
ferent
comple-

l
i

nt
ny

s-
aphs

well
l

em
a sim-

rithms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 2 (2004) 439–452

www.elsevier.com/locate/jda

Recognizing graphs without asteroidal triples

Ekkehard Köhler

TU Berlin, Institut für Mathematik, MA 6-1, 10623 Berlin, Germany

Available online 12 May 2004

Abstract

We consider the problem ofrecognizing AT-free graphs. Although there is a simple O(n3) al-
gorithm, no faster method for solving this problem had been known. Here we give three dif
algorithms which have a better time complexity for graphs which are sparse or have a sparse
ment; in particular we give algorithms which recognize AT-free graphs in O(n�m+n2), O(�m3/2+n2),
and O(n2.82 + nm). In addition we give a new characterization of graphs withbounded asteroida
number by the help of theknotting graph, a combinatorial structure which was introduced by Galla
for considering comparability graphs.
 2004 Elsevier B.V. All rights reserved.

Keywords: Graph algorithms; Asteroidal triple-free graphs; Recognition algorithm; Knotting graph

1. Introduction

An asteroidal triple or, briefly, anAT of a given graphG is a set of three independe
vertices such that there is path between each pair of these vertices that does not contain a
vertex of the neighborhood of the third. Consequently, a graphG is calledasteroidal triple-
free or AT-free if there is no asteroidal triple inG and it is calledcoAT-free if �G is AT-free.

Almost forty years ago, Lekkerkerker and Boland[15] defined the concept of an a
teroidal triple for the first time. They used it for the investigation of intersection gr
corresponding to intervals of the real line—the interval graphs—and proved the
known characterization, that a graphG is an interval graph if and only if it is chorda
and AT-free. Already in this early paper Lekkerkerker and Boland considered the probl
of deciding whether a given graph contains an asteroidal triple. In fact, they gave
ple O(n3) algorithm—we call it STRAIGHTFORWARD ALGORITHM in the following—and
used it for recognizing interval graphs. Of course by now there are much faster algo

E-mail address: ekoehler@math.tu-berlin.de (E. Köhler).

1570-8667/$ – see front matter 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.jda.2004.04.005

https://core.ac.uk/display/82764709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

440 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

for recognizing interval graphs. However, for deciding whether a given graph contains an

r-
rst we
n
ut
gles

e
ee

ms to
ul for
graph

val
rtex–
s to
ph and

al
per-
roes

on. Of
, since
is an

,
ing
wever,

ber of
ntial in
ich

use of
as the
graph.
nown

l.
cially
first of

at
asteroidal triple no faster algorithm had been known.
In this paper we study the recognition problem of AT-free graphs from different pe

spectives and present three different recognition algorithms for AT-free graphs. At fi
examine the above-mentioned STRAIGHTFORWARD ALGORITHM a bit closer and desig
an algorithm that runs in O(n�m + n2), where�m is the number of non-edges of the inp
graphG. For the second recognition algorithm we use an algorithm for listing all trian
of a given graph and achieve a time bound of O(�m3/2 + n2). Finally, in the last section w
present the KNOTTING GRAPH ALGORITHM. It makes use of a characterization of AT-fr
graphs by the help of the knotting graph and recognizes AT-free graphs in O(nm + n2.82).

Since AT-free graphs are defined as a generalization of interval graphs it see
be plausible to try similar methods for recognizing AT-free graphs as proved usef
recognizing interval graphs. However, for different reasons non of the fast interval
recognition algorithms seems to help for our purpose:

Booth and Lueker[2] designed the first linear time recognition algorithm for inter
graphs making use of the vertex–maximal clique matrix of the input graph. A ve
maximal clique matrix is a 0–1 matrixM, such that each row of the matrix correspond
a vertex of the graph and each column corresponds to a maximal clique of the gra
an entrymij is 1 if and only if vertexi is contained in the maximal cliquej . Fulkerson and
Gross[6] showed, that a graphG is an interval graph if and only if the vertex–maxim
clique matrixM of G has the consecutive ones property for rows, i.e., if there is a
mutation of the columns ofM, such that no ones in a single row are separated by ze
in that same row. For AT-free graphs we do not have such a strong characterizati
course, there is a close relationship between AT-free graphs and interval graphs
every interval graph is AT-free and every minimal triangulation of an AT-free graph
interval graph[17]. By Parra’s characterization of minimal triangulations (see[18]) there is
a one-one correspondence between the minimal triangulations of a given graphG and the
inclusion maximal sets of pairwise parallel minimal separators ofG. For AT-free graphs
this implies that for each set of pairwise parallel minimal separators the correspond
vertex–minimal separator matrix has the consecutive ones property for rows. Ho
this does not give a characterization of AT-free graphs yet and, even worse, the num
minimal separators of an AT-free graph can be quite large—it can even be expone
the number of vertices ofG. Hence, it is not very likely that one can use a method wh
is similar to the consecutive ones testing for the recognition of AT-free graphs.

