-

metadata, citation and similar papers at core.ac.uk brought to you by .

provided by Elsevier - Publisher Conr

Available online at www.sciencedirect.com

SCIENCE dDIRECT‘ JOURNAL OF
@ DISCRETE
Ll ALGORITHMS
ELSEVIER Journal of Discrete Algorithms 2 (2004) 439-452

www.elsevier.com/locate/jda

Recognizing graphs without asteroidal triples

Ekkehard Kohler

TU Berlin, Institut fir Mathematik, MA 6-1, 10623 Berlin, Germany
Available online 12 May 2004

Abstract

We consider the problem akcognizing AT-free graphs. Ihough there is a simple @3) al-
gorithm, no faster method for solving this problem had been known. Here we give three different
algorithms which have a better time complexity for graphs which are sparse or have a sparse comple-
ment; in particular we give algoriths which recognize AT-free graphs in@m +n2), O(n3/2 +n?),
and Qn?82 4 nm). In addition we give a new characteriim of graphs withbounded asteroidal
number by the help of thienotting graph, a combinatorial struce which was introduced by Gallai
for considering comparability graphs.

0 2004 Elsevier B.V. All rights reserved.

Keywords: Graph algorithms; Asteroidal triple-freeaphs; Recognition algorithm; Knotting graph

1. Introduction

An asteroidal triple or, briefly, anAT of a given graplG is a set of three independent
vertices such that there is path between eadtopéhese vertices that does not contain any
vertex of the neighborhood of the third. Consequently, a gtajhcalledasteroidal triple-
free or AT-freeif there is no asteroidal triple it and it is calleccoAT-freeif G is AT-free.

Almost forty years ago, Lekkerkerker and Bolafid] defined the concept of an as-
teroidal triple for the first time. They used it for the investigation of intersection graphs
corresponding to intervals of the real line—the interval graphs—and proved the well
known characterization, that a graghis an interval graph if and only if it is chordal
and AT-free. Already in this early paper Lekkerker and Boland considered the problem
of deciding whether a given graph contains an asteroidal triple. In fact, they gave a sim-
ple ond) algorithm—we call it SRAIGHTFORWARD ALGORITHM in the following—and
used it for recognizing interval graphs. Of course by now there are much faster algorithms

E-mail address: ekoehler@math.tu-berlin.de (E. Kéhler).

1570-8667/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2004.04.005

https://core.ac.uk/display/82764709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

440 E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452

for recognizing interval graphs. However, for deciding whether a given graph contains an
asteroidal triple no faster algorithm had been known.

In this paper we study the recognitionoptem of AT-free graphs from different per-
spectives and present three different recognition algorithms for AT-free graphs. At first we
examine the above-mentionedAIGHTFORWARD ALGORITHM a bit closer and design
an algorithm that runs in @iz + n?), wherei is the number of non-edges of the input
graphG. For the second recognition algorithm we use an algorithm for listing all triangles
of a given graph and achieve a time bound ¢#@? + n?). Finally, in the last section we
present the KOTTING GRAPH ALGORITHM. It makes use of a characterization of AT-free
graphs by the help of the knotting graph and recognizes AT-free graph@in ® n%?).

Since AT-free graphs are defined as a generalization of interval graphs it seems to
be plausible to try similar methods for recognizing AT-free graphs as proved useful for
recognizing interval graphs. However, for different reasons non of the fast interval graph
recognition algorithms seems to help for our purpose:

Booth and Luekef2] designed the first linear time recognition algorithm for interval
graphs making use of the vertex—maximal clique matrix of the input graph. A vertex—
maximal cligue matrix is a 0—1 matrid, such that each row of the matrix corresponds to
a vertex of the graph and each column corresponds to a maximal clique of the graph and
an entrym;; is 1 if and only if vertex is contained in the maximal clique Fulkerson and
Gross[6] showed, that a grap& is an interval graph if and only if the vertex—-maximal
clique matrixM of G has the consecutive ones property for rows, i.e., if there is a per-
mutation of the columns o#Z, such that no ones in a single row are separated by zeroes
in that same row. For AT-free graphs we do not have such a strong characterization. Of
course, there is a close relationship between AT-free graphs and interval graphs, since
every interval graph is AT-free and every minimal triangulation of an AT-free graph is an
interval grapi17]. By Parra’s characterization of minimal triangulations (8e8) there is
a one-one correspondence between the minimal triangulations of a given@apihthe
inclusion maximal sets of pairwise parallel minimal separators§ ofFor AT-free graphs,
this implies that for each set of pairwise phel minimal separators the corresponding
vertex—minimal separator matrix has the consecutive ones property for rows. However,
this does not give a characterization of AT-free graphs yet and, even worse, the number of
minimal separators of an AT-free graph can be quite large—it can even be exponential in
the number of vertices afi. Hence, it is not very likely that one can use a method which
is similar to the consecutive ones testing for the recognition of AT-free graphs.

