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1. Introduction

In this paper, we consider the following two-dimensional (2D) viscous liquid-gas two-phase flow
model

⎧⎨
⎩

mt + div(mu) = 0,

nt + div(nu) = 0,

(mu)t + div(mu ⊗ u) + ∇ P (m,n) = μ�u + (μ + λ)∇ div u in Ω × (0, T ),

(1.1)

with the initial and boundary conditions
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(m,n, u)|t=0 = (m0,n0, u0)(x), in Ω, (1.2)

u(x, t) = 0, on ∂Ω × (0, T ), (1.3)

where Ω ⊆ R
2 is a bounded domain with smooth boundary. Here m = αlρl and n = αgρg denote

liquid mass and gas mass, respectively; μ, λ are viscosity constants, satisfying

μ > 0, μ + λ � 0. (1.4)

The unknown variables αl , αg ∈ [0,1] denote liquid and gas volume fractions, satisfying the funda-
mental relation: αl + αg = 1. Furthermore, the other unknown variables ρl and ρg denote liquid and

gas densities, satisfying equations of state: ρl = ρl,0 + P−Pl,0

a2
l

, ρg = P
a2

g
, where al , ag are sonic speeds,

respectively, in liquid and gas, and Pl,0 and ρl,0 are the reference pressure and density given as con-
stants; u denotes velocities of liquid and gas; P is common pressure for both phases, which satisfies

P (m,n) = C0(−b(m,n) +
√

b(m,n)2 + c(m,n)
)
, (1.5)

with C0 = 1
2 a2

l , k0 = ρl,0 − Pl,0

a2
l

> 0, a0 = (
ag
al

)2 and

b(m,n) = k0 − m −
(

ag

al

)2

n = k0 − m − a0n,

c(m,n) = 4k0

(
ag

al

)2

n = 4k0a0n.

For more information about the above models, we can refer to [8,10,16] and references therein.
Let us review some previous works about the viscous liquid-gas two-phase flow model. For the

model (1.1) in one-dimensional (1D) case, when the liquid is incompressible and the gas is polytropic,
i.e., P (m,n) = Cρ

γ
l ( n

ρl−m )γ , Evje and Karlsen in [4] studied the existence and uniqueness of the global

weak solution to the free boundary value problem with μ = μ(m) = k1
mβ

(ρl−m)β+1 , β ∈ (0, 1
3 ), when the

fluids connected to vacuum state discontinuously. Yao and Zhu in [14] extended the results in [4] to
the case β ∈ (0,1], and also obtained the asymptotic behavior and regularity of the solution. Evje,
Flåtten and Friis in [2] also studied the model with μ = μ(m,n) = k2

nβ

(ρl−m)β+1 (β ∈ (0, 1
3 )) in a free

boundary setting when the fluids connected to vacuum state continuously, and obtained the global
existence of the weak solution. Also, for the case of connecting to vacuum state continuously, we
investigated the free boundary problem to the model with constant viscosity coefficient, and obtained
the global existence of the unique weak solution by the line method, where we used a new technique
to get the key upper and lower bounds of gas and liquid masses n and m, cf. [15]. Specifically, when
both of the two fluids are compressible, their results can consult the reference [3].

But there are few results about the multidimensional model of this kind. Recently, Yao, Zhang and
Zhu in [16] obtained the existence of the global weak solution to the 2D model when the initial en-
ergy is small. And this can be viewed to be a generalization of the results in [3] from one-dimensional
to two-dimensional. In this paper, we prove a blow-up criterion in terms of the upper bound of the
liquid mass for the strong solution to the 2D viscous liquid-gas two-phase flow model in a smooth
bounded domain.

Before giving the main result, we state the following local existence of the unique strong solution
without initial vacuum, the proof of which is similar to that in [1]. In fact, Cho, Choe and Kim in [1]
deal with the local existence of the unique strong solution with initial vacuum for the single-phase
Navier–Stokes equation, where the initial data must satisfy a natural compatibility condition. The
initial assumptions and the properties of pressure in the present paper satisfy the assumptions in [1],
and there is no initial vacuum, so the proof of the local existence of the unique strong solution for
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the viscous liquid-gas two-phase flow model is simpler, compared to [1]. We omit the details of the
proof here.

Theorem 1.1 (Local existence). Let Ω be a bounded smooth domain in R
2 and q > 2. Assume that there exist

constants m1 , m1 , n1 and n1 with 0 < m1 � m1 < ∞, 0 < n1 � n1 < ∞, such that the initial data m0 , n0 , u0
satisfy

0 < m1 � inf
x

m0 � sup
x

m0 � m1 < ∞, 0 < n1 � inf
x

n0 � sup
x

n0 � n1 < ∞,

m0,n0 ∈ W 1,q(Ω), u0 ∈ H1
0(Ω) ∩ H2(Ω). (1.6)

Then, there exist a T1 > 0 and a unique strong solution (m,n, u)(x, t) to the problem (1.1)–(1.3), such that

m,n > 0, m,n ∈ C
([0, T1], W 1,q(Ω)

)
, mt,nt ∈ C

([0, T1], Lq(Ω)
)
,

u ∈ C
([0, T1], H1

0(Ω) ∩ H2(Ω)
) ∩ L2(0, T1; W 2,q(Ω)

)
,

ut ∈ L∞(
0, T1; L2(Ω)

) ∩ L2(0, T1; H1
0(Ω)

)
. (1.7)

The following is then the main result of this paper.