The algorithm of Booth and Lueker can be interpreted also as one that makes
the geometric model of interval graphs, since a vertex–maximal clique matrix that h
consecutive ones property for rows provides an interval model of the corresponding
Again, for AT-free graphs such an approach is not applicable, since there is no k
geometric model for AT-free graphs.

A different method for recognizing interval graphs, was suggested by Corneil et a[3]
by applying a simple four-sweep LBFS-algorithm for this problem. They make espe
use of the characterization of interval graphs to be chordal and AT-free, where the
these properties was known to be checkable using LBFS in linear time before (see[20]).
The key property that Corneil et al. make use of, is the existence of a so-calledinterval
ordering, i.e., a linear orderingv1, . . . ,vn of the vertices of the graph with the property th

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 441

for each edge(vi , vj) ∈ E with i < j , all verticesvk with i < k < j are adjacent tovj . This
S

the
hods
f the
ering

AT-free
andle
ogni-

ound.
hm
of the
t

pose

ges

t
for
ding

t
ma-

o

pt).

s

ill ex-
of this
r-
ordering characterizes interval graphs (see[5,19]). A couple of nice properties of LBF
are known for AT-free graphs as well (see[4]) and several researchers have considered
problem of recognizing AT-free graphs by the help of LBFS or at least similar met
like LBFS. However, up to now no fast algorithm using this approach is known. One o
main reasons for the difficulty of any such method is, that there is no known linear ord
that characterizes graphs without asteroidal triples.

Thus, none of the mentioned approaches seems to be applicable for recognizing
graphs. In spite of this dejecting observation there are, in fact, efficient methods to h
AT-free graphs as you will see in the following sections. But all three presented rec
tion algorithms for AT-free graphs that we give here do not achieve a linear time b
Recently, Spinrad[21] showed, that it is rather unlikely to find a much faster algorit
to recognize AT-free graphs. He gave a construction for comparing the complexity
recognition of asteroidal triple-free graphs to the complexity of finding an independen
triple:

Let G = (V ,E) be a graph which is to be checked for independent triples and sup
there is an algorithm that recognizes asteroidal triple-free graphs in O(f (n,m)). Now an
auxiliary graphG̃ is constructed as follows.̃G contains the graphG itself and for each
vertexv of G we add a copyv′. In the set of vertex copies we add all possible ed
such that it forms a complete graph Kn on n vertices. In addition to that, each vertexv

of G is connected to the copies of all its neighbors and to the vertexv′. Obviously, the
construction of̃G takes O(n2) time. Now one can show easily thatG has an independen
triple if and only ifG̃ contains an asteroidal triple. Hence it is unlikely to find algorithms
recognizing AT-free graphs which are much faster than the known algorithms for fin
triangles.

By a similar construction as the one above, Hempel and Kratsch[11] showed that al-
ready the recognition of claw-free AT-free graphs is as hard as finding an independen
triple in a given graph. The fastest known algorithm for finding triangles in a graph is
trix multiplication with a time bound of O(nα), with α < 2.376. Hempel and Kratsch als
gave an O(nα) algorithm for recognizing this restricted subclass of AT-free graphs.

In the following we will denote the set of all neighbors of a vertexv in a graphG by
NG(v) and NG[v] = NG(v) ∪ {v} (if no ambiguities are possible we omit the subscri
For a set of verticesS of a graphG we denote byG[S] the graph induces inG by the
vertices ofS and we denote withG − S the graphG[V \ S]. For a graphG we usen for
the number of vertices andm for the number of edges;�m is used for the number of edge
of �G, the complementary graph ofG.

2. Straightforward algorithm and its improvement

There are several characterizations for asteroidal triple-free graphs and, as we w
amine in the course of this paper, some of them are more useful for the recognition
graph class than others. A very simple characterization is already given by a slight alte
ation of the definition of AT-free graphs. For a graphG and verticesv, w of G, let Cv(w)

be the connected component ofG − N[v] containing vertexw.

442 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

Observation 2.1. An independent triple u, v, w of a graph G forms an asteroidal triple of

m-
od

ex
fer-
e

of

c-

com-
s both

n

ected
can
G if and only if Cv(u) = Cv(w) and Cu(v) = Cu(w) and Cw(v) = Cw(u) holds.

If such a triple{u,v,w} exists we know thatu andw are in the same connected co
ponent ofG − N[v], in other words there is anu,w-path, that avoids the neighborho
of v. Analogously, there is av,w-path avoiding the neighborhood ofu and anu,v-path
avoiding the neighborhood ofw. Thus,u,v,w is an asteroidal triple ofG.

This straightforward characterization immediately implies a STRAIGHTFORWARD AL-
GORITHM; it was first suggested by Lekkerkerker and Boland in[15] when they con-
structed an O(n4) algorithm for recognizing interval graphs. In a first step, for each vert
v the connected components ofG − N[v] are determined and each is assigned a dif
ent label. Then, in the second step, for each triple of vertices it is checked whether th
condition ofObservation 2.1is fulfilled.