The algorithm of Booth and Lueker can be interpreted also as one that makes use of
the geometric model of interval graphs, since a vertex—maximal clique matrix that has the
consecutive ones property for rows provides an interval model of the corresponding graph.
Again, for AT-free graphs such an approach is not applicable, since there is no known
geometric model for AT-free graphs.

A different method for recognizing interval graphs, was suggested by Corneil[8f al.
by applying a simple four-sweep LBFS-algorithm for this problem. They make especially
use of the characterization of interval graphs to be chordal and AT-free, where the first of
these properties was known to be checkable using LBFS in linear time befori(ee
The key property that Corneil et al. make use of, is the existence of a so-tatkedhl
ordering, i.e., alinear orderings, ..., v, of the vertices of the graph with the property that

E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452 441

foreach edgév;, v;) € E withi < j, all verticesv; withi <k < j are adjacentto;. This
ordering characterizes interval graphs (f&49]). A couple of nice properties of LBFS

are known for AT-free graphs as well (i) and several researchers have considered the
problem of recognizing AT-free graphs by the help of LBFS or at least similar methods
like LBFS. However, up to now no fast algorithm using this approach is known. One of the
main reasons for the difficulty of any such method is, that there is no known linear ordering
that characterizes graphs without asteroidal triples.

Thus, none of the mentioned approaches seems to be applicable for recognizing AT-free
graphs. In spite of this dejecting observation there are, in fact, efficient methods to handle
AT-free graphs as you will see in the following sections. But all three presented recogni-
tion algorithms for AT-free graphs that we give here do not achieve a linear time bound.
Recently, Spinradi21] showed, that it is rather unlikely to find a much faster algorithm
to recognize AT-free graphs. He gave a construction for comparing the complexity of the
recognition of asteroidal ple-free graphs to the compiigx of finding an independent
triple:

Let G = (V, E) be a graph which is to be checked for independent triples and suppose
there is an algorithm that recognizes asteroidal triple-free graphs fitzOm)). Now an
auxiliary graphG is constructed as followss contains the graply itself and for each
vertexv of G we add a copy’. In the set of vertex copies we add all possible edges
such that it forms a complete graph, K¥n n vertices. In addition to that, each vertex
of G is connected to the copies of all its neighbors and to the verte®bviously, the
construction ofG takes Qn?) time. Now one can show easily th@thas an independent
triple if and only if G contains an asteroidal triple. Hence it is unlikely to find algorithms for
recognizing AT-free graphs which are much faster than the known algorithms for finding
triangles.

By a similar construction as the one above, Hempel and Krdtisthshowed that al-
ready the recognition of claw-free AT-freggphs is as hard asnfiling an independent
triple in a given graph. The fastest known algorithm for finding triangles in a graph is ma-
trix multiplication with a time bound of %), with « < 2.376. Hempel and Kratsch also
gave an %) algorithm for recognizing this restricted subclass of AT-free graphs.

In the following we will denote the set of all neighbors of a vertei a graphG by
Ng (v) and N;[v] = Ng (v) U {v} (if no ambiguities are possible we omit the subscript).
For a set of vertice§ of a graphG we denote byG[S] the graph induces 6 by the
vertices ofS and we denote witli; — S the graphG[V \ S]. For a graphG we usen for
the number of vertices and for the number of edge#; is used for the number of edges
of G, the complementary graph 6f.

2. Straightforward algorithm and itsimprovement

There are several characterizations for asteroidal triple-free graphs and, as we will ex-
amine in the course of this paper, some of them are more useful for the recognition of this
graph class than others. A very simple chagdgttion is already given by a slight alter-
ation of the definition of AT-free graphs. For a graghand vertices, w of G, let C¥(w)
be the connected component@f— N[v] containing vertexw.

442 E. Kohler / Journal of Discrete Algorithms 2 (2004) 439-452

Observation 2.1. Anindependent triple u, v, w of a graph G forms an asteroidal triple of
G ifandonlyif C?(u) = C?(w) and C*(v) = C*(w) and C* (v) = C%(u) holds.

If such a triple{u, v, w} exists we know thai andw are in the same connected com-
ponent of G — N[v], in other words there is am, w-path, that avoids the neighborhood
of v. Analogously, there is a, w-path avoiding the neighborhood efand anu, v-path
avoiding the neighborhood af. Thus,u, v, w is an asteroidal triple of;.

This straightforward characieation immediately implies aSRAIGHTFORWARD AL-
GORITHM; it was first suggested by Lekkerkerker and Boland1B] when they con-
structed an @*) algorithm for recognizing interval gphs. In a first step, for each vertex
v the connected components 6f— N[v] are determined and each is assigned a differ-
ent label. Then, in the second step, for eagbldérof vertices it is checked whether the
condition ofObservation 2.1s fulfilled.

For implementing this algorithm one can use a simple data structure catigmbnent
structure which we define here for later use. For a given grépha (V, E) with n vertices,
the component structure of G is ann x n matrix C, where each column and each row of
G corresponds to a vertex 6f. For each vertex the matrix entryc,,, is 0, if w € N[v],
otherwisec,,, is set to the label of the connected componer@ef N[v] containingw.