Theorem 1.2. Let Ω be a bounded smooth domain in R
2 and q ∈ (2,∞). Assume that the initial data m0 ,

n0 , u0 satisfy (1.6). If T ∗ < ∞ is the maximal existence time for strong solution (m,n, u)(x, t) to the problem
(1.1)–(1.3) stated in Theorem 1.1, then

lim sup
T →T ∗

‖m‖L∞(0,T ;L∞(Ω)) = ∞. (1.8)

Remark 1.1. It is easy to verify

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pm = ∂ P

∂m
= C0

{
1 − b√

b2 + c

}
> 0,

Pn = ∂ P

∂n
= C0

{
a0 + a0√

b2 + c
(m + a0n + k0)

}
> 0, m,n > 0.

(1.9)

This shows that P (m,n) is increasing in m and n for m,n > 0.

Remark 1.2. In a forthcoming paper, we will consider the local existence of the strong solution and
also give a blow-up criterion for the 2D (or 3D) viscous liquid-gas two-phase flow model (1.1), when
there is initial vacuum, i.e., m0 � 0 and n0 � 0.

Just because of the similarity of the viscous liquid-gas two-phase flow model with the Navier–
Stokes equation, so some ideas used to get the blow-up criterion of the strong solution for the Navier–
Stokes equation will be applied to deal with the two-phase flow model. For the 2D compressible
Navier–Stokes equations, Sun and Zhang in [12] obtained a blow-up criterion in terms of the upper
bound of the density for the strong solution. For the 3D compressible Navier–Stokes equations, Sun,
Wang and Zhang in [11] also obtained a blow-up criterion in terms of the upper bound of the density
for the strong solution, when λ < 7μ. In the both papers above, the initial vacuum was allowed and
the domain included both the bounded smooth domain and R

N , N = 2,3. It also worths mentioning
recent works [6,7], under the assumptions
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N = 2, μ + λ � 0, Ω = T 2;
N = 3, λ < 7μ, Ω is a smooth domain including R

3,

Huang and Xin proved the following blow-up criterion: if T ∗ < ∞ is the maximal time of the exis-
tence of the strong solution, then

lim
T →T ∗

T∫
0

∥∥∇u(t)
∥∥

L∞(Ω)
dt = ∞.

In our present paper, we want to obtain the same result for the viscous liquid-gas two-phase flow
model. Because of the complexity of the pressure P (m,n), we can only deal with the simpler case:
the domain is smooth and bounded; there is no initial vacuum. We remark that the result also applies
to 3D case at the end of this paper, see Theorem 4.1.

2. Preliminaries

In this section, we give some useful lemmas which will be used in the next two sections.

Lemma 2.1. Let Ω ⊂ R
N be an arbitrary bounded domain with piecewise smooth boundaries. Then the fol-

lowing inequality is valid for every function u ∈ W 1,p
0 (Ω) or u ∈ W 1,p(Ω),

∫
Ω

u dx = 0:

‖u‖Lq(Ω) � C1‖∇u‖α
L p(Ω)‖u‖1−α

Lr(Ω)
, (2.1)

where α = (1/r − 1/q)(1/r − 1/p + 1/N)−1; moreover, if p < N, then q ∈ [r, pN/(N − p)] for r �
pN/(N − p), and q ∈ [pN/(N − p), r] for r > pN/(N − p). If p � N, then q ∈ [r,∞) is arbitrary; moreover,
if p > N, then inequality (2.1) is also valid for q = ∞. The positive constant C1 in inequality (2.1) depends on
N, p, r, α and the domain Ω but independent of the function u.

Lemma 2.2. Let Ω ⊂ R
N be an arbitrary bounded domain with piecewise smooth boundaries. Then the fol-

lowing inequality is valid for every function u ∈ W 1,p(Ω):

‖u‖Lq(Ω) � C2
(‖u‖L1(Ω) + ‖∇u‖α

L p(Ω)‖u‖1−α
Lr(Ω)

)
, (2.2)

where N, p, r, q and α are the same as those in Lemma 2.1. The positive constant C2 in inequality (2.2) depends
on N, p, r, α and the domain Ω but independent of the function u.

