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We set up a one-to-one correspondence between two sets whose cardinalities are both equal 
to the nth Catalan number, namely, the set of triangulations of a convex (n + 2)-gon and the 
set of symmetric positive definite unimodular tridiagonal matrices of order n considered in [1]. 

1. Leighton and Newman [1] 
unimodular matrices of the form 

m 

a l  

1 

A = td(al, . . . , a,,) = 

prove that if S~ is 

1 

a2 1 

the set of positive definite 

J 

an-1 1 

1 an_ 

where a ~ , . . . ,  a, are positive integers, then the cardinality of Sn is equal to the 
Catalan number C~ = ( ~ ) / ( n  + 1). This suggests that there might be a one-to-one 
correspondence between S, and one of the other well-known sets that have 
cardinality C~. It turns out that there is such a correspondence, the other set 
being the one that originally gave rise to the Catalan numbers, namely the set of 
triangulations of a convex (n + 2)-gon by means of nonintersecting diagonals 
(here we use the term diagonal to denote any line joining nonadjacent vertices of 
the polygon). 

2. The correspondence is very simple. Label the vertices of the (n + 2)-gon 
successively (say clockwise) Vo, V 1 , . . . ,  V,, V,+I, and regard VoV~+I as the base 
(preferably drawn horizontally). Then, if we have any triangulation of the 
(n + 2)-gon, ai (1 <- i <- n)  is the number o f  triangles that meet at V~. However, we 
have to prove that 

(i) the matrix corresponding to a given triangulation belongs to Sn; 
(ii) any matrix of S, gives rise to a unique triangulation. 

The key results are Lemmas 2 and 3 of [1], which both have analogues in the 
geometry. 
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Lemma 2 says that if A ~ Sn, then a k = 1 for a t  least one value of k 
(1 ~< k <~n). This corresponds to the fact that there is at least one vertex Vk 

(1 ~< k ~< n) that belongs to only one triangle, that is, in the triangulation there is 
no diagonal through Vk. This follows geometrically from the fact that the graph 
formed by the diagonals in the triangulation and the vertices they join is dearly 
connected, and since there are n -  1 diagonals, the number of vertices in the 
graph is at most n. Therefore, there are at least two vertices that have none of the 
diagonals through them, and these cannot be both V0 and Vn+l, and so the result 
follows. 

Lemma 3 says that if ak = 1 ,  then A = t d ( a l ,  . . . , an) is integrally congruent 
to the direct sum of the matrices [1] and B = t d ( a ~ , . . . ,  ak_ 1 - - 1 ,  a k +  1 - -  

1, . . . ,  an), that is, the matrix 

01 
I n  the proof of Lemma 3, Leighton and Newman give the corresponding 
congruence transformations, and the result of these corresponds to deleting the 
vertex Vk and the edges thai join it to Vk-~ and Vk+~. This gives a triangulated 
(n + 1)-gon, which can, of course, be relabelled in the obvious way. 

We can now prove (i) and (ii). 

Proof of (i). This follows easily from Lemma 3 of [1] and its geometric 
counterpart. By successive application of this to the triangulated (n + 2)-gon and 
the triangulated polygons that arise at each stage, we see that the matrix 
corresponding to the given triangulation is positive definite, and it is unimodular, 
because all the congruence transformations in the proof of Lemma 3 correspond 
to matrices with determinant ± 1. [] 

Proof of (ii). This again follows easily from Lemma 3 of [1] and its geometric 
counterpart. By successive application of this to the given matrix of Sn and the 
matrices B that arise at each stage, we eventually arrive at the matrix [1], which 
corresponds to a triangle. Now, by working backwards, starting with the triangle, 

Vm V5 

Vo ve 
Fig. 1. 
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Fig. 2. 

we can add one vertex at a time, and eventually arrive at the triangulated 
(n + 2)-gon corresponding to the given matrix. [] 

The following example illustrates the method (see Fig. 1). This triangulation 
corresponds to the matrix td(2, 3, 1, 2, 4). Conversely, if this matrix is given, then 
successive applications of Lemma 3 of [1] give the matrices td(2, 2, 1, 4), 
td(2, 1, 3), td(1, 2), td(1). We can therefore build up the polygon as in Fig. 2. 

3. In their proof that the cardinality of Sn is Cn, Leighton and Newman use the 
important idea of a "break-point". This is the a, (l~<r~<n) such that 
t d ( a l , . . . ,  ar-~)eS,_~ and td(a~+~, . . . ,  an)eSn_~, and they prove that it is 
unique. (If r = 1 or n, one of the conditions is redundant.) We have not used this 
idea, but it is interesting to note that the breakpoint a~ corresponds to the unique 
vertex V~ such that VoV~V~+I is a triangle of the triangulation, that is, Vr is the 
other vertex of the triangle that contains the base. In the example above, this 
triangle is VoVsV6, so the breakpoint is a5. 
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