Example 2.2. Let G be the 7-vertex graph &fig. 1L The corresponding component struc-
ture is given in the table. The labels of the connected components are the detiteks

Note that a component that occurs for different vertices gets different labels; e.g., the com-
ponent containing only vertex 4 occurs both for vertex 3 and vertex 6 and thus has both
labeld and label.

The first part of the SRAIGHTFORWARD ALGORITHM can be implemented to run in
O(nm): If G is connected an @ + m) breadth-first search is applied & — N[v] for
each vertex of G. If G is not connected the same method is applied to each connected
component ofG. Using the component structure, the second part of the algorithm can
easily be implemented to run in(@), by checking for each triple, v, w of G whether

‘Jk
8]

L [[1]2]3]4[5]6]7]
0|0|0|ajalala

| O U x| W N —

O OO O

o Bl Nl Rl Ho N Nen)

o | OO
(=] Nl Kool J OB Reo) Ran)
OO
(=] el ol § ¢l Neo) Ren)
(=] Kel[i-l NN R N o}

Fig. 1. Example of a graph together with its component structure.

E. Kohler / Journal of Discrete Algorithms 2 (2004) 439452 443

Cuv = Cuw» Cou = Cow aNdcyy = cyy. Hence, AT-free graphs can be recognized @
using the SRAIGHTFORWARD ALGORITHM.

Obviously, the “bottleneck” of the complexity of theTSAIGHTFORWARD ALGO-

RITHM seems to be the checking of all possible triples of the given graph, and it is a
reasonable question to ask, whether all those tests are indeed required. Actually, it is not
really necessary to do this fall triples of the graph, because, when searching for as-
teroidal triples, we are interested only in independent triples. Thus, as a first step, it is
sufficient to check for all non-edgés, w) of G, whether there is a vertax such that

the tripleu, v, w is an asteroidal triple. Obviously, there ar€n@:) those triples inG,
wherem is the number of non-edges 6f. A look back to the complexity of the first part

of the STRAIGHTFORWARD ALGORITHM tells us that we did not really get a better time
complexity yet, since Qun) + O(nim) is still O(n3). However, also this first part of the
algorithm can be altered to run in(@n), leading to an ©:2 + nin) algorithm, as we show

in the following.

The method that we use for this improvementis a BFS conductéd dfcConnell[16]
observed, that one can implement a BFS in such a way that it constructs the BFS-layers
for G and runs in @u + m) time, wherem is the number of edges @—not of G (see
also[12]).

A simple way to visualize BFS and BFS on the complementary graph is to state these al-
gorithms as partition refinement schemes: In this setting a normal BFS can be implemented
as follows. Initially all vertices of5 are putinto one set. In the course of the algorithm this
vertex set is partitioned into smaller sets and these sets are kept in a linear order. Finally,
when all sets of the partition are singletons this order is an BFS ord&r of

At the beginning only one set containing all verticesbfs placed in the partition. In
each further step the first (corresponding te linear ordering on the sets) non-marked set
S of the partition is selected, one vertexs removed fromS and the set containing only
v is marked and placed in front ¢fin the linear ordering. Then each non-singleton&et
of the partition is split into the sef; of neighbors ofv and the sef» of non-neighbors
of v. In the corresponding ordering tife sets of the partition the sg&tis replaced by,
andT> whereTy is placed in front off». It is not hard to see that the resulting ordering of
singletons is indeed a BFS ordering. If in the partition step also th& gself is split into
the set of neighbors and the set of non-neighborns d¢ifien the resulting ordering is even
an LBFS ordering.

To achieve a BFS ordering on the complement by the help of partition refinement, we
just have to change the ordering@afand7y, i.e., T» is placed in front off7 in the ordering
of the sets of the partition.

Putting together the BFS af and the improved checking of triples, leads to thevG
PLEMENT ALGORITHM.

Theorem 2.3. Recognition of AT-free graphs, using the COMPLEMENT ALGORITHM,
takes O(n? + nint) time, where iz is the number of non-edges of G.

Proof. Computing the complement of a graghcan, of course, be done in(@). To
compute the component structure, by the help of the complement-BFS takes)

444 E. Kohler / Journal of Discrete Algorithms 2 (2004) 439-452

for each vertex; hence, for all vertices it can be done (ni). Finally, checking for each
non-edgesv, w) and each vertex, whethen, v, w form an AT, takes @un) aswell. O

3. Trianglealgorithm

Before stating the next algorithm for recognizing AT-free graphs we first consider a
different problem, the problem of finding triangles in a given graph. As we will see later,
it turns out to be closely related to our ogmition problem. Here we have to distinguish
between the problem of deciding whether a given graph contains a triangle and the problem
of finding one or all triangles of;. For the beginning we are interested in the second of
these problems, i.e., we want to list all triangles of a given gr@pfror this we make
use of an observation made by Gabow, concerning the number of different triangles in a
graphg, i.e., the number of triangles d@f, such that each pair of thesriangles differs in
at least one vertex.

