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The problem of nonparametric estimation of a multivariate density function is
addressed. In particular, a general class of estimators with favorable asymptotic
performance (bias, variance, rate of convergence) is proposed. The proposed
estimators are characterized by the flatness near the origin of the Fourier transform
of the kernel and are actually shown to be exactly - N-consistent provided the
density is sufficiently smooth. � 1999 Academic Press
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1. INTRODUCTION

Suppose X1 , ..., XN are independent,1 identically distributed random
vectors taking values in Rd, and possessing an absolutely continuous
distribution function F with corresponding probability density function f.
The density f is assumed to be bounded, continuous, and smooth to some
extent that will be quantified later; f is otherwise unknown and should be
estimated using the data. In particular, it will be assumed that the charac-
teristic function ,(s)=�Rd ei(s } x)f (x) dx tends to zero sufficiently fast as
&s&p � �; here s=(s1 , ..., sd), x=(x1 , ..., xd) # Rd, (s } x)=�k skxk is the
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inner product between s and x, and & }&p is the lp norm, i.e., &s&p=
(�k |sk | p)1�p, if 1� p��, and &s&�=maxk |sk |.

The nonparametric kernel smoothed estimator of f (x), for some x # Rd,
is given by (cf., for example, Rosenblatt (1991) or Scott (1992))

f� (x)=
1
N

:
N

i=1

4(x&Xi)=
1

(2?)d |
Rd

*(s) ,N(s) e&i(s } x) ds, (1)

where 4( } ) is the smoothing kernel satisfying2 � 4(x) dx=1, ,N(s)=
1�N �N

k=1 ei(s } Xk) is the sample characteristic function, and *(s)=
� 4(x) ei(s } x) dx is the Fourier transform of the kernel. In general, 4( } ) and
*( } ) both depend on a positive ``bandwidth'' parameter h; in particular, it
will be assumed that 4(x)=h&d0(x�h), and *(s)=|(hs), where 0( } ) and
|( } ) are some fixed (not depending on h) bounded functions, satisfying
|(s)=� 0(x) ei(s } x) dx; the bandwidth h will in general depend on N but it
will not be explicitly denoted.

It is well known (cf. Rosenblatt (1991, p. 7)) that in this case

Ef� (x)=| 0(v) f (x&hv) dv, (2)

and

Var( f� (x))=
1

hdN _| 02(v) f (x&hv) dv&hd \| 0(v) f (x&hv) dv+
2

& . (3)

If f is continuous at x, and f (x)>0, and if h � 0, as N � �, but with
hdN � �, equation (3) becomes

Var( f� (x))=
1

hdN
f (x) | 02(x) dx+O(1�N). (4)

If the bandwidth h is a fixed constant as N � �, then it is immediate from
(3) that

Var( f� (x))=
1
N

Cf, 0(x, h), (5)

where Cf, 0(x, h) is a bounded function depending on f and 0.
If 0 has finite moments up to qth order, and moments of order up to

q&1 equal to zero, then q is called the ``order'' of the kernel 0. If the
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density f has r bounded continuous derivatives,3 it then follows (cf. for
example, Rosenblatt (1991)) that

Bias( f� (x))=Ef� (x)& f (x)=cf, 0(x) hk+o(hk), (6)

where k=min(q, r), and cf (x) is a bounded function depending on 0, on
f, and on f 's derivatives. This idea of choosing a kernel of order q in order
to get the Bias( f� (x)) to be O(hk) dates back to Parzen (1962) and Bartlett
(1963); see also Cacoullos (1966) for the multivariate case. Some more
recent references on ``higher-order'' kernels include the following: Devroye
(1987), Gasser et al. (1985), Granovsky and Mu� ller (1991), Jones (1995),
Jones and Foster (1993), Marron (1994), Marron and Wand (1992),
Mu� ller (1988), Nadaraya (1989), Silverman(1986), and Scott (1992).

Note that the asymptotic order of the bias is limited by the order of the
kernel if the true density is very smooth, i.e., if r is large. To avoid this
limitation, one can define a ``superkernel'' as a kernel whose order can be
any positive integer; Devroye (1992) contains a detailed analysis of super-
kernels in the univariate case. Thus, if f has r bounded continuous
derivatives, a superkernel will result in an estimator with bias of order
O(hr), no matter how large r may be; so, we might say that a superkernel
is a kernel with ``infinite order''.