For implementing this algorithm one can use a simple data structure calledcomponent
structure which we define here for later use. For a given graphG = (V ,E) with n vertices,
thecomponent structure of G is ann × n matrix C, where each column and each row
G corresponds to a vertex ofG. For each vertexv the matrix entrycvw is 0, if w ∈ N[v],
otherwisecvw is set to the label of the connected component ofG − N[v] containingw.

Example 2.2. Let G be the 7-vertex graph ofFig. 1. The corresponding component stru
ture is given in the table. The labels of the connected components are the lettersa to k.
Note that a component that occurs for different vertices gets different labels; e.g., the
ponent containing only vertex 4 occurs both for vertex 3 and vertex 6 and thus ha
labeld and labeli.

The first part of the STRAIGHTFORWARD ALGORITHM can be implemented to run i
O(nm): If G is connected an O(n + m) breadth-first search is applied toG − N[v] for
each vertexv of G. If G is not connected the same method is applied to each conn
component ofG. Using the component structure, the second part of the algorithm
easily be implemented to run in O(n3), by checking for each tripleu,v,w of G whether

Fig. 1. Example of a graph together with its component structure.

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 443

cuv = cuw, cvu = cvw andcwu = cwv . Hence, AT-free graphs can be recognized in O(n3)

t is a
t is not
as-
, it is

rt
e

e

-layers

ese al-
ented

this
Finally,

set
y
t

of

n

t, we
using the STRAIGHTFORWARD ALGORITHM.
Obviously, the “bottleneck” of the complexity of the STRAIGHTFORWARD ALGO-

RITHM seems to be the checking of all possible triples of the given graph, and i
reasonable question to ask, whether all those tests are indeed required. Actually, i
really necessary to do this forall triples of the graph, because, when searching for
teroidal triples, we are interested only in independent triples. Thus, as a first step
sufficient to check for all non-edges(v,w) of G, whether there is a vertexu such that
the tripleu,v,w is an asteroidal triple. Obviously, there are O(n �m) those triples inG,
where�m is the number of non-edges ofG. A look back to the complexity of the first pa
of the STRAIGHTFORWARD ALGORITHM tells us that we did not really get a better tim
complexity yet, since O(nm) + O(n�m) is still O(n3). However, also this first part of th
algorithm can be altered to run in O(n�m), leading to an O(n2 +n�m) algorithm, as we show
in the following.

The method that we use for this improvement is a BFS conducted on�G. McConnell[16]
observed, that one can implement a BFS in such a way that it constructs the BFS
for �G and runs in O(n + m) time, wherem is the number of edges ofG—not of �G (see
also[12]).

A simple way to visualize BFS and BFS on the complementary graph is to state th
gorithms as partition refinement schemes: In this setting a normal BFS can be implem
as follows. Initially all vertices ofG are put into one set. In the course of the algorithm
vertex set is partitioned into smaller sets and these sets are kept in a linear order.
when all sets of the partition are singletons this order is an BFS order ofG.

At the beginning only one set containing all vertices ofG is placed in the partition. In
each further step the first (corresponding to the linear ordering on the sets) non-marked
S of the partition is selected, one vertexv is removed fromS and the set containing onl
v is marked and placed in front ofS in the linear ordering. Then each non-singleton seT

of the partition is split into the setT1 of neighbors ofv and the setT2 of non-neighbors
of v. In the corresponding ordering ofthe sets of the partition the setT is replaced byT1

andT2 whereT1 is placed in front ofT2. It is not hard to see that the resulting ordering
singletons is indeed a BFS ordering. If in the partition step also the setS itself is split into
the set of neighbors and the set of non-neighbors ofv, then the resulting ordering is eve
an LBFS ordering.

To achieve a BFS ordering on the complement by the help of partition refinemen
just have to change the ordering ofT1 andT2, i.e.,T2 is placed in front ofT1 in the ordering
of the sets of the partition.

Putting together the BFS on�G and the improved checking of triples, leads to the COM-
PLEMENT ALGORITHM.

Theorem 2.3. Recognition of AT-free graphs, using the COMPLEMENT ALGORITHM,
takes O(n2 + n�m) time, where �m is the number of non-edges of G.

Proof. Computing the complement of a graphG can, of course, be done in O(n2). To
compute the component structure, by the help of the complement-BFS takes O(n + �m)

444 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

for each vertex; hence, for all vertices it can be done in O(n�m). Finally, checking for each

er a
ater,
sh
roblem
d of

s in a

ost

st

.
d in

ex

ch of
o

non-edges(v,w) and each vertexu, whetheru,v,w form an AT, takes O(n�m) as well. �

3. Triangle algorithm

Before stating the next algorithm for recognizing AT-free graphs we first consid
different problem, the problem of finding triangles in a given graph. As we will see l
it turns out to be closely related to our recognition problem. Here we have to distingui
between the problem of deciding whether a given graph contains a triangle and the p
of finding one or all triangles ofG. For the beginning we are interested in the secon
these problems, i.e., we want to list all triangles of a given graphG. For this we make
use of an observation made by Gabow, concerning the number of different triangle
graphG, i.e., the number of triangles ofG, such that each pair of those triangles differs in
at least one vertex.

Lemma 3.1 (Gabow[7]). Given a graph G with m edges, there are at most O(m3/2)

different triangles.