Lemma 3.1 (Gabow[7]). Given a graph G with m edges, there are at most O(m%/?)
different triangles.

Proof. As a first step, we can observe, that, for an arbitrary vertekG, the number of
edges from an arbitrary vertexto a vertex of equal or larger degree is at mogn&?).

This holds, of course, for all vertices which have a degree smallenti&h On the other
hand, there can be at most/@"/2) vertices with larger degree. Thus, there can be at most
O(m'/?) edges between those high degree vertices.

To bound the number of different triangles@fwe charge each trianglg to the edge
that is opposite to a highest degree vertex'oBy our first observation, each edge Gf
gets charged at most(@?/2) triangles and so there can be no more tham®?) different
triangles in the whole graph.O

For listing all triangles of5 in O(m3/?) time, we can use the following algorithm. First
the vertices are orderedccording to their degree. Then for each verigea list L,, of all
neighbors ofv; with equal or larger degree that occur aftgrin the ordering is created.
Within this list the vertices & ordered according to the ordering that was determined in
the first step. In the last part of the algorithm for each verteke corresponding list,, is
traversed and for each vertexin L,, the listsL,, andL, ; are compared. For each vertex
vk that is contained in both lists the algorithm outputs the corresponding trianglg vx.

Lemma 3.2. For a given graph G a complete list of all different triangles of G can be
determined in O(m3/2 + n).

Proof. To prove the correctness of the algorithm we just have to observe, that each of
triangles has to be found at least once, since its vertiges, v, are ordered according to

the ordering determined in the first step. If we assumeitkalj < k, thenv; andy; are
contained inL,, andu is contained in_,, .

E. Kohler / Journal of Discrete Algorithms 2 (2004) 439452 445

For proving the complexity of the algorithhwe can assume, without loss of generality,
that G is connected, since otherwise we pisnapply the algorithm to each connected
component. Ordering the vertices@f according to their degree, can be done in ®m),
by using an appropriate linear time sorting algorithm, for example counting sort.

To create, for each vertex, the list of neighbors with equal or larger degree, we need
linear time as well: For each vertex, we caraae the amount of time spent for creating
the list, to the edges that are incident to this vertex. Each edge gets charged at most twice;
hence, we need @) time. To make sure, that each of the lidtg is in the ordering
determined by the first step of the algorithm, we just have to visit for each vertex the
corresponding neighbors aading to this ordering.

During the last part of the algorithm, for each vertgxeach neighbor; withi < j, is
visited once. For each of thie;, v;) edges, we have to compare the listgandL,; . Since
the lists are ordered, we have to conduc} | + |L,;| comparisons per edge. As shown in
Lemma 3.1each of the listd.,, andL,; has at most On'/?) elements. Consequently, the

last part of the algorithm takes(@3%/?) time. O

Observe, that irLemma 3.1the only property, that was really used for bounding the
number of triangles, was the knowledge about a bound on the number of “interesting”
edges, leaving a vertex, i.e., the number of edges leaving a vertex to a vertex of equal or
larger degree. With this observation we can prove the following lemma the same way, as it
was done fo,emma 3.1Let A be the maximum vertex degree Gf

Lemma 3.3. Inagraph G with m edges and maximum degree A there are at most O(A m)
different triangles.

Of course, this bound can also be used for the algorithm, that lists all triangles of

Corollary 3.4. For a given graph G a complete list of all different triangles of G can be
determinedin O(A m).

In Section 2 exploring the structure of the complement of a gr&plseemed to be
helpful for deciding whethe contains asteroidal triples. In the following algorithm—the
TRIANGLE ALGORITHM—We consider agai, this time using the set of its triangles.

Theorem 3.5. Recognition of AT-free graphs, using the TRIANGLE ALGORITHM (Algo-
rithm 1), takes O(i%/2 + n?) time, where n is the number of vertices and 7 is the number
of non-edgesof G.

Proof. By Lemma 3.2 the list T of all triangles of G can be determined in @%/2).
Let |T'| be the number of triangles ifi. As we will prove now, the remaining part of the
algorithm can be done in @I'| + n?). Since, byLemma 3.1 there are at most @°/?)
triangles inG, we get the desired complexity. Thé part of this term is originated from
the initialization of the component structure.

It is easy to see that the secofwi-loop of Algorithm 1 correctly checks in QT),
whetherG contains an asteroidal triple, provided the first part of the algorithm correctly

446 E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452

begin
ComputeG; _
Determine a list_ of all different triangles of5;
for v e V(G) do
find all edges of5[Ng (v)] usingL;
compute connected componentﬁNg(v)] =G — N[v];
store labels of components in component structire
end
for each triangle u, v, w of L do
| check whether, v, wis an AT;
end

end

Algorithm 1. TRIANGLE ALGORITHM.

determines the component structurethfHence, all we have to do is to consider the first
for-loop of the TRIANGLE ALGORITHM.