The above two lemmas can be found in [9,13] and the references therein.
Next, we give some Lq (q ∈ (1,∞]) regularity estimates for the solution of the following boundary

problem:

{
LU := μ�U + (μ + λ)∇ div U = F in Ω,

U (x) = 0 on ∂Ω.
(2.3)

Here Ω ⊂ R
N is a bounded smooth domain, L is the Lamé operator, U = (U1, U2, . . . , U N ), F =

(F1, F2, . . . , F N ). From (1.4), we know that (2.3) is a strong elliptic system. If F ∈ W −1,2(Ω), then
there exists a unique weak solution U ∈ H1

0(Ω). In the subsequent context, we will use L−1 F to de-
note the unique solution U of the system (2.3) with F belonging to some suitable space such as
W −1,p(Ω). Sun, Wang and Zhang in [11,12] give the following estimates:
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Lemma 2.3. Let q ∈ (1,∞), and U be a solution of (2.3). Then there exists a constant C depending only on μ,
λ, q, N and Ω such that

(1) if F ∈ Lq(Ω), then

‖U‖W 2,q(Ω) � C‖F‖Lq(Ω); (2.4)

(2) if F ∈ W −1,q(Ω) (i.e., F = div f with f = ( f i j)N×N , f i j ∈ Lq(Ω)), then

‖U‖W 1,q(Ω) � C‖ f ‖Lq(Ω); (2.5)

(3) if F = div f with fi j = ∂khk
i j and hk

i j ∈ W 1,q
0 (Ω) for i, j,k = 1,2, . . . , N, then

‖U‖Lq(Ω) � C‖h‖Lq(Ω). (2.6)

Lemma 2.4. If F = div f with f = ( f i j)N×N , f i j ∈ L∞(Ω) ∩ L2(Ω), then ∇U ∈ BMO(Ω) and there exists a
constant C depending only on μ, λ and Ω such that

‖∇U‖BMO(Ω) � C
(‖ f ‖L∞(Ω) + ‖ f ‖L2(Ω)

)
. (2.7)

Here BMO(Ω) denotes the John–Nirenberg’s space of bounded mean oscillation whose norm is
defined by

‖ f ‖BMO(Ω) = ‖ f ‖L2(Ω) + [ f ]BMO(Ω),

with the semi-norm

[ f ]BMO(Ω) = sup
x∈Ω,r∈(0,d)

∫
–

Ωr(x)

∣∣ f (y) − fΩr(x)
∣∣dy,

where Ωr(x) = Br(x) ∩ Ω , Br(x) is the ball with center x and radius r and d is the diameter of Ω . For
a measurable subset E of R

N , |E| denotes its Lebesgue measure and

fΩr(x) =
∫
–

Ωr(x)

f (y)dy = 1

|Ωr(x)|
∫

Ωr(x)

f (y)dy.

Lemma 2.5. Let Ω be a bounded Lipschitz domain in R
N and f ∈ W 1,q(Ω) with q ∈ (N,∞). Then there exists

a constant C depending on q, N and the Lipschitz property of the domain Ω such that

‖ f ‖L∞(Ω) � C
(
1 + ‖ f ‖BMO(Ω) ln

(
e + ‖∇ f ‖Lq(Ω)

))
. (2.8)

3. A priori estimates

Let (m,n, u) be a strong solution to the problem (1.1)–(1.3) in [0, T ) with the regularity stated in
Theorem 1.1. We assume that the opposite of (1.8) holds, i.e., there exists a positive constant M , such
that

lim sup
∗

‖m‖L∞(0,T ;L∞(Ω)) � M < ∞. (3.1)

T →T
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In this section, we denote by C a general positive constant which may depend on μ, λ, Ω , m0, n0,
u0, M , and the parameters in the expression of P in (1.5).

Let

T ∗
1 = sup

{
T ∈ (

0, T ∗); m(x, t) > 0, for all (x, t) ∈ Ω × [0, T ]}. (3.2)

At first, we give the estimate of n(x,t)
m(x,t) .

Lemma 3.1. Under the conditions of Theorem 1.2, we have

0 < s0 � n(x, t)

m(x, t)
� s0 < ∞, 0 � T < T ∗

1 , (3.3)

where s0 = infx∈Ω
n0
m0

, s0 = supx∈Ω
n0
m0

.

Proof. Define the particle trajectories x = X(t, y) given by:

⎧⎨
⎩

d

dt
X(t, y) = u(X(t, y), t),

X(0, y) = y.

(3.4)

From (1.1)1 and (1.1)2, we have

(
n

m

)
t
+ u · ∇

(
n

m

)
= 0, (3.5)

which implies

d

dt

(
n

m

)(
X(t, y), t

) = 0,

i.e.,

n(x, t)

m(x, t)
= n0

m0

(
X−1(t, x)

) := s0 = s0(x, t), for t ∈ (
0, T ∗

1

)
,

where X−1 denotes the inverse of X . It follows

0 < s0 � min

{
n0

m0

(
X−1(t, x)

)}
� n(x, t)

m(x, t)
� max

{
n0

m0

(
X−1(t, x)

)}
� s0 < ∞. � (3.6)

Then, we give the basic energy estimate.