Proof. As a first step, we can observe, that, for an arbitrary vertexv of G, the number of
edges from an arbitrary vertexv to a vertex of equal or larger degree is at most O(m1/2).
This holds, of course, for all vertices which have a degree smaller thanm1/2. On the other
hand, there can be at most O(m1/2) vertices with larger degree. Thus, there can be at m
O(m1/2) edges between those high degree vertices.

To bound the number of different triangles ofG we charge each triangleT to the edge
that is opposite to a highest degree vertex ofT . By our first observation, each edge ofG

gets charged at most O(m1/2) triangles and so there can be no more than O(m3/2) different
triangles in the whole graph.�

For listing all triangles ofG in O(m3/2) time, we can use the following algorithm. Fir
the vertices are ordered, according to their degree. Then for each vertexvi a list Lvi of all
neighbors ofvi with equal or larger degree that occur aftervi in the ordering is created
Within this list the vertices are ordered according to the ordering that was determine
the first step. In the last part of the algorithm for each vertexvi the corresponding listLvi is
traversed and for each vertexvj in Lvi the listsLvi andLvj are compared. For each vert
vk that is contained in both lists the algorithm outputs the corresponding trianglevi, vj , vk .

Lemma 3.2. For a given graph G a complete list of all different triangles of G can be
determined in O(m3/2 + n).

Proof. To prove the correctness of the algorithm we just have to observe, that ea
triangles has to be found at least once, since its verticesvi , vj , vk are ordered according t
the ordering determined in the first step. If we assume thati < j < k, thenvj andvk are
contained inLvi andvk is contained inLvj .

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 445

For proving the complexity of the algorithm we can assume, without loss of generality,
ed

need
ng
t twice;

x the

in
e

the
sting”
qual or
y, as it

he

e

ectly
that G is connected, since otherwise we simply apply the algorithm to each connect
component. Ordering the vertices ofG, according to their degree, can be done in O(n+m),
by using an appropriate linear time sorting algorithm, for example counting sort.

To create, for each vertex, the list of neighbors with equal or larger degree, we
linear time as well: For each vertex, we can charge the amount of time spent for creati
the list, to the edges that are incident to this vertex. Each edge gets charged at mos
hence, we need O(m) time. To make sure, that each of the listsLvi is in the ordering
determined by the first step of the algorithm, we just have to visit for each verte
corresponding neighbors according to this ordering.

During the last part of the algorithm, for each vertexvi , each neighborvj with i < j , is
visited once. For each of the(vi , vj) edges, we have to compare the listsLvi andLvj . Since
the lists are ordered, we have to conduct|Lvi | + |Lvj | comparisons per edge. As shown
Lemma 3.1, each of the listsLvi andLvj has at most O(m1/2) elements. Consequently, th
last part of the algorithm takes O(m3/2) time. �

Observe, that inLemma 3.1the only property, that was really used for bounding
number of triangles, was the knowledge about a bound on the number of “intere
edges, leaving a vertex, i.e., the number of edges leaving a vertex to a vertex of e
larger degree. With this observation we can prove the following lemma the same wa
was done forLemma 3.1. Let ∆ be the maximum vertex degree ofG.

Lemma 3.3. In a graph G with m edges and maximum degree ∆ there are at most O(∆m)

different triangles.

Of course, this bound can also be used for the algorithm, that lists all triangles ofG.

Corollary 3.4. For a given graph G a complete list of all different triangles of G can be
determined in O(∆m).

In Section 2, exploring the structure of the complement of a graphG seemed to be
helpful for deciding whetherG contains asteroidal triples. In the following algorithm—t
TRIANGLE ALGORITHM—we consider again�G, this time using the set of its triangles.

Theorem 3.5. Recognition of AT-free graphs, using the TRIANGLE ALGORITHM (Algo-
rithm 1), takes O(�m3/2 + n2) time, where n is the number of vertices and �m is the number
of non-edges of G.

Proof. By Lemma 3.2, the list T of all triangles of�G can be determined in O(�m3/2).
Let |T | be the number of triangles inT . As we will prove now, the remaining part of th
algorithm can be done in O(|T | + n2). Since, byLemma 3.1, there are at most O(�m3/2)

triangles in�G, we get the desired complexity. Then2 part of this term is originated from
the initialization of the component structure.

It is easy to see that the secondfor-loop of Algorithm 1 correctly checks in O(|T |),
whetherG contains an asteroidal triple, provided the first part of the algorithm corr

446 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

begin

rst

, in-
tex
f

vertex,

s.
-

re
ber

use

le
is no

n
t in

at
ges
Compute�G;
Determine a listL of all different triangles of�G;
for v ∈ V(G) do

find all edges of�G[N�G(v)] usingL;
compute connected components of�G[N�G(v)] = G − N[v];
store labels of components in component structureC;

end
for each triangle u,v,w of L do

check whetheru, v, w is an AT;
end

end

Algorithm 1. TRIANGLE ALGORITHM.

determines the component structure ofG. Hence, all we have to do is to consider the fi
for-loop of the TRIANGLE ALGORITHM.