When we take a vertexand want to know all edges, that are contained in the graph, in-
duced by Nv), we just have to consider all triangles of the graph, that contain the wertex
Hence, finding all edges that are contained in the graph inducédhin the neighbors of
v in G, can be done by scanning through the Tisbf triangles ofG and, for each triangle
inserting each of the three edge into the list of edges of the corresponding opposite vertex,
i.e., for a trianglex, v, w the edge(u, v) is inserted into the list ofv, the edggv, w) is
inserted into the list oft and the edgéu, w) is inserted into the list of. Note that none
of the edges is inserted twice into the list of edges.

We first assume, that for all the graph@[Ng(v)] does not contain isolated vertices.
In this case we can simply apply the complement—BFs_RDNg(v)] to compute the con-
nected components of

G[Ng()] =G —Nglv]

in the complexity of the number of EdQESd_HNE(U)]. If we add up the edges that are
contained irﬁ[Ng(v)] for all verticesv of the graph, then we get three times the number
of triangles contained iff'. Thus, the overall complexity of this step igi@>/?).

In case there are isolated verticeﬁﬁ\lg(v)] we cannot use the same method, because
if we apply the complement-BFS, it computes the connected componefits M [v] in
the complexity of the edgeand vertices in(_}[Ng(v)]. For each edge we have a triangle
that we can charge for the amount of work corresponding to the edge, but there is no
triangle that we can charge for an isolated verteﬁ{m\lg(v)]. The good news is that in
the case of an isolated vertex(i?{Ng(v)] there can be only one connected componentin
the complement. To built the component structure we simply label all vertices; 6f)N
with the same label, without conducting any BFSa

Using the results ofemmas 3.4 and 3,3ve can also give a recognition algorithm that
runs in QAm + n?), whereA andin are the maximum degree and the number of edges
of G. Hence we have the following corollary.

E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452 447

Corollary 3.6. Recognition of AT-free graphs, using the TRIANGLE ALGORITHM, takes
O(n? + min{im/2, A}im) time, where n is the number of vertices, iz is the number of non-
edges of G and A the maximum degree of G.

Remark 3.7. As part of the RIANGLE ALGORITHM we used an algorithm that lists all
triangles of the complement @f in a certain time and then runs in the order of the size
of the set of triangles (plus @?) for initializing the component structure). Thus, if we are
given the set of all independent triples Gfand this set has sizd’|, then we can check
in O(|T| + n®) time whetherG is AT-free. If we take, for example, a graghsuch thaiG

is planar, we can find the list of triangles 6fin O(n?), implying that we can decide in
O(n?) whetherG is AT-free.

The time bounds of both theRTANGLE ALGORITHM and the @MPLEMENT AL-
GORITHM are measured in the size 6f. Another way to look at these algorithms is to
consider them to be algorithms to recognize coAT-free graphs. In other words, we have an
O(nm), an Qm®?2 +n?) and an @Am + n?) algorithm which decides the problem: Given
a graphG, is G a coAT-free graph?

For recognizing AT-free graphs thé term for the above algorithms was not avoidable,
since both the edges and the non-edges wfere used during the algorithms and for every
graphG, eitherm or m is in the order ofi2. For recognizing coAT-free graphs we can
do better. All we have to consider are the edge€ afthereas the non-edgesGfare not
of any interest. The way thegdrithm is given above, we need&¥) for initializing the
component structur€. We can get rid of this by the following method: Instead of storing
the information about the connected components of the neighborhood in the component
structure, we store this information “within” the edges of the graph. For a verexstore
the label of the connected componentziNg[v]] containing some vertextogether with
the edg€g(v, u). Obviously, for every edge only two labels are stored. To check, whether
there is an asteroidal triple i6 we just have to check for each triangle Gf whether
the edges of the triangle have pairwise the same label for their common incident vertex.
Consequently, we have the following theorem.

Theorem 3.8. For coAT-free graphs the recognition problem can be solved in O(min{m?*/?,
A}m) time, where m is the number of edgesand A the maximum degree of G.

4. Theknotting graph

When studying AT-free graphs one learns to appreciate the strong relationship between
AT-free and comparabilitgraphs. It was proved by Golumbic, Monma, and Trotter in their
1984 paper on tolerance grafghi$], that if a graphG is a cocomparability graph the®
contains no asteroidal triple. In fact, they were not the first to realize this relationship.
A closer look at the paper of Gallf8] on transitively orientable graphs reveals, that he
already achieved this result almost twenty years earlier. In fact, he proves a much stronger
result. To state his theorem we have to define one more concept.

448 E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452

Definition 4.1. The sequence = x1, P1, x2, P2, x3, ..., X2k+1, Pox+1, x1 (k > 1) is said
to be a(2k + 1)-asteroid of a graphG, if x1, ..., xp1 are different vertices of; and P;
arex;, x;+1-paths ofG, such that for eacl; (1 <i < 2k + 1) there is no neighbor of; on
the pathP; ;. where the path®, and Pg are assumed to be equal to= § (mod Z + 1).