Note that the O(hr) order for the bias, and the corresponding rate of
O(N&2r�(2r+d )) for the Mean Squared Error of f� , have been shown to be
optimal, i.e., they are the smallest achievable with kernel estimators if
the density f is constrained to have exactly r bounded and continuous
derivatives. If the characteristic function ,(s) decreases exponentially fast
with increasing &s&, or if ,(s) vanishes outside a compact set, then the
smallest achievable orders for the Mean Squared Error of f� are O(log N�N)
and O(1�N) respectively. These important lower bounds on the accuracy of
kernel estimators are due to Watson and Leadbetter (1963); see also
Wahba (1975).

However, it might be more appropriate to say that a kernel has ``infinite
order'' if it results in an estimator with bias of order O(hr) no matter how
large r may be regardless of whether the kernel has finite moments. It seems
that the finite-moment assumption for 0 is just a technical one, and that
existence of the Lebesgue integrals used to calculate the moments is not
necessarily required in order that a kernel has favorable bias performance;
rather, it seems that if the integrals defining the moments of 0 have a
Cauchy principal value of zero then the favorable bias performance follows,
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and this is in turn ensured by setting | to be constant over an open
neighborhood of the origin.

A preliminary report on a specific type of such infinite order kernel in the
univariate case (that corresponds to an | of ``trapezoidal'' shape) was given
in Politis and Romano (1993); in the present paper a general family of mul-
tivariate kernels of infinite order is presented, and the favorable properties
of the resulting estimators are quantified. As elaborated above, the
proposed kernels are characterized by the fact that their Fourier transforms
are ``flat'' over an open neighborhood of the origin. In particular, for the
class of ultra-smooth densities whose characteristic functions are supported
on a compact set, the proposed kernel estimators are shown to actually be
- N-consistent.

The organization of the remainder of the paper is as follows: Section 2
contains the necessary definitions and statements of our main results on the
performance of the proposed kernel estimators; Section 3 contains some
practical comments and simulation results; all technical proofs are placed
in Section 4.

2. A GENERAL FAMILY OF FLAT-TOP SMOOTHING KERNELS
OF INFINITE ORDER

Let c and p be constants satisfying 1�c��, 1� p��, and define

1 if &s&p�1�h
*c(s)={g*(s, h) if 1�h<&s&p�c�h (7)

0 if &s&p>c�h.

Here g*(s, h) is some properly chosen continuous, real-valued function
satisfying g*(s, h)= g*(&s, h), g*(s, 1)= g*(s�h, h), and | g*(s, h)|�1, for
any s, with g*(s, h)=1, if &s&p=1�h, and g*(s, h)=0, if &s&p=c�h. We will
also assume that �S | g*(s, h)|2 ds<�, where S=[s: 1�h<&s&p�c�h]; the
latter assumption guarantees that � *2

c(s) ds<� which will be necessary in
order to have kernel estimators with finite variance (see our Remark 2 in
what follows).

If c=1, the drop from the value 1 to the value 0 is done in a discon-
tinuous fashion, and no function g* is needed. On the other hand, the case
c=� covers the situation where a compact support for *c is not desired.
In essence, g* interpolates between the value 1 for &s&p�c�h, and the value
0 for &s&p>1�h. Perhaps the most ``natural'' way to do the interpolation
would be to do it in a linear fashion provided, of course, that c<�; more
details on the subject of choosing the value of c and the shape of the func-
tion g* can be found in Section 3.3.
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Having picked a g* function, we now define a family of kernels [4c( } ),
c # [1, �] ] by

4c(x)=
1

(2?)d | *c(s) e&i(s } x) ds, (8)

i.e., by the (inverse) Fourier transform of *c(s); note that the corresponding
0( } ) and |( } ) functions can be obtained by setting h=1 in the definitions
(7) and (8), and that 4c is real-valued because of the symmetry of *c , i.e.,
*c(s)=*c(&s).

The proposed kernel smoothed estimators of f are given by

f� c(x)=
1
N

:
N

i=1

4c(x&X i)=
1

(2?)d | *c(s) ,N(s) e&i(s } x) ds, (9)

for some choice of c # [1, �]. The estimator f� c can be computed using
either of the two expressions appearing in (9). To compute f� c using the
standard expression involving the convolution of 4c with the empirical
distribution, the form of 4c must be calculated. In general, a closed-form
expression for 4c might not be available, but 4c , can be calculated numeri-
cally over a grid of points (call it G), and consequently f� c(x) will be
computed only for x # G; see Section 3.1 for more details on computational
aspects.