Proposition 3.1. Assume

‖m‖L∞(0,T ;L∞(Ω)) � M, 0 � T < T ∗
1 . (3.7)

Then we have

‖√mu‖L∞(0,T ;L2(Ω)) � C, ‖∇u‖L2(0,T ;L2(Ω)) � C, 0 � T < T ∗
1 . (3.8)
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Proof. Let

A(t) =
∫
Ω

{
1

2
m|u|2 + Q (m,n)

}
dx, 0 � t � T < T ∗

1 ,

where Q (m,n) = m
∫ m

1
P (s, n

m s)

s2 ds. Then we have from (1.1) that

A′(t) =
∫
Ω

{
1

2
|u|2mt + mu · ut + Q mmt + Q nnt

}
dx

=
∫
Ω

{
−1

2
|u|2 div(mu) + u j[−mu · ∇u j − ∂ j P (m,n) + μ�u j + (μ + λ)∂ j div u

]

− Q m div(mu) − Q n div(nu)

}
dx

=
∫
Ω

{
−1

2
|u|2 div(mu) + u j[−mu · ∇u j − ∂ j P (m,n) + μ�u j + (μ + λ)∂ j div u

]

− Q mu · ∇m − Q nu · ∇n − Q mm div u − Q nn div u

}
dx

=
∫
Ω

{
−1

2
|u|2 div(mu) − mu jui∂iu

j − u · ∇ P (m,n) − μ
(
∂iu

j)2 − (μ + λ)(div u)2

− div u P − div(u Q )

}
dx

=
∫
Ω

{
1

2
∇(|u|2) · (mu) − mu jui∂iu

j − div(u P )

− div(u Q ) − μ
(
∂iu

j)2 − (μ + λ)(div u)2
}

dx. (3.9)

Here we have used integration by parts, boundary conditions (1.3) and the following identity

mQ m + nQ n = Q + P ,

which can be easily obtained from the expression of Q (m,n). From (3.9), we get

A′(t) +
∫
Ω

{
μ|∇u|2 + (μ + λ)(div u)2}dx =

∫
Ω

{
1

2
∇(|u|2) · (mu) − mu jui∂iu

j
}

dx

=
∫
Ω

{
1

2
∂i

((
u j)2)

mui − mu jui∂iu
j
}

dx

= 0,

which implies
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∫
Ω

{
1

2
m|u|2 + Q (m,n)

}
dx +

t∫
0

∫
Ω

{
μ|∇u|2 + (μ + λ)(div u)2}dx dτ

=
∫
Ω

{
1

2
m0|u0|2 + Q (m0,n0)

}
dx. (3.10)

From (3.10), (3.3), (3.7) and the expression of P (m,n), we get

∫
Ω

m|u|2 dx +
t∫

0

∫
Ω

|∇u|2 dx dτ � C

∫
Ω

m0|u0|2 dx + C

∣∣∣∣
∫
Ω

Q (m0,n0)dx

∣∣∣∣ + C

∣∣∣∣
∫
Ω

Q (m,n)dx

∣∣∣∣
� C

∫
Ω

m0|u0|2 dx + C

∫
Ω

|m ln m|dx + C

∫
Ω

m dx +
∫
Ω

√
m dx

+ C

∫
Ω

|m0 lnm0|dx + C

∫
Ω

m0 dx +
∫
Ω

√
m0 dx

� C . (3.11)

This completes the proof of Proposition 3.1. �
The following arguments are similar to that in [11,12], which discussed the single-phase Navier–

Stokes equations. We enclose its proof for the self-containedness of the present paper.

Proposition 3.2. Under the condition (3.7), we have for some r > 2 that

sup
0�t�T

∫
Ω

m|u|r dx � C, 0 � T < T ∗
1 . (3.12)

Proof. Multiplying (1.1)3 by r|u|r−2u, and integrating the resulting equation over Ω , we obtain

d

dt

∫
Ω

m|u|r dx +
∫
Ω

[
r|u|r−2(μ|∇u|2 + (λ + μ)(div u)2 + μ(r − 2)

∣∣∇|u|∣∣2)

+ r(λ + μ)
(∇|u|r−2) · u div u

]
dx

= r

∫
Ω

div
(|u|r−2u

)
P dx � C

∫
Ω

m
1
2 |u|r−2|∇u|dx

� ε

∫
Ω

|u|r−2|∇u|2 dx + C

ε

(∫
Ω

m|u|r dx

) r−2
r

dx, (3.13)

where we have used P (m,n) � Cm
1
2 , which can be obtained from (3.3), (3.7) and the expression of P

easily, where C depends only on M , s0 and the parameters in the expression of P .
Note that |∇|u|| � |∇u|, we get that
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r|u|r−2(μ|∇u|2 + (λ + μ)(div u)2 + μ(r − 2)
∣∣∇|u|∣∣2) + r(λ + μ)

(∇|u|r−2) · u div u

� r|u|r−2[μ|∇u|2 + (λ + μ)(div u)2] + r(λ + μ)
(∇|u|r−2) · u div u

� r|u|r−2[μ|∇u|2 + (λ + μ)(div u)2 − (λ + μ)(r − 2)
∣∣∇|u|∣∣|div u|]

� r|u|r−2
[(

μ − λ + μ

2
(r − 2)

)
|∇u|2 + λ + μ

2
(4 − r)|div u|2

]
.