Not surprisingly, every 3-asteroid contains an asteroidal triple, as one can derive from
the definition. Examples aRk + 1)-asteroids fok > 2 are all complements of chord-less
2k + 1 cycles fork > 2. A complete list of allirreducible (2k + 1)-asteroids fork > 2
which do not contain any asteroid of smaller length was giveg8jinNow we are able to
state the result of Gallai.

Theorem 4.2 (Gallai[8]). A graph G is a comparability graph if and only if G does not
contain a (2k + 1)-asteroid for k > 1.

For the proof of his result Gallai makes use of a certain structure callekhtieng
graph (Verknuipfungsgraph) of G.

Definition 4.3. For a given graplG = (V, E) the correspondingnotting graph is given

by K[G] = (Vk, Ex) where Vk and Ex are defined as follows. For each vertexf G
there are copiesy, vo, ..., v;, in Vk, wherei, is the number of connected components of
N(v), the complement of the graph induced bwIN For each edgév, w) of E there is an
edge(v;, w;) in Ex, Wherew is contained in théth connected component bi(v) andv

is contained in thgth connected component bif(w).

Example4.4. In Fig. 2one can see a graghtogether with its knotting graph. Here small
dots in the knotting graph that are drawn closely together indicate that they are copies for
the same original vertex of the graph.

Obviously, the number of edges ofl&] is the same as the number of edgesf
whereas the number of vertices of] is in the order of the number of edges@f

For considering the properties of comparability graphs, Gallai used a binary relation
on the edges of a gragh, later called the -relation. Two edgesa, b), (¢, d) are inl"-
relation, denoted bya, b)I'(c, d), if eithera =c and(b,d) ¢ E orb=d and(a,c) ¢ E.
In the context of transitive orientations of a graph this relation visualizefothiag of the
edges, i.e., for two edges f with eI" f, the orientation oé forces the orientation off .

— o

Fig. 2. Example of a graph, together with its knotting graph.

E. Kohler / Journal of Discrete Algorithms 2 (2004) 439452 449

This relation decomposes the set of edgeg;ohto classes, thedge classes of G.
Two edges(a, b) and (c,d) are in the same edge class if there is a sequence of edges
(xi, yi)) (1 <i<n)of G such thata, b)I"(x1, y1), (x1, y) I'(x2, y2), « .., (xn, yo) I (¢, d)
holds. ThisI"-relation was later used by Golumbic to characterize comparability graphs
and to design an efficient algorithm for recoging them. Gallai observed, that the knotting
graph of a given graply basically represents the edge classe& oh the sense that the
connected components of the knotting graph exactly the edge classes of the original
graph. Already Gilmore and Hoffmann indicated the relevance of these edge-classes when
they stated their famous theorem to characterize comparability gf@phSluch later,
Kelly [13] also studied the knotting graph and, ametigers, suggested a simple algorithm
to construct the modular decomposition of a graph, using its knotting graph. Thus, the
knotting graph turned out to be quite useful.

For the purpose of characterizing comparability graphs, i.e., the class of graphs which
have a transitive orientation, the knotting graph has special importance, as shown in the
following theorem.

Theorem 4.5 (Gallai [8]). A graph G is transitively orientable if and only if K[G] is bi-
partite.

What makes this graph interesting for us is the close connection between the asteroidal
sets of a graplG (a generalization of asteroidal triples) and the cliques of the knotting
graph ofG. Before we can state this result we first have to define the concept of an aster-
oidal set and the asteroidal number of a gréaph

Definition 4.6. For a given graplt, an independent set of vertic8ds calledasteroidal

set if for eachx € S the setS — {x} is in one connected component of the graph N[x].
The asteroidal number of a graphis defined as the maximum cardinality of an asteroidal
set of G, and is denoted by &6').

Theorem 4.7. Let G be a graph, then an(G) = w(K[G)).

Proof. LetanG) =k and letA = {ay, ..., ax} be an asteroidal set @f. By the definition
of asteroidal sets the vertices afare pairwise non-adjacent. Consequendlynduces a
clique in G and for eachy; € A the setA \ {a;} is contained in the neighborhood of
in G. SinceA is an asteroidal set, for eaah, ar € A\ {a;} (j # k) there is ami;, a,-path
in G that avoids the neighborhood af. Thereforen; anda, are in the same connected
component ofG — N[a;]. By the definition of the knotting graph this implies that the
knotting graph edges corresponding to the edggs:;), (a;, ax) of G are incident to the
same copy ofi; in the knotting graph. Since this is true for all pairs of verticed in{a;},
all edges corresponding to edges from verticed §f{a;} to ¢; in G, are incident to the
same copy of; in the knotting graph. Consequently, there is-alique in K[G] formed
by copies of vertices oA.