When we take a vertexv and want to know all edges, that are contained in the graph
duced by N(v), we just have to consider all triangles of the graph, that contain the verv.
Hence, finding all edges that are contained in the graph induced in�G by the neighbors o
v in �G, can be done by scanning through the listT of triangles of�G and, for each triangle
inserting each of the three edge into the list of edges of the corresponding opposite
i.e., for a triangleu,v,w the edge(u, v) is inserted into the list ofw, the edge(v,w) is
inserted into the list ofu and the edge(u,w) is inserted into the list ofv. Note that none
of the edges is inserted twice into the list of edges.

We first assume, that for allv the graph�G[N�G(v)] does not contain isolated vertice
In this case we can simply apply the complement-BFS on�G[N�G(v)] to compute the con
nected components of

�G[
N�G(v)

] = G − NG[v]
in the complexity of the number of edges in�G[N�G(v)]. If we add up the edges that a
contained in�G[N�G(v)] for all verticesv of the graph, then we get three times the num
of triangles contained inT . Thus, the overall complexity of this step is O(�m3/2).

In case there are isolated vertices in�G[N�G(v)] we cannot use the same method, beca
if we apply the complement-BFS, it computes the connected components ofG − NG[v] in
the complexity of the edgesand vertices in�G[N�G(v)]. For each edge we have a triang
that we can charge for the amount of work corresponding to the edge, but there
triangle that we can charge for an isolated vertex in�G[N�G(v)]. The good news is that i
the case of an isolated vertex in�G[N�G(v)] there can be only one connected componen
the complement. To built the component structure we simply label all vertices of N�G(v)

with the same label, without conducting any BFS.�
Using the results ofLemmas 3.4 and 3.3, we can also give a recognition algorithm th

runs in O(�∆ �m + n2), where �∆ and�m are the maximum degree and the number of ed
of �G. Hence we have the following corollary.

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 447

Corollary 3.6. Recognition of AT-free graphs, using the TRIANGLE ALGORITHM, takes

ll
ze
re

k

n

to
ave an
n

le,
ry

an

ing
ponent

ther

ertex.

tween
eir

ship.
he

tronger
O(n2 + min{�m1/2, �∆}�m) time, where n is the number of vertices, �m is the number of non-
edges of G and �∆ the maximum degree of �G.

Remark 3.7. As part of the TRIANGLE ALGORITHM we used an algorithm that lists a
triangles of the complement ofG in a certain time and then runs in the order of the si
of the set of triangles (plus O(n2) for initializing the component structure). Thus, if we a
given the set of all independent triples ofG and this set has size|T |, then we can chec
in O(|T | + n2) time whetherG is AT-free. If we take, for example, a graphG such that�G
is planar, we can find the list of triangles of�G in O(n2), implying that we can decide i
O(n2) whetherG is AT-free.

The time bounds of both the TRIANGLE ALGORITHM and the COMPLEMENT AL-
GORITHM are measured in the size of�G. Another way to look at these algorithms is
consider them to be algorithms to recognize coAT-free graphs. In other words, we h
O(nm), an O(m3/2+n2) and an O(∆m+n2) algorithm which decides the problem: Give
a graphG, is G a coAT-free graph?

For recognizing AT-free graphs then2 term for the above algorithms was not avoidab
since both the edges and the non-edges ofG were used during the algorithms and for eve
graphG, eitherm or �m is in the order ofn2. For recognizing coAT-free graphs we c
do better. All we have to consider are the edges ofG whereas the non-edges ofG are not
of any interest. The way the algorithm is given above, we need O(n2) for initializing the
component structureC. We can get rid of this by the following method: Instead of stor
the information about the connected components of the neighborhood in the com
structure, we store this information “within” the edges of the graph. For a vertexv we store
the label of the connected component of�G[NG[v]] containing some vertexu together with
the edge(v,u). Obviously, for every edge only two labels are stored. To check, whe
there is an asteroidal triple in�G we just have to check for each triangle ofG, whether
the edges of the triangle have pairwise the same label for their common incident v
Consequently, we have the following theorem.

Theorem 3.8. For coAT-free graphs the recognition problem can be solved in O(min{m1/2,

∆}m) time, where m is the number of edges and ∆ the maximum degree of G.

4. The knotting graph

When studying AT-free graphs one learns to appreciate the strong relationship be
AT-free and comparabilitygraphs. It was proved by Golumbic, Monma, and Trotter in th
1984 paper on tolerance graphs[10], that if a graphG is a cocomparability graph thenG
contains no asteroidal triple. In fact, they were not the first to realize this relation
A closer look at the paper of Gallai[8] on transitively orientable graphs reveals, that
already achieved this result almost twenty years earlier. In fact, he proves a much s
result. To state his theorem we have to define one more concept.

448 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

Definition 4.1. The sequenceσ = x1,P1, x2,P2, x3, . . . , x2k+1,P2k+1, x1 (k � 1) is said

from
ss

of

all
ies for

lation
to be a(2k + 1)-asteroid of a graphG, if x1, . . . , x2k+1 are different vertices ofG andPi

arexi, xi+1-paths ofG, such that for eachxi (1� i � 2k + 1) there is no neighbor ofxi on
the pathPi+k where the pathsPα andPβ are assumed to be equal forα ≡ β (mod2k + 1).