Note that by equations (4) and (5) and since, by construction,
� *2

c(s) ds<�, it is immediate that Var( f� c(x))=O(1�hdN), as N � �,
whether h is a fixed constant, or if h � 0 but with hdN � �. Therefore, the
order of magnitude of the Mean Squared Error (MSE) of f� c will hinge on
the order of magnitude of the bias. We will now proceed to investigate the
MSE performance of f� c under a variety of different smoothness conditions
on f ; for this purpose, we formulate three different conditions based on the
rate of decay of the characteristic function , that are in the same spirit as
the conditions in Watson and Leadbetter (1963).

Condition C1 . For some p # [1, �], there is an r>0, such that
� &s&r

p |,(s)|<�

Condition C2 . For some p # [1, �], there are positive constants B and
K such that |,(s)|�Be&K &s&p.

Condition C3 . For some p # [1, �], there is a positive constant B such
that |,(s)|=0, if &s&p�B.

Conditions C1 to C3 can be interpreted as different conditions on the
smoothness of the density f (x); cf. Katznelson (1968), Butzer and Nessel
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(1971), Stein and Weiss (1971), and the references therein. Note that they
are given in increasing order of strength, i.e., if Condition C2 holds, then
Condition C1 holds as well, and if Condition C3 holds, then Conditions C1

and C2 hold as well. Also note that if Condition C1 holds, then f must
necessarily have [r] bounded, continuous derivatives, where [ } ] is the
positive part; cf. Katznelson (1968, p. 123). Obviously, if Condition C2

holds, then f has bounded, continuous derivatives of any order; although
this very high degree of smoothness for f seems like a very strong assump-
tion, it turns out that ``in many applications in the physical and biomedical
sciences it can be safely assumed that the function has this high degree of
smoothness'' (cf. Mu� ller (1988, p. 73)).

The following sequence of theorems quantifies the performance of the
proposed family of flat-top estimators. Note that the constant p to be used
in connection with the kernel 4c is the same p that appears in Conditions
C1 to C3 (as invoked by the theorems).

Theorem 1. Assume that h � 0, as N � �, but with hdN � �; under
Condition C1 , it follows that

sup
x # R d

|Bias( f� c(x))|=o(hr).

Now let x be some point in Rd such that f (x)>0; then by letting
htAN&1�(2r+d ), for some constant A>0, the asymptotic order of the Mean
Squared Error of f� c is given by MSE( f� c(x))=O(N&2r�(2r+d )).

Remark 1. That the Bias( f� c(x)) turns out to be o(hr), rather than
O(hr), should not be surprising as it was mentioned that Condition C1 is
stronger than assuming f has r bounded and continuous derivatives;
however, it is not much stronger. For example, in the case d=1, Condition
C1 is seen to be satisfied if it is assumed that f has r absolutely integrable
derivatives, and the the rth derivative f (r) satisfies a uniform Lipschitz
condition of order :>1�2; cf. Katznelson (1968, p. 32).

Remark 2. The asymptotic variance of f� (x) can be calculated from
equation (4). However, to compute � 02(x) dx, it is easier to use the
isometric properties of the Fourier transform, i.e., Parseval's theorem, and
compute (2?)&d � |2(s) ds instead, especially since, if c<�, | has compact
support.

Theorem 2. Assume that h � 0, as N � �, but with hdN � �; under
Condition C2 , it follows that supx # Rd |Bias( f� c(x))|=O(h1&de&K�h). If we let
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htA�log N, as N � �, where A is a constant such that A<2K, it follows
that

sup
x # R d

|Bias( f� c(x))|=O \(log N)d&1

NK�A +=o \ 1

- N+ .

Now let x be some point in Rd such that f (x)>0; the choice htA�log N
implies that MSE( f� c(x))=O((log N)d�N).

Theorem 3. Assume Condition C3 and that, as N � �, h is some
constant small enough such that h�B&1; it follows that

sup
x # Rd

|Bias( f� c(x))|=0.

Now let x be some point in Rd such that f (x)>0; it follows that
MSE( f� c(x))=O(1�N).

Remark 3. The special case where c=1, i.e., when the drop of *c from
the value 1 to the value 0 is done discontinuously, has been considered by
many authors in the literature, e.g., Parzen (1962). Thus, considering the
estimator f� 1 , Davis (1977) proved analogs of our Theorems 1 to 3 for
d=1, while Ibragimov and Hasminksii (1982) have proved an analog of
our Theorem 3 in the general d case. Nevertheless, the choice c=1 is not
recommendable in practice; our next Section addresses this issue, as well as
other practical concerns.