Now suppose there isiaclique in the knotting graph KG]. Since there is a 1-1 corre-
spondence between the edgesioénd the edges of G| there is a sefA = {az, ..., ax}
of k vertices ofG corresponding to the vertices of the clique if. By the definition of

450 E. Kéhler / Journal of Discrete Algorithms 2 (2004) 439452

the knotting graph, for each vertexe A the vertices ofd \ {«;} are contained in the same
connected component 6f — N[a;]. ConsequentlyA is an asteroidal set @. O

For AT-free graphs we can draw the following corollary.
Corollary 4.8. A graph G isasteroidal triple-freeif and only if K[G] is triangle-free.

Because of the close relationship between an AT-free géajpimd the knotting graph
K[G] of the complementary grap&, we will sometimes call KG] the knotting graph
corresponding to the AT-free graplG.

At this point we would like to mention some questions that arise from considering
(2k + 1)-asteroids. As we have seen, AT-free graphs are exactly those graphs, that do not
contain a 3-asteroid. On the other hand, cocomparability graphs are those graphs that do
not containany (2k + 1)-asteroid. It seems to be an interesting question to consider those
graph classes, that are defined by forbidding only certain kinds of asteroids. For example
one could develop a whole hierarchy of grajdsses that are superclasses of cocompara-
bility graphs and subctses of AT-free graphs.

Another way of generalizing this concept is to consider the definition of asteroids again.
This definition has the unsatisfying property that it exists only for odd nhumbers. Thus, it
seems to be natural to ask whether one can state a reasonable definition also for even
asteroids. The definition of Gallai implies, that an asteroid of a given giapbrresponds
to a cycle in the knotting graph a¥. This can be used for our purpose in the following
way. We define @-asteroid as a sequenge= x1, ..., xx (k > 3) of different vertices ot
such that for each vertex there is a path between_; andx; 1 in G — N[x;]. This, in
fact, does cover the definition of odd astemidlthough the new numbering is different to
the one used in the definition of Gallai. We leave it as an open question to characterize the
graphs that are characterized by forbidding certain (not necessarily odd) asteroids.

There are a couple of other properties of kmetting graph, especially with respect to
AT-free graphs. For further results the reader is referrdd4h

5. Theknotting graph algorithm

Before we can state theNOTTING GRAPH ALGORITHM, we first consider the relation-
ship between the knotting graph, corresponding to a géajpind the component structure
of this graph.

Lemma5.1. Let G = (V, E) beagraph and C the corresponding component structure,
then K[G] = (Vk, Ek) isthe knotting graph of G, with

Vk = {cvw: Fv,w € V}\ {0},
Ex = {(cvw, cwy): Av, w € V suchthat ¢y, # 0and ¢y # O}.

Proof. Let v be a vertex ofG and letCy, Cp, ..., Cx be the connected components of
G — N[v]. By the definition of the knotting graph, for each there is a copy; in K[G].

E. Kohler / Journal of Discrete Algorithms 2 (2004) 439452 451

By the definition of the component structure, each ronCotontains the labels of the
connected components 6f— N[v]. Hence, if we take each of those labels as a vertex, we
get the copies o that are contained in }G].

To prove, thatEx is indeed the edge set off&], we first observe that for each edge
(v, w) of G bothc,,, = 0 andc,,, = 0, implying that there is no edge between any copy of
v andw in Ek. To see that for each non-edge w) of G there is a corresponding edge in
Ex we just have to look back at the definitiohtbe component struate and the knotting
graph again. Sincév, w) is a non-edge of;, there is both a connected componéntin
G — N[v] containingw and a connected componentin G — N[w] containingv. Hence,
there is an edge between thth copy ofv and thesth copy ofw in Ex. This proves the
lemma. O

Now we are ready to present theVRTTING GRAPH ALGORITHM (seeAlgorithm 2).

As shown inSection 2 the component structure 6f can be computed in @m) time.

By Lemma 5.1 Vk and Ek, the vertex and edge set of &], can be determined by the
help of the component structure. To compuieone has to scan through all row®f the
component structur€ and for each new label one inserts a new copy of the vertex corre-
sponding to row-. Hence, findingVk takes Qn?). The edge seEx can be computed by
checking for each possible row-column pair of C whether both,. andc,, are non-zero.
Since there are? those pairs for our x n matrix C, this can be done in @2) as well.

The difficult part of the algorithm is finding triangles in[&]. The fastest known al-
gorithm for this problem is matrix multiplication, which runs ini¥). Unfortunately, we
cannot use this algorithm for our problem. The reason is, that the number of vertices of
K[G] can be considerably larger than the number of vertice§ of here are examples
of graphs, showing that there can £&n?) vertices in KG], wheren is the number of
vertices ofG. One information that we do have about the number of verticeq 61 ks,
that there are not more than twice as many vertices as edgd%ih Ke., |Vk| < 2|Ex|
(an exception is, of course, the case that there are universal verticeunt for finding
triangles in KG] this case is not of interest). Hence, if we apply an algorithm, that runs
in O(f(|Ek])), it is in fact an Q f(n?)) algorithm, since the number of edges of(q
is equal to the number of edges 6f For the case that the input graph is sparse, Alon
et al.[1] suggested an improvement of the matrixltiplication algorithm for finding a
triangle. The complexity of this algorithm is@2%/(@+1)); for o < 2.376 this is @m'41).
Consequently, if we apply the triangle algorithm for sparse graphs of Alon et al., we can

begin
for v e V(G) do
H <~ G —N[v];
compute connected componentsif using BFS
store labels of components in component structti®, -);
end
Vk = {cyw: v, w € V such thateyy, # 0}
Ex = {(cow, cwy): Fv, w € G such thatyy, # 0 andeyy # 0};
check whether KG] contains a triangle
end

Algorithm 2. Knotting graph algorithm.