Not surprisingly, every 3-asteroid contains an asteroidal triple, as one can derive
the definition. Examples of(2k + 1)-asteroids fork � 2 are all complements of chord-le
2k + 1 cycles fork � 2. A complete list of allirreducible (2k + 1)-asteroids fork � 2
which do not contain any asteroid of smaller length was given in[8]. Now we are able to
state the result of Gallai.

Theorem 4.2 (Gallai [8]). A graph G is a comparability graph if and only if �G does not
contain a (2k + 1)-asteroid for k � 1.

For the proof of his result Gallai makes use of a certain structure called theknotting
graph (Verknüpfungsgraph) of G.

Definition 4.3. For a given graphG = (V ,E) the correspondingknotting graph is given
by K[G] = (VK,EK) whereVK andEK are defined as follows. For each vertexv of G

there are copiesv1, v2, . . . , viv in VK, whereiv is the number of connected components
N(v), the complement of the graph induced by N(v). For each edge(v,w) of E there is an
edge(vi ,wj) in EK, wherew is contained in theith connected component ofN(v) andv

is contained in thej th connected component ofN(w).

Example 4.4. In Fig. 2one can see a graphG together with its knotting graph. Here sm
dots in the knotting graph that are drawn closely together indicate that they are cop
the same original vertex of the graph.

Obviously, the number of edges of K[G] is the same as the number of edges ofG,
whereas the number of vertices of K[G] is in the order of the number of edges ofG.

For considering the properties of comparability graphs, Gallai used a binary re
on the edges of a graphG, later called theΓ -relation. Two edges(a, b), (c, d) are inΓ -
relation, denoted by(a, b)Γ (c, d), if eithera = c and(b, d) /∈ E or b = d and(a, c) /∈ E.
In the context of transitive orientations of a graph this relation visualizes theforcing of the
edges, i.e., for two edgese, f with eΓf , the orientation ofe forces the orientation off .

Fig. 2. Example of a graph, together with its knotting graph.

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 449

This relation decomposes the set of edges ofG into classes, theedge classes of G.
dges

aphs
ng
e
nal
s when

m
s, the

which
in the

eroidal
tting
aster-

idal

d
he

-

Two edges(a, b) and (c, d) are in the same edge class if there is a sequence of e
(xi, yi) (1 � i � n) of G such that(a, b)Γ (x1, y1), (x1, y1)Γ (x2, y2), . . . , (xn, yn)Γ (c, d)

holds. ThisΓ -relation was later used by Golumbic to characterize comparability gr
and to design an efficient algorithm for recognizing them. Gallai observed, that the knotti
graph of a given graphG basically represents the edge classes ofG in the sense that th
connected components of the knotting graph are exactly the edge classes of the origi
graph. Already Gilmore and Hoffmann indicated the relevance of these edge-classe
they stated their famous theorem to characterize comparability graphs[9]. Much later,
Kelly [13] also studied the knotting graph and, amongothers, suggested a simple algorith
to construct the modular decomposition of a graph, using its knotting graph. Thu
knotting graph turned out to be quite useful.

For the purpose of characterizing comparability graphs, i.e., the class of graphs
have a transitive orientation, the knotting graph has special importance, as shown
following theorem.

Theorem 4.5 (Gallai [8]). A graph G is transitively orientable if and only if K[G] is bi-
partite.

What makes this graph interesting for us is the close connection between the ast
sets of a graphG (a generalization of asteroidal triples) and the cliques of the kno
graph of�G. Before we can state this result we first have to define the concept of an
oidal set and the asteroidal number of a graphG.

Definition 4.6. For a given graphG, an independent set of verticesS is calledasteroidal
set if for eachx ∈ S the setS − {x} is in one connected component of the graphG − N[x].
The asteroidal number of a graphG is defined as the maximum cardinality of an astero
set ofG, and is denoted by an(G).

Theorem 4.7. Let G be a graph, then an(G) = ω(K[�G]).

Proof. Let an(G) = k and letA = {a1, . . . , ak} be an asteroidal set ofG. By the definition
of asteroidal sets the vertices ofA are pairwise non-adjacent. Consequently,A induces a
clique in �G and for eachai ∈ A the setA \ {ai} is contained in the neighborhood ofai

in �G. SinceA is an asteroidal set, for eachaj , ak ∈ A \ {ai} (j �= k) there is anaj , ak-path
in G that avoids the neighborhood ofai . Thereforeaj andak are in the same connecte
component ofG − N[ai]. By the definition of the knotting graph this implies that t
knotting graph edges corresponding to the edges(ai, aj), (ai, ak) of �G are incident to the
same copy ofai in the knotting graph. Since this is true for all pairs of vertices inA \ {ai},
all edges corresponding to edges from vertices ofA \ {ai} to ai in �G, are incident to the
same copy ofai in the knotting graph. Consequently, there is ak-clique in K[�G] formed
by copies of vertices ofA.