Remark 4. By the formal analogy between probability spectral density
estimation (see, e.g., Rosenblatt (1991)) it should not be surprising that
flat-top kernels might be applicable in a context of nonparametric spectral
density estimation. In Politis and Romano (1996), kernels belonging to a
subset of the family of flat-top kernels are employed for the purpose of
spectral density estimation using data consisting of a realization of a
homogeneous random field.

Remark 5. A rather surprising observation is that smoothing with flat-
top kernels does not seem to be plagued by the ``curse of dimensionality''
in case the underlying density is ultra-smooth, possessing derivatives of
all orders. For example, in Theorem 2 under Condition C2 , the MSE of
estimation achieved by flat-top kernel smoothing is of order O(logd N�N),
i.e., depending only slightly on the dimension d, while in Theorem 3 under
Condition C3 , the MSE of estimation becomes exactly O(1�N), i.e., not
depending on d at all.
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3. DISCUSSION AND PRACTICAL COMMENTS

3.1. Computational Aspects and Remarks
Assuming 1<c<�, and choosing g*(s, h) to be linear in its first argu-

ment, actually results into a compact expression for *c , namely,

*LIN
c (s)=

c
c&1 \1&

h
c

&s&p+
+

&
1

c&1
(1&h &s&p)+, (10)

where (x)+=max(x, 0) is the positive part function. A closed-form expres-
sion for 4LIN

c (x)=(2?)&d � *LIN
c (s) e&i(s } x) ds in the special case d=1 is

given by

4LIN
c (x)={

h
2?

sin2(?cx�h)&sin2(?x�h)
?2x2(c&1)

1
2?

sin(2?x�h)
?x

if c>1

if c=1;
(11)

it is apparent that in the case c>1, 4LIN
c is just a linear combination of

Feje� r kernels, whereas if c=1, 4LIN
c reduces to the Dirichlet kernel. In the

general case where d>1, 4LIN
c depends on p and may be difficult to

evaluate analytically; see Fig. 1 and 2 for graphs of *LIN
c and 4LIN

c for
d=2, p=2, c=2, and h=0.067, where 4LIN

c has been computed numeri-
cally using a two-dimensional discrete Fourier transform.

In the Euclidean norm case ( p=2), computations can be aided by the
observation that, since *c(s) depends on s only through &s&2 , its functional
form is rotation-invariant; consequently, 4c(x) depends on x only through
&x&2 , and the functional form of 4c is rotation-invariant as well. Hence,
to evaluate 4c(x) for any x # Rd, it suffices to evaluate it for x=
(x1 , 0, 0, ..., 0), with x1 spanning R, and then rotate the resulting graph.
But 4c(x1 , 0, 0, ..., 0) can be obtained by a univariate (inverse) Fourier
transform as 4c(x1 , 0, 0, ..., 0)=(2?)&l � +(s1) e&is1x1 ds1 , where

+(s1)=(2?)&d+1 || } } } | *c(s1 , s2 , ..., sd) ds2 ds3 } } } dsd

is the ``marginal'' of the function *c(s)=*c(s1 , s2 , ..., sd).
It should be pointed out that the computation of f� c can actually be

accomplished faster by using the rightmost expression of (9), i.e., multi-
plication (``tapering'') of the empirical characteristic function by *c ,
followed by a discrete Fourier transform; cf. for example, Silverman (1986,
p. 61). In that sense, exact knowledge of the form of 4c is not needed; see
also our Remark 2 after Theorem 1. However, for illustration purposes, we
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FIG. 1. The Fourier transform of 4LIN
c , i.e., *LIN

c (s), as a function of s=(s1 , s2), for
d=2, p=2, c=2, and h=0.067.

FIG. 2. The kernel 4LIN
c (x), as a function of x=(x1 , x2), for d=2, p=2, c=2, and

h=0.067.
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now construct an explicit (4c , *c) pair by taking products of the univariate
kernel given in (11); see Mu� ller (1988) or Scott (1992) for more details on
the product method of constructing multivariate kernels. So let d be any
positive integer, 1<c<�, and h>0, and define

4PROD
c (x)=\ h

2?+
d

`
d

j=1

sin2(?cxj �h)&sin2(?x j�h)
?2x2

j (c&1)
, (12)

and

*PROD
c (s)=\ 1

c&1+
d

`
d

j=1

((c&h |s j | )
+&(1&h |sj | )

+); (13)

it is easy to check that 4PROD
c and *PROD

c are related to each other by a
Fourier transform, and that

*PROD
c (s)={1 if &s&��1�h

0 if &s&�>c�h.

The functions *PROD
c and 4PROD

c are plotted in Fig. 3 and 4 in the case
d=2, p=�, c=2, and h=0.067.