452 E. Kohler / Journal of Discrete Algorithms 2 (2004) 439-452

decide in @m2/(@+Dy = O/ (@+Dy = O(mn + n?815) for o < 2.376 whether KG]
contains a triangle. Thus we have shown the following theorem.

Theorem 5.2. Recognition of AT-free graphs using the KNOTTING GRAPH ALGORITHM
(Algorithm 2) takes O(mn + n%815) time.

Remark 5.3. It is an open question, whether there is a certificate for a graph to be AT-
free, which can be checked in less thaf#®). The knotting graph does provide some kind

of “partial certificate”, since it camdeed be checked in less thaw) for containing a
triangle. Of course, for being a proper certificate one should be able to check also within
this time bound whether the knotting graph isreetly determined. This can currently be
done in Qnm), implying that we have a fast chealle certificate for sparse graphs.

References

[1] N. Alon, R. Yuster, U. Zwick, Finding and coting given length cycles, Algorithmica 17 (3) (1997) 209—
223.
[2] S.Booth, G.S. Lueker, Testing for the consecutive omepgrty, interval graphs, and planarity using PQ-tree
algorithms, J. Comput. System Sci. 13 (1976) 335-379.
[3] D.G. Corneil, S. Olariu, L. Stewart, The ultimateental graph recognition algorithm?, in: Proceedings of
the 9th Annual ACM-SIAM Sympdem on Discrete Algorithms, San Francisco, CA, 1998, pp. 175-180.
[4] D.G. Corneil, S. Olariu, L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple-free
graphs, SIAM J. Comput. 28 (4) (1999) 1284-1297.
[5] P. Damaschke, Forbidden ordered subgraphs, ilBdRlendiek, R. Henn (Eds.), Topics in Combinatorics
and Graph Theory, Physica-Verlag, Heidelberg, 1990, pp. 219-229.
[6] D.R. Fulkerson, O.A. Grossncidence matrices and intehgraphs, Pacific J. Math. 15 (1965) 835-855.
[7] H. Gabow, Private communication, 1994.
[8] T. Gallai, Transitiv orientierbare Gphien, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66.
[9] P.C. Gilmore, A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J.
Math. 16 (1964) 539-548.
[10] M.Ch. Golumbic, C.L. Monma, W.T. Trottefolerance graphs, Discrete Appl. Math. 9 (1984) 157-170.
[11] H. Hempel, D. Kratsch, On claw-free asteroidaple-free graphs, in: P. Widmayer (Ed.), Proceedings of
the 25th International Workshop on &h-Theoretic Concepts in CompuiScience (WG'99), in: Lecture
Notes in Comput. Sci., vol. 1665, 1999, pp. 377-390.
[12] H. Ito, M. Yokoyama, Linear time algorithms for graph search and connectivity determination on comple-
ment graphs, Inform. Process. Lett. 66 (1998) 209-213.
[13] D. Kelly, Comparability graphs, in: I. Rival (Ed.), Graphs and Order, Reidel, Dordrecht, 1985, pp. 3—40.
[14] E. Kohler, Graphs without asteroidal triples, Ph.me§is, Technische Universitéat Berlin, Cuvillier Verlag,
Gottingen, 1999.
[15] C.G. Lekkerkerker, J.Ch. Boland, Representatiba finite graph by a set of intervals on the real line, Fund.
Math. 51 (1962) 45-64.
[16] R. McConnell, Private communication, 1996.
[17] R.H. M&hring, Triangulating graphs without asiilal triples, Discrete Appl. Math. 64 (3) (1996) 281-287.
[18] A. Parra, Structural and algorithmic aspects of dabgraph embeddings, Ph.D. Thesis, Technical Univer-
sity, Berlin, 1996.
[19] G. Ramalingham, C. Pandu Ranganynified approach to domination problems in interval graphs, Inform.
Process. Lett. 27 (1988) 271-274.
[20] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Com-
put. 5 (1976) 266-283.
[21] J.P. Spinrad, Efficient Graph Representationsfietd Institute Monographs, vol. 79, American Mathemat-
ical Society, 2003.

	Recognizing graphs without asteroidal triples
	Introduction
	Straightforward algorithm and its improvement
	Triangle algorithm
	The knotting graph
	The knotting graph algorithm
	References