Now suppose there is ak-clique in the knotting graph K[�G]. Since there is a 1–1 corre
spondence between the edges of�G and the edges of K[�G] there is a setA = {a1, . . . , ak}
of k vertices ofG corresponding to the vertices of the clique in K[�G]. By the definition of

450 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

the knotting graph, for each vertexai ∈ A the vertices ofA \ {ai} are contained in the same

h

ering
do not
that do

those
ample
ara-

gain.
us, it
or even

ng

to
ize the

to

-
re

of
connected component ofG − N[ai]. Consequently,A is an asteroidal set ofG. �
For AT-free graphs we can draw the following corollary.

Corollary 4.8. A graph G is asteroidal triple-free if and only if K[�G] is triangle-free.

Because of the close relationship between an AT-free graphG and the knotting grap
K[�G] of the complementary graph�G, we will sometimes call K[�G] the knotting graph
corresponding to the AT-free graphG.

At this point we would like to mention some questions that arise from consid
(2k + 1)-asteroids. As we have seen, AT-free graphs are exactly those graphs, that
contain a 3-asteroid. On the other hand, cocomparability graphs are those graphs
not containany (2k + 1)-asteroid. It seems to be an interesting question to consider
graph classes, that are defined by forbidding only certain kinds of asteroids. For ex
one could develop a whole hierarchy of graph classes that are superclasses of cocomp
bility graphs and subclasses of AT-free graphs.

Another way of generalizing this concept is to consider the definition of asteroids a
This definition has the unsatisfying property that it exists only for odd numbers. Th
seems to be natural to ask whether one can state a reasonable definition also f
asteroids. The definition of Gallai implies, that an asteroid of a given graphG corresponds
to a cycle in the knotting graph of�G. This can be used for our purpose in the followi
way. We define ak-asteroid as a sequenceσ = x1, . . . , xk (k � 3) of different vertices ofG,
such that for each vertexxi there is a path betweenxi−1 andxi+1 in G − N[xi]. This, in
fact, does cover the definition of odd asteroids, although the new numbering is different
the one used in the definition of Gallai. We leave it as an open question to character
graphs that are characterized by forbidding certain (not necessarily odd) asteroids.

There are a couple of other properties of theknotting graph, especially with respect
AT-free graphs. For further results the reader is referred to[14].

5. The knotting graph algorithm

Before we can state the KNOTTING GRAPH ALGORITHM, we first consider the relation
ship between the knotting graph, corresponding to a graphG and the component structu
of this graph.

Lemma 5.1. Let G = (V ,E) be a graph and C the corresponding component structure,
then K[�G] = (VK,EK) is the knotting graph of �G, with

VK = {
cvw: ∃v,w ∈ V

} \ {0},
EK = {

(cvw, cwv): ∃v,w ∈ V such that cvw �= 0 and cwv �= 0
}
.

Proof. Let v be a vertex ofG and letC1,C2, . . . ,Ck be the connected components
G − N[v]. By the definition of the knotting graph, for eachCi there is a copyvi in K[�G].

E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452 451

By the definition of the component structure, each row ofC contains the labels of the
, we

ge
y of
in

e

orre-
y
.

-

ces of
s

runs

lon

e can
connected components ofG − N[v]. Hence, if we take each of those labels as a vertex
get the copies ofv that are contained in K[�G].

To prove, thatEK is indeed the edge set of K[�G], we first observe that for each ed
(v,w) of G bothcvw = 0 andcwv = 0, implying that there is no edge between any cop
v andw in EK. To see that for each non-edge(v,w) of G there is a corresponding edge
EK we just have to look back at the definition of the component structure and the knotting
graph again. Since(v,w) is a non-edge ofG, there is both a connected componentCr in
G − N[v] containingw and a connected componentCs in G − N[w] containingv. Hence,
there is an edge between therth copy ofv and thesth copy ofw in EK. This proves the
lemma. �

Now we are ready to present the KNOTTING GRAPH ALGORITHM (seeAlgorithm 2).
As shown inSection 2, the component structure ofG can be computed in O(nm) time.

By Lemma 5.1, VK andEK, the vertex and edge set of K[�G], can be determined by th
help of the component structure. To computeVK one has to scan through all rowsr of the
component structureC and for each new label one inserts a new copy of the vertex c
sponding to rowr. Hence, findingVK takes O(n2). The edge setEK can be computed b
checking for each possible row-column pairr, c of C whether bothcrc andccr are non-zero
Since there aren2 those pairs for ourn × n matrixC, this can be done in O(n2) as well.