It is well-known in the literature (see, for example, Mu� ller (1988) or
Scott (1992)) that kernel density estimators corresponding to kernels of
order bigger than two are not necessarily nonnegative functions; it goes
without saying that the same applies for our estimators f� c that are obtained
using kernels of ``infinite order''. To appreciate why, observe that in Fig. 2
and 4 the kernels 4LIN

2 and 4PROD
2 exhibit negative ``sidelobes'' beside the

main prominent ``lobe'' around the origin which is positive.
Nevertheless, the nonnegativity is not a serious issue as there is a

natural fix-up, namely using the modified estimator4 f� +
c (x)=max( f� c(x), 0);

see also Gajek (1986) and Hall and Murison (1992). Note that the
estimator f� +

c (x) is not only nonnegative, but is more accurate as well, in
the sense that MSE( f� +

c (x))�MSE( f� c(x)), for all x; this fact follows from
the obvious inequality | f� +

c (x)& f (x)|�| f� c(x)& f (x)|. In addition, if
f (x)>0, an application of Chebychev's inequality shows that
Prob[ f� c(x)= f� +

c (x)] � 1 under the assumptions of any of our Theorems 1
to 3; on the other hand, if f (x)=0, then the large-sample distribution of
either - hdN f� +

c (x), or - hdN f� c(x), degenerates to a point mass at zero.
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FIG. 3. The Fourier transform of 4PROD
c , i.e., *PROD

c (s), as a function of s=(s1 , s2), for
d=2, p=�, c=2, and h=0.067.

FIG. 4. The kernel 4PROD
c (x), as a function of x=(x1 , x2), for d=2, p=�, c=2, and

h=0.067.
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3.2. Choosing the Value of p and Transformations

The implicit assumption in our Theorems 1 to 3 was that the value of p
used in *c and the subsequent computation of the estimator f� c (or f� +

c )
was the same as the value of p appearing in the invoked Conditions C1 to
C3 . Note, however, that if one of Conditions C1 to C3 holds for some
p # [1, �], then, by the equivalence of lp norms for Rd, that same Condi-
tion would hold for any p # [1, �], perhaps with a change in the constants
B and K. In that sense, the matching of the values of p in *c with that of
the invoked Condition C1 , C2 , or C3 is not required for the asymptotic
arguments to go through, and Theorems 1 to 3 are true even without the
matching.

Nevertheless, it makes good sense to have this matching occur (even
approximately) as it would make a difference in practice. The reason it
would be beneficial can be attributed to this possible change in the con-
stants B and K that influence the proportionality constants in calculating
the bias of f� c . While the asymptotic order of the bias remains unchanged,
the proportionality constant can be reduced by this matching of the values
of p; see, for example, the proof of Theorem 2.

A practical way to ensure that this approximate matching occurs is
described next. Once |,N(s)| is calculated, it can be plotted as a diagnostic
tool, in analogy to correlogram plots in the spectral analysis of time series
(cf. Priestley (1981)). Since s is in general multi-dimensional, ``slices'' of
|,N(s)| can be plotted, i.e., varying only one or two of the coordinates of
s at a time; alternatively, we can vary s subject to a linear constraint of the
type Ms=m, where M is a (d&k) by d matrix (and k is 1 or 2), and m
is a (d&k) dimensional vector. By so doing, one can get a rough estimate
of the different rates of decay of |,N(s)| along all directions, and certainly
along the d principal directions. Note that the rates of decay of |,N(s)| can
be influenced by scaling the X data. Thus, a first step is to employ a
diagonal transformation D to come up with transformed data Yi=DXi ,
i=1, ..., N ; here D=diag(D1 , ..., Dd) should be chosen such that D&1

j

equals an estimate of scale (say, sample standard deviation) of the j th
coordinate of the X data. In conjunction with the new Y data, using p=�
seems like a reasonable choice.

Ideally however, we would want the ``level'' curves of |,N(s)| (i.e., the
sets of the type [s: |,N(s)|=const.]) to be shaped like an lp unit ball. If the
``level'' curves of the sample characteristic function of the Y data are not
shaped like lp balls, another linear (not diagonal) transformation can be
employed in an effort to achieve approximately equal rate of decay of the
sample characteristic function in all directions (and not just the d principal
ones); cf. Scott (1992, p. 153) and Wand and Jones (1993) for more details
on use of transformations and more general bandwidth parameterizations.
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Note that the value p=2 can be used in conjunction with kernel estimation
of the probability density of the transformed data where the sample charac-
teristic function has equal rate of decay in all directions.

