.$ $1, \ldots, a_{n}$), that is, the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right]
$$

In the proof of Lemma 3, Leighton and Newman give the corresponding congruence transformations, and the result of these corresponds to deleting the vertex V_{k} and the edges that join it to V_{k-1} and V_{k+1}. This gives a triangulated ($n+1$)-gon, which can, of course, be relabelled in the obvious way.

We can now prove (i) and (ii).
Proof of (i). This follows easily from Lemma 3 of [1] and its geometric counterpart. By successive application of this to the triangulated ($n+2$)-gon and the triangulated polygons that arise at each stage, we see that the matrix corresponding to the given triangulation is positive definite, and it is unimodular, because all the congruence transformations in the proof of Lemma 3 correspond to matrices with determinant ± 1.

Proof of (ii). This again follows easily from Lemma 3 of [1] and its geometric counterpart. By successive application of this to the given matrix of S_{n} and the matrices B that arise at each stage, we eventually arrive at the matrix [1], which corresponds to a triangle. Now, by working backwards, starting with the triangle,

Fig. 1.

Fig. 2.
we can add one vertex at a time, and eventually arrive at the triangulated $(n+2)$-gon corresponding to the given matrix.

The following example illustrates the method (see Fig. 1). This triangulation corresponds to the matrix $\operatorname{td}(2,3,1,2,4)$. Conversely, if this matrix is given, then successive applications of Lemma 3 of [1] give the matrices $\operatorname{td}(2,2,1,4)$, $\operatorname{td}(2,1,3), \operatorname{td}(1,2), \operatorname{td}(1)$. We can therefore build up the polygon as in Fig. 2.
3. In their proof that the cardinality of S_{n} is C_{n}, Leighton and Newman use the important idea of a "break-point". This is the $a_{r}(1 \leqslant r \leqslant n)$ such that $\operatorname{td}\left(a_{1}, \ldots, a_{r-1}\right) \in S_{r-1}$ and $\operatorname{td}\left(a_{r+1}, \ldots, a_{n}\right) \in S_{n-r}$, and they prove that it is unique. (If $r=1$ or n, one of the conditions is redundant.) We have not used this idea, but it is interesting to note that the breakpoint a_{r} corresponds to the unique vertex V_{r} such that $V_{0} V_{r} V_{n+1}$ is a triangle of the triangulation, that is, V_{r} is the other vertex of the triangle that contains the base. In the example above, this triangle is $V_{0} V_{5} V_{6}$, so the breakpoint is a_{5}.

Reference

[1] F.T. Leighton and M. Newman, Positive definite matrices and Catalan numbers, Proc. Amer. Math. Soc. 79 (1980) 177-181.