The difficult part of the algorithm is finding triangles in K[�G]. The fastest known al
gorithm for this problem is matrix multiplication, which runs in O(nα). Unfortunately, we
cannot use this algorithm for our problem. The reason is, that the number of verti
K[�G] can be considerably larger than the number of vertices ofG. There are example
of graphs, showing that there can be�(n2) vertices in K[�G], wheren is the number of
vertices ofG. One information that we do have about the number of vertices of K[�G] is,
that there are not more than twice as many vertices as edges in K[�G], i.e., |VK| � 2 |EK|
(an exception is, of course, the case that there are universal vertices inG, but for finding
triangles in K[�G] this case is not of interest). Hence, if we apply an algorithm, that
in O(f (|EK|)), it is in fact an O(f (n2)) algorithm, since the number of edges of K[�G]
is equal to the number of edges of�G. For the case that the input graph is sparse, A
et al. [1] suggested an improvement of the matrix multiplication algorithm for finding a
triangle. The complexity of this algorithm is O(m2α/(α+1)); for α < 2.376 this is O(m1.41).
Consequently, if we apply the triangle algorithm for sparse graphs of Alon et al., w

begin
for v ∈ V(G) do

H ← G − N[v];
compute connected components ofH, using BFS;
store labels of components in component structureC(iv, ·);

end
VK = {cvw : ∃v,w ∈ V such thatcvw �= 0};
EK = {(cvw, cwv): ∃v,w ∈ G such thatcvw �= 0 andcwv �= 0};
check whether K[�G] contains a triangle;

end

Algorithm 2. Knotting graph algorithm.

452 E. Köhler / Journal of Discrete Algorithms 2 (2004) 439–452

decide in O(�m2α/(α+1)) = O(n4α/(α+1)) = O(mn + n2.815) for α < 2.376 whether K[�G]

AT-
nd

within
e

9–

ree

of
0.
-free

ics

ad. J.

.
of

mple-

40.
g,

nd.

7.
er-

rm.

Com-

at-
contains a triangle. Thus we have shown the following theorem.

Theorem 5.2. Recognition of AT-free graphs using the KNOTTING GRAPH ALGORITHM

(Algorithm 2) takes O(mn + n2.815) time.

Remark 5.3. It is an open question, whether there is a certificate for a graph to be
free, which can be checked in less than O(n3). The knotting graph does provide some ki
of “partial certificate”, since it canindeed be checked in less than O(n3) for containing a
triangle. Of course, for being a proper certificate one should be able to check also
this time bound whether the knotting graph is correctly determined. This can currently b
done in O(nm), implying that we have a fast checkable certificate for sparse graphs.

References

[1] N. Alon, R. Yuster, U. Zwick, Finding and counting given length cycles, Algorithmica 17 (3) (1997) 20
223.

[2] S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and planarity using PQ-t
algorithms, J. Comput. System Sci. 13 (1976) 335–379.

[3] D.G. Corneil, S. Olariu, L. Stewart, The ultimate interval graph recognition algorithm?, in: Proceedings
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1998, pp. 175–18

[4] D.G. Corneil, S. Olariu, L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple
graphs, SIAM J. Comput. 28 (4) (1999) 1284–1297.

[5] P. Damaschke, Forbidden ordered subgraphs, in: R.Bodendiek, R. Henn (Eds.), Topics in Combinator
and Graph Theory, Physica-Verlag, Heidelberg, 1990, pp. 219–229.

[6] D.R. Fulkerson, O.A. Gross,Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835–855.
[7] H. Gabow, Private communication, 1994.
[8] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66.
[9] P.C. Gilmore, A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Can

Math. 16 (1964) 539–548.
[10] M.Ch. Golumbic, C.L. Monma, W.T. Trotter,Tolerance graphs, Discrete Appl. Math. 9 (1984) 157–170
[11] H. Hempel, D. Kratsch, On claw-free asteroidal triple-free graphs, in: P. Widmayer (Ed.), Proceedings

the 25th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’99), in: Lecture
Notes in Comput. Sci., vol. 1665, 1999, pp. 377–390.

[12] H. Ito, M. Yokoyama, Linear time algorithms for graph search and connectivity determination on co
ment graphs, Inform. Process. Lett. 66 (1998) 209–213.

[13] D. Kelly, Comparability graphs, in: I. Rival (Ed.), Graphs and Order, Reidel, Dordrecht, 1985, pp. 3–
[14] E. Köhler, Graphs without asteroidal triples, Ph.D. Thesis, Technische Universität Berlin, Cuvillier Verla

Göttingen, 1999.
[15] C.G. Lekkerkerker, J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fu

Math. 51 (1962) 45–64.
[16] R. McConnell, Private communication, 1996.
[17] R.H. Möhring, Triangulating graphs without asteroidal triples, Discrete Appl. Math. 64 (3) (1996) 281–28
[18] A. Parra, Structural and algorithmic aspects of chordal graph embeddings, Ph.D. Thesis, Technical Univ

sity, Berlin, 1996.
[19] G. Ramalingham, C. Pandu Rangan,A unified approach to domination problems in interval graphs, Info

Process. Lett. 27 (1988) 271–274.
[20] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J.

put. 5 (1976) 266–283.
[21] J.P. Spinrad, Efficient Graph Representations, in:Field Institute Monographs, vol. 79, American Mathem

ical Society, 2003.

	Recognizing graphs without asteroidal triples
	Introduction
	Straightforward algorithm and its improvement
	Triangle algorithm
	The knotting graph
	The knotting graph algorithm
	References