We can choose 2 < r < 4 and r − 2 small enough such that the last term is bounded from below by
C |u|r−2|∇u|2, i.e.,

r|u|r−2[μ|∇u|2 + (λ + μ)(div u)2 + μ(r − 2)
∣∣∇|u|∣∣2] + r(λ + μ)

(∇|u|r−2) · u div u

� C |u|r−2|∇u|2, (3.14)

where (1.4) has been used. Inserting (3.14) into (3.13), and taking ε = C
2 , we may apply Gronwall’s

inequality to conclude (3.12). �
Just as in [11,12], we introduce the quantity w , which is defined by

w = u − v, v = L−1∇ P (m,n),

where v is the solution of

{
μ�v + (λ + μ)∇ div v = ∇ P (m,n) in Ω,

v(x) = 0 on ∂Ω.
(3.15)

From Lemma 2.3, for p ∈ (1,∞), we can get that

‖v‖W 1,p(Ω) � C
∥∥P (m,n)

∥∥
L p(Ω)

,

‖v‖W 2,p(Ω) � C
∥∥∇ P (m,n)

∥∥
L p(Ω)

. (3.16)

By using Eqs. (1.1), we find w satisfies

{
m∂t w − μ�w − (λ + μ)∇ div w = mF in Ω × (0, T ),

w(x, t) = 0 on ∂Ω × [0, T ),
(3.17)

with w(x,0) := w0(x) = u0(x) − v0(x) and

F = −u · ∇u − L−1∇(
∂t P (m,n)

) = −u · ∇u + L−1∇ div
[

P (m,n)u
]

+ L−1∇[(
Pmm + Pnn − P (m,n)

)
div u

]
.

Lemma 3.2. Under the condition (3.7), we have

P (m,n) � C, Pm(m,n) � C, Pn(m,n) � C .
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Proof. From (3.3) and (1.9), we know that the bounds of P (m,n) and Pm(m,n) are obvious. So we
only need to give the bound of Pn(m,n). At first, we estimate the term m+a0n+k0√

b2+c
in the expression of

Pn as follows:

{
m + a0n + k0√

b2 + c

}2

= k2
0 + (m + a0n)2 + 2k0m + 2k0a0n

k2
0 + (m + a0n)2 − 2k0m + 2k0a0n

= (k0 + m)2 + a2
0s2

0m2 + 2a0s0m2 + 2k0a0s0m

(k0 − m)2 + a2
0s2

0m2 + 2a0s0m2 + 2k0a0s0m
=: I.

When M <
k0
2 , which implies m � M <

k0
2 , then

I �
(k0 + M)2 + a2

0s2
0M2 + 2a0s0M2 + 2k0a0s0M

(k0 − M)2

�
(k0 + M)2 + a2

0s2
0M2 + 2a0s0M2 + 2k0a0s0M

(k0 − M)2
=: C1.

When M � k0
2 : Case 1: m � k0

2 � M , then

I �
9k2

0 + a2
0s2

0k2
0 + 2a0s0k2

0 + 4a0s0k2
0

k2
0

�
9k2

0 + a2
0s2

0k2
0 + 2a0s0k2

0 + 4a0s0k2
0

k2
0

=: C2.

Case 2: k0
2 � m � M , then

I � 1 + 4k0

a2
0s2

0m + 2a0s0m + 2k0a0s0
� 1 + 8k0

a2
0s2

0k0 + 2a0s0k0 + 4k0a0s0
=: C3.

Then we obtain

m + a0n + k0√
b2 + c

� min{√C1,
√

C2,
√

C3},

which implies

Pn = C0
{

a0 + a0√
b2 + c

(m + a0n + k0)

}
� C . �

Then, using the similar arguments as those in [11,12], we can get the regularity estimates about w ,
where we have used the estimates in Proposition 3.1 and Proposition 3.2.

Proposition 3.3. Under the condition (3.7), we have

‖∇w‖L∞(0,T ;L2(Ω)) � C,
∥∥m

1
2 ∂t w

∥∥
L2(0,T ;L2(Ω))

� C,∥∥∇2 w
∥∥

L2(0,T ;L2(Ω))
� C, 0 � T < T ∗

1 . (3.18)

From Proposition 3.3, (3.16), Sobolev embedding theorem, Poincaré inequality and Lemmas 2.1–2.2,
we can get the following regularity estimates about u.
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Corollaty 3.1. Under the condition (3.7), we have for any p ∈ (1,∞) that

‖∇u‖L∞(0,T ;L2(Ω)) � C, ‖u‖L∞(0,T ;L p(Ω)) � C, ‖∇u‖L2(0,T ;L p(Ω)) � C, 0 � T < T ∗
1 .

Next, we give high order regularity estimates of w , the proof of which are due to [5,11] for the
single-phase Navier–Stokes equations.

Proposition 3.4. Under the condition (3.7), we have for any 2 < p < ∞ that

‖∇w‖L2(0,T ;W 1,p(Ω)) � C, 0 � T < T ∗
1 . (3.19)

Proof. We rewrite Eq. (1.1)3 as

mu̇ + ∇ P (m,n) − Lu = 0, i.e., mu̇i + ∂i P (m,n) − μ�ui − (λ + μ)∂i div u = 0,

where we define the material derivative D
Dt by Dg

Dt = ġ = gt + u · ∇g for function g(x, t). Taking the
material derivative to the above equation and using the fact ḟ = ft + div( f u) − f div u, we have

mu̇i
t + mu j∂ j u̇

i + ∂i Pt + ∂ j
(
∂i P u j) = μ

[
�ui

t + ∂ j
(
�uiu j)]

+ (λ + μ)
[
∂i div ut + ∂ j

(
(∂i div u)u j)]. (3.20)

Multiplying (3.20) by u̇i and integrating the resulting equation over Ω , we obtain

d

dt

∫
Ω

1

2
m|u̇|2 dx − μ

∫
Ω

(
�ui

t + ∂ j
(
�uiu j))u̇i dx − (λ + μ)

∫
Ω

(
∂i div ut + ∂ j

(
(∂i div u)u j))u̇i dx

=
∫
Ω

(
Pt div u̇ + ∂i P u j∂ j u̇

i)dx. (3.21)

By using the integration by parts and boundary conditions (1.3), the μ-term, (λ + μ)-term and the
right-hand side of (3.21) can be estimated as follows:

−μ

∫
Ω

(
�ui

t + ∂ j
(
�uiu j))u̇i dx

= μ

∫
Ω

(
∂ ju

i
t∂ j u̇

i + �uiu j∂ j u̇
i)dx

= μ

∫
Ω

[
∂ j

(
u̇i − uk∂kui)∂ j u̇

i + �uiu j∂ j u̇
i]dx

= μ

∫
Ω

[|∇u̇|2 − ∂ ju
k∂kui∂ j u̇

i − uk∂k∂ ju
i∂ j u̇

i − ∂kui∂k
(
u j∂ j u̇

i)]dx

= μ

∫ [|∇u̇|2 − ∂ ju
k∂kui∂ j u̇

i + div u∂ ju
i∂ j u̇

i + uk∂ ju
i∂k∂ j u̇

i − ∂kui∂k
(
u j∂ j u̇

i)]dx
Ω
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= μ

∫
Ω

[|∇u̇|2 − ∂ ju
k∂kui∂ j u̇

i + div u∂ ju
i∂ j u̇

i − ∂kui∂ku j∂ j u̇
i]dx

� 3μ

4

∫
Ω

|∇u̇|2 dx − C

∫
Ω

|∇u|4 dx, (3.22)

−(λ + μ)

∫
Ω

(
∂i div ut + ∂ j

(
(∂i div u)u j))u̇i dx

= (λ + μ)

∫
Ω

[
div u̇ div ut + div u̇(u · ∇ div u) − div u∂iu

j∂ j u̇
i + div u̇(div u)2]dx

= (λ + μ)

∫
Ω

[|div u̇|2 − div u̇∂iu
j∂ ju

i − div u∂iu
j∂ j u̇

i + div u̇(div u)2]dx

� λ + μ

2

∫
Ω

|div u̇|2 dx − ε(λ + μ)

∫
Ω

|∇u̇|2 dx − C

ε
(λ + μ)

∫
Ω

|∇u|4 dx

− C(λ + μ)

∫
Ω

|∇u|4 dx, (3.23)

and

∫
Ω

(
Pt div u̇ + ∂i P u j∂ j u̇

i)dx

=
∫
Ω

[
(Pmmt + Pnnt)div u̇ + ∂i P u j∂ j u̇

i]dx

=
∫
Ω

[
(−mPm − nPn)div u div u̇ − u · ∇ P (m,n)div u̇ + ∂i P u j∂ j u̇

i]

=
∫
Ω

[
(−mPm − nPn)div u div u̇ + P div(u div u̇) − P div(u · ∇u̇)

]

=
∫
Ω

[
(−mPm − nPn)div u div u̇ + P

(
div u div u̇ − ∂iu

j∂ j u̇
i)]

� C‖∇u‖L2(Ω)‖∇u̇‖L2(Ω) � C‖∇u̇‖L2(Ω) � C + μ

4
‖∇u̇‖2

L2(Ω)
. (3.24)

Substituting (3.22)–(3.24) into (3.21) and choosing ε = μ
8(λ+μ)

, if λ + μ > 0, we have

d

dt

∫
Ω

m|u̇|2 dx + μ

∫
Ω

|∇u̇|2 dx + (λ + μ)

∫
Ω

|div u̇|2 dx � C

∫
Ω

|∇u|4 dx + C .

If λ + μ = 0, there is no need to estimate the (λ + μ)-term, we still have
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d

dt

∫
Ω

m|u̇|2 dx + μ

∫
Ω

|∇u̇|2 dx � C

∫
Ω

|∇u|4 dx + C .