3.3. Choosing the Value of c and the Shape of the Function g*

It is quite interesting that the actual value of c and the actual shape of
the function g* do not enter at all in our asymptotic Theorems 1�3; this
observation agrees with the findings of Devroye (1992) who considered
infinite-order kernels in the univariate case (d=1).

Nevertheless, properly choosing c and the shape of the function g* will
definitely have a practical impact. In terms of choosing the shape of *c or
of |, i.e., choosing c and g* , Devroye (1992, p. 2053) writes: ``The recom-
mendation is to take (our |) rectangular with two smooth tails added on
so as to make the tails of (our 0) small. The size of these tails has to be
determined from nonasymptotic considerations, perhaps via some data-
based rule.''

Making the tails of 0 small has a twofold advantage;5 (a) reducing the
bias of the resulting estimator by reducing the ``leakage'' through the many
small peaks in the (typically wavy) tails of 0, and (b) reducing the variance
of the resulting estimator which is approximately proportional to
� 02(x) dx. Therefore, comparison between different kernels can be accom-
plished by inspecting the relative magnitude (and sign) of the ``sidelobes''
as compared to the main ``lobe'' around the origin.

In particular, the choice c=1 which was considered by Davis (1977) and
Ibragimov and Hasminksii (1982) is not recommendable in practice. To see
this, consider the functions *1 and 41 that are plotted in Figs. 5 and 6 in
the case d=2, p=�, and h=0.05. It is apparent that the magnitude of the
wavy ``sidelobes'' of 41 is much bigger than those in either 4LIN

2 or 4PROD
2

(see Figs. 2 and 4). As a matter of fact, to really witness the tails of 41

become negligible in magnitude, we have to look at 41(x) over a wider
region of the (x1 , x2) plane; see Fig. 7.

The reason h=0.05 was used in connection with 41 , in Figs. 6 and 7 (as
opposed to h=0.067 that was used for 4LIN

2 and 4PROD
2 in Figs. 2 and 4)

was the effort to compare kernels that yield estimators with approximately
equal variance. As can be seen from the first column of Table I, with these
choices of h, the variance integrals � *2

c(s) ds=h&d � |2(s) ds (that equal

13MULTIVARIATE DENSITY ESTIMATION

5 It should be stressed however that by different choices of c and g* we can not change the
asymptotic orders of bias and variance of the resulting estimators; that is why the actual shape
of *c is immaterial in our asymptotic Theorems 1�3, as long as *c is flat near the origin, and
has finite Euclidean norm. By choosing the value of c and the shape of the function g*

properly, we can only influence the proportionality constants in the large-sample bias and
variance of the estimators.



FIG. 5. The Fourier transform of 41 , i.e., *1(s), as a function of s=(s1 , s2), for
d=2, p=�, and h=0.05.

FIG. 6. The kernel 41(x), as a function of x=(xl , x2), for d=2, p=�, and h=0.05.
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FIG. 7. Same as Fig. 6, i.e., d=2, p=�, and h=0.05, but here 41(x) is shown over a
wider region of the (x1 , x2) plane.

the asymptotic variance of - N f� (x)�- f (x)) are about equal for the three
kernels. So, in other words, choosing the h bandwidths so that we achieve
similar variances we empirically verify that 41 will result in more biased
estimators than either 4LIN

2 or 4PROD
2 because of the more pronounced

``sidelobes''. Alternatively, suppose that the same bandwidth was used for
all three kernels. Then, as can be seen from the second column of Table 1,
41 will result in an estimator with bigger variance than either 4LIN

2 or
4PROD

2 .
In short, c=1 is a bad choice. Our empirically-based recommendations

at this point suggest that using c=2, or c in the neighborhood of 2 (say
c # [1.5, 3]), and using the g* corresponding to either 4LIN

c or 4PROD
c will

TABLE I

Entries are the Variance Integrals � *2
c(s) ds and the

Variance Constants � |2(s) ds for the Three Functions
Shown in Fig. 1, 3, and 5

� *2
c(s) ds � |2(s) ds

Figure 1: 0.360 0.0016
Figure 3: 0.445 0.0020
Figure 5: 0.467 0.0243
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give good results; see also our discussion in Section 3.2 where the choices
of p=2 and p=� that correspond to 4LIN