Then, for all μ > 0 and λ + μ � 0, we have

d

dt

∫
Ω

m|u̇|2 dx + μ

∫
Ω

|∇u̇|2 dx � C

∫
Ω

|∇u|4 dx + C . (3.25)

In the following, we estimate the term
∫
Ω

|∇u|4 dx. From Eqs. (1.1)3 and (3.15), we know that w
satisfies {

μ�w + (λ + μ)∇ div w = mu̇ in Ω,

w(x) = 0 on ∂Ω.
(3.26)

From Lemma 2.3, we get

‖w‖H2(Ω) � C‖mu̇‖L2(Ω) � C‖√mu̇‖L2(Ω),

which together with the interpolation inequality, Sobolev embedding theorem, (3.16) and Corollary 3.1
yield

‖∇u‖4
L4(Ω)

� ‖∇u‖L2(Ω)‖∇u‖3
L6(Ω)

� C‖∇u‖L6(Ω)‖∇u‖2
L6(Ω)

� C‖∇u‖2
L6(Ω)

(‖∇w‖L6(Ω) + ‖∇v‖L6(Ω)

)
� C‖∇u‖2

L6(Ω)

(
1 + ‖∇w‖H1(Ω)

)
� C‖∇u‖2

L6(Ω)

(
1 + ∥∥∇2 w

∥∥
L2(Ω)

)
� C‖∇u‖2

L6(Ω)

(
1 + ‖√mu̇‖L2(Ω)

)
. (3.27)

Substituting (3.27) into (3.25) and noticing ‖∇u‖2
L6(Ω)

∈ L1(0, T ), which was shown in Corollary 3.1,

we get by Gronwall’s inequality that

∫
Ω

m|u̇|2 dx +
T∫

0

∫
Ω

|∇u̇|2 dx dt � C . (3.28)

From (3.28), (3.26), Sobolev embedding theorem and Poincaré inequality, we can get the following
high regularity estimates about w:

‖∇w‖L2(0,T ;W 1,p(Ω)) � C, (3.29)

and this completes the proof of Proposition 3.4. �
In the following, we give the estimates of derivative of the liquid and gas masses.

Proposition 3.5. Under the condition (3.7), we have for q ∈ (2,∞) that

sup
t∈[0,T ]

∥∥(∇m,∇n)(t)
∥∥

Lq(Ω)
� C, 0 � T < T ∗

1 . (3.30)
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Proof. Differentiating Eq. (1.1)1 with respect to xi , then multiplying both sides of the resulting equa-
tion by q|∂im|q−2∂im, we get

∂t |∂im|q + div
(|∂im|qu

) + (q − 1)|∂im|q div u + qm|∂im|q−2∂im∂i div u

+ q|∂im|q−2∂im∂iu · ∇m = 0. (3.31)

Integrating the above equality over Ω , we obtain

d

dt

∫
Ω

|∇m|q dx � C

∫
Ω

|∇u||∇m|q dx + q

∫
Ω

m|∇ div u||∇m|q−1 dx

� C‖∇u‖L∞(Ω)‖∇m‖q
Lq(Ω) + C

∥∥∇2u
∥∥

Lq(Ω)
‖∇m‖q−1

Lq(Ω). (3.32)

Similarly,

d

dt

∫
Ω

|∇n|q dx � C

∫
Ω

|∇u||∇n|q dx + q

∫
Ω

n|∇ div u||∇n|q−1 dx

� C‖∇u‖L∞(Ω)‖∇n‖q
Lq(Ω) + C

∥∥∇2u
∥∥

Lq(Ω)
‖∇n‖q−1

Lq(Ω). (3.33)

Applying Lemma 2.3 to (3.15), we obtain

∥∥∇2 v
∥∥

Lq(Ω)
� C

(‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

)
, (3.34)

then, by using Lemma 2.4 and Lemma 2.5, we get

‖∇v‖L∞(Ω) � C
(
1 + ‖∇v‖BMO(Ω) ln

(
e + ∥∥∇2 v

∥∥
Lq(Ω)

))
� C

(
1 + ‖P‖L∞∩L2(Ω) ln

(
e + ‖∇ P‖Lq(Ω)

))
� C

(
1 + ln

(
e + ‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

))
, (3.35)

where we have used Lemma 3.2 in the above two estimates.
From (3.33)–(3.35), we get

d

dt

(‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

)
� C

(
1 + ‖∇w‖L∞(Ω) + ‖∇v‖L∞(Ω)

)(‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

) + C
∥∥∇2 w

∥∥
Lq(Ω)

� C
(
1 + ‖∇w‖W 1,q(Ω) + ln

(
e + ‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

))(‖∇m‖Lq(Ω) + ‖∇n‖Lq(Ω)

)
+ C

∥∥∇2 w
∥∥

Lq(Ω)
. (3.36)

Note that ‖∇w‖W 1,q(Ω) ∈ L2(0, T ) by (3.19). Then by Gronwall’s inequality, we obtain (3.30). This
completes the proof of Proposition 3.5. �

From (3.7), (3.28) and Proposition 3.5, we can obtain the bound of ‖∇2u‖L2(Ω) .



3376 L. Yao et al. / J. Differential Equations 250 (2011) 3362–3378
Corollaty 3.2. Under the condition (3.7), we have

‖u‖L∞(0,T ;H2(Ω)) � C, 0 � T < T ∗
1 .

Proof. We rewrite Eq. (1.1)3 as

μ�u + (λ + μ)∇ div u = mu̇ + ∇ P (m,n),

then by Lemma 2.3, we have

‖u‖H2(Ω) � C
(‖mu̇‖L2(Ω) + ‖∇ P‖L2(Ω)

)
� C

(∥∥m
1
2 u̇

∥∥
L2(Ω)

+ ‖∇m‖L2(Ω) + ‖∇n‖L2(Ω)

)
� C . �

Finally, with the help of the above regularity estimates for w , ∇m and ∇n, we can give the lower
bound estimates of the liquid mass m and gas mass n, since (3.3), we only need to get the lower
bound of m.

Proposition 3.6. Under the condition (3.7), we have

m(x, t) � C, n(x, t) � C, t ∈ [0, T ], 0 � T < T ∗
1 . (3.37)

Proof. From Proposition 3.4, we get

‖∇w‖L2(0,T ;L∞(Ω)) � C . (3.38)

From (3.16) and Proposition 3.5, we obtain

‖∇v‖L2(0,T ;L∞(Ω)) � C‖∇v‖L2(0,T ;W 1,p(Ω)) � C‖∇ P‖L2(0,T ;L p(Ω))

� C
{‖∇m‖L2(0,T ;L p(Ω)) + ‖∇n‖L2(0,T ;L p(Ω))

}
� C, (3.39)

where 2 < p < ∞. Then (3.38) and (3.39) imply

‖∇u‖L1(0,T ;L∞(Ω)) � C‖∇u‖L2(0,T ;L∞(Ω))

� C
(‖∇w‖L2(0,T ;L∞(Ω)) + ‖∇v‖L2(0,T ;L∞(Ω))

)
� C . (3.40)

Along the particle trajectories x = X(t, y) defined by (3.4), we differentiate Eq. (1.1)1 with respect to t ,
and get

dm

dt

(
X(t, y), t

) = −m div u
(

X(t, y), t
)
,

which implies

m
(

X(t, y), t
) = m0(y)exp

{
−

t∫
div u

(
X(τ , y), τ

)
dτ

}
,

0



L. Yao et al. / J. Differential Equations 250 (2011) 3362–3378 3377
then we have

m(x, t) � inf
y∈Ω

m0 exp

{
−

T∫
0

∥∥∇u(t)
∥∥

L∞(Ω)
dt

}
� C,

and this completes the proof of Proposition 3.6. �
From Proposition 3.6 and the classical continuation method, we have

T ∗
1 = T ∗. (3.41)

4. Proof of Theorem 1.2

The estimates in Corollaries 3.1–3.2, Propositions 3.5–3.6 will be enough to extend the strong
solution (m,n, u) beyond t � T ∗

1 = T ∗ .
In fact, in view of Corollaries 3.1–3.2 and Propositions 3.5–3.6, the functions (m,n, u)|t=T ∗ =

limt→T ∗ (m,n, u) satisfy the conditions imposed on the initial data (1.6) at the time t = T ∗ . Therefore,
we can take (m,n, u)|t=T ∗ as the initial data and apply the local existence theorem (Theorem 1.1) to
extend the local strong solution beyond T ∗ . This contradicts the assumption on T ∗ , and it completes
the proof of Theorem 1.2.

We can use the similar arguments in the present paper and [11] to deal with the 3D case. The
corresponding result is given as follows:

Theorem 4.1. Let Ω be a bounded smooth domain in R
3 , q ∈ (3,∞), and (1.4) is replaced by μ > 0,

3λ + 2μ � 0. Assume that the initial data m0 , n0 , u0 satisfy

0 < m1 � inf
x

m0 � sup
x

m0 � m1 < ∞, 0 < n1 � inf
x

n0 � sup
x

n0 � n1 < ∞,

m0,n0 ∈ W 1,q(Ω), u0 ∈ H1
0(Ω) ∩ H2(Ω). (4.1)

Then, there exist a T2 > 0 and a unique strong solution (m,n, u)(x, t) to the problem (1.1)–(1.3), such that

m,n > 0, m,n ∈ C
([0, T2], W 1,q0(Ω)

)
, mt,nt ∈ C

([0, T2], Lq0(Ω)
)
,

u ∈ C
([0, T2], H1

0(Ω) ∩ H2(Ω)
) ∩ L2(0, T2; W 2,q(Ω)

)
,

ut ∈ L∞(
0, T2; L2(Ω)

) ∩ L2(0, T2; H1
0(Ω)

)
,

where q0 = min(6,q). Furthermore, under the additional assumption λ < 7μ, we have the following blow-up
criterion: If T ∗ < ∞ is the maximal existence time for strong solution (m,n, u)(x, t) to the problem (1.1)–(1.3),
then

lim sup
T →T ∗

‖m‖L∞(0,T ;L∞(Ω)) = ∞. (4.2)
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