c and 4PROD
c come up rather

naturally. As evidenced by the variances presented in Table 1, 4LIN
2 might

be somewhat preferable to 4PROD
2 , but it is also a bit harder to work with

because it is not given in closed form. We conjecture that the ``optimal''
(with respect to some reasonable criterion, say exact MSE of the resulting
estimators) choices of c and g*(s, h) will turn out to be c=�, but with a
very carefully constructed g* function that decays to zero fast enough as
s � �, but that is not necessarily nonnegative for all values of s; rather,
g*(s, h) will have small negative (and positive) ``sidelobes'' for s large, in
much the same way as the kernel 0(x) has to go negative for some
x-regions to achieve optimality��see Devroye (1992) for more discussion.
Nevertheless, this extra fine-tuning of kernel choice will not be very signifi-
cant in practice��unless the sample size N is really huge, and higher-order
refinements acquire importance; using either 4LIN

c or 4PROD
c (with c in the

neighborhood of 2) will probably be as good for all practical purposes.

3.4. Choosing the Bandwidth h

Last, but not in any means least in terms of practical importance, is the
choice of bandwidtd h. Mu� ller (1988, p. 61) writes ``... the behavior of ker-
nel estimates with kernels of higher order is less sensitive towards a subop-
timal choice of bandwidth.'' Consequently, our kernels of infinite order
should also share this robustness property. Nevertheless, to take full advan-
tage of the smoothness of the underlying true probability density using our
infinite order kernels one should be prepared to use really large bandwidths
if deemed necessary.

As a matter of course, our Theorems 1�3 give expressions for the optimal
bandwidth (optimal with respect to minimization of the asymptotic order
of the resulting MSE), i.e., htAN&1�(2r+d ), htA�log N, and h=const.�
1�B, respectively, where the constants A and B are described in Theorems
1�3. However, this is not entirely satisfactory from a practical point of view
since it is assumed we know which of Conditions C1 -C3 holds true (and we
know r and B) which is not given in any real data-analytic situation.
Rather, the degree of smoothness of the true probability density should
also be gauged from the available data at hand; one way of doing this is
looking at a plot of |,N(s)| vs. s as discussed in Section 3.2. Since smooth-
ness of the probability density function is a property of the tails of ,( } ), the
apparent decay of ,N(s) for large s may give useful information on the
smoothness of f ( } ).

Although more work is needed in order to settle the problem of optimal
bandwidth choice, we now give a practical recommendation based on our
Theorem 3 in conjunction with a diagnostic plot of |,N(s)| as discussed in
Section 3.2. Suppose that the empirical plot of |,N(s)| reveals that |,N(s)|
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is of negligible magnitude for &s&p bigger than some number B� , and that
|,N(s)| is nonnegligible if &s&p�B� . Then, B� can be considered as an
estimate of the constant B appearing in Condition C3 , and we should be
advised to choose h=1�B� . Note that even if the weaker Conditions C1 or
C2 hold instead of Condition C3 , still |,(s)| (and therefore |,N(s)| as well,
since ,N(s) � ,(s) as N � �) would be practically negligible for big
enough &s&p ; hence, the above simple diagnostic procedure should give
reasonable choices for the bandwidth h under any of our assumed smooth-
ness Conditions C1�C3 .

3.5. Some Finite-Sample Numerical Results

With the goal to empirically substantiate and further illustrate our
heuristic recommendations on choosing c and h in Sections 3.3 and 3.4, a
small finite-sample simulation study was conducted. In order to produce
better graphs where our heuristics become more apparent, and to avoid
having to look only at ``slices'' of |,N |, we focused on the univariate
case d=1. Three different ``true'' densities were considered; the ``skewed
unimodal density'' (*2 in Marron and Wand (1992, p. 717)), the ``asym-
metric bimodal density'' (*8 in Marron and Wand (1992, p. 717)), and the
heavy-tailed density of Student's t-distribution with 3 degrees of freedom. It
can be easily checked that Condition C2 holds true for each of the three
densities considered.

We used a sample size of N=200, as it seems that for ``nice densities'',
i.e., very smooth densities without ``sharp'' prominent features, an N
between 100 and 1000 would be sufficient in order for the asymptotic
approximations to the MSE to have some validity; see, e.g., Fig. 9 in
Marron and Wand (1992). All computations were performed using the
statistical language S+ on a 486 IBM PC.

The smoothed estimators were computed using a discrete approximation
to the RHS of Eq. (9). The function g*(s, h) was chosen to be linear (in its
first argument), so in effect the kernel (11) was used. To elaborate, ,N(s)
was computed for s taking values on a grid, i.e., s=sj= jG, where
j=1, 2, ...; note that |,N(0)|=1 always. The gridsize constant G was taken
approximately equal to 2?(0.14) for the first two densities, and 2?(0.07) for
Student's t. Finally, the (inverse) Fourier transform of the product
*c(s) ,N(s) was computed (via an FFT��Fast Fourier Transform) yielding
the kernel smoothed estimator f� c(x).

Figure 8 concerns the ``skewed unimodal density''. Note in Fig. 8a that
|,N(s j)| drops sharply with increasing j, and then (for large j ) exhibits
erratic fluctuations of undying (seemingly constant) magnitude. The plot
can be interpreted to suggest that |,(s)| should be close to zero for large
s, and that the aforementioned erratic fluctuations are simply due to the
(random) error in estimating a quantity that is almost zero with a sample
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FIG. 8. ``Skewed unimodal density'': (a) Plot of |,N(sj)| vs j for j=1, 2, ..., 152. (b) Same
as (a) for j=1, 2, ..., 15 only. (c) Graph of estimator f� 2 with h=1�(3G) (optimal bandwidth).
(d) Graph of estimator f� 2 with h=1�(6G) (undersmoothed case).
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size of 200. Indeed, we know��by construction of the dataset��that this is
exactly the case.

To apply our heuristic suggested in Section 3.4 for choosing the
bandwidth h, we need to identify a threshold B, such that |,(s)| &0 for
|s|>B. Figure 8b is a ``magnification'' of Fig. 8a for s near the origin that
helps us estimate B as being 3 or 4 (times the grid-size G). Comparing the
plots of density estimator f� 2(x), for x spanning the range of the data, in the
cases h=1�(3G) (Fig. 8c), and h=1�(6G) (Fig. 8d) confirms our heuristic
of Section 3.4 for choosing h, as Fig. 8d is obviously undersmoothed.
Similarly (although not shown for brevity's sake), choosing h=1�(4G) for
use in computing f� 1(x) was observed to give optimal smoothing results in

the c=1 case. Comparing the optimally smoothed estimators f� c(x) in the
two cases c=1 and 2, a small advantage was observed in favor of choice
c=2 for x near the left endpoint; notably, in either case, f� c(x) goes slightly
negative for x near the right endpoint of the range.

Figure 9 concerns the ``asymmetric bimodal density'' and similar com-
ments apply regarding the drop of |,N(s j)| for increasing j. From Fig. 9a
we again estimate the threshold B as being 3 or 4 (times the grid-size G).
Note that plots of density estimator f� 2(x) in the cases h=1�(3G) and
h=1�(2G) again confirm our heuristic as choice h=1�(2G) leads to an
obviously undersmoothed estimator, reducing the two modes to a single
one. Going into further detail, we compare the plots of f� 2(x) in the cases
h=1�(3G) (Fig. 9b) and h=1�(4G) (Fig. 9c); it is apparent that a dif-
ference between 3G and 4G for our estimated B is of some import. In such
an ambiguous situation in picking out a single value for B, we recommend
using the smaller of the two candidates for B (i.e., the one leading to a
larger bandwidth) as this was observed to lead to better results in either
case (c=1 or 2). This finding is not unexpected since, as mentioned before,
with infinite-order kernels we should be prepared to use large bandwidths;
see also the discussion in Devroye (1992, p. 2055).

Figure 10 concerns the Student's t density with 3 degrees of freedom, and
similar findings are apparent. Figure 10b shows an optimally smoothed
f� 2(x) where h=1�(4G), i.e., with an implicit estimation of B� =4. Com-
paring the plot of f� 2(x) to that of f� 1(x) (with either h=1�(4G) or
h=1�(6G)) confirms our preference of the c=2 case vs c=1. In particular,
the graph of f� 1(x) (not shown here) takes a pronounced negative dip near
x=4 where the data are sparse in the h=1�(4G) case; this is somehow
corrected in the h=1�(6G) case showing that proper bandwidth choice is
important in ensuring practical nonnegativity as well. Although it is under-
standable that the density estimate near the tails of a heavy-tailed distribu-
tion will be inaccurate, the c=1 case gives predictably ``wavy'' errors that
are avoided in the c>1 case.
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FIG. 9. ``Asymmetric bimodal density'': (a) Plot of |,N(sj)| vs j, for j=1, 2, ..., 15. (b)
Graph of estimator f� 2 with h=1�(3G) (optimal bandwidth). (c) Graph of estimator f� 2 with
h=1�(4G)(undersmoothed case).
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FIG. 10. Student's t-distribution with 3 degrees of freedom: (a) Plot of |,N(sj)| vs. j, for
j=1, 2, ..., 15. (b) Graph of estimator f� 2 with h=1�(4G) (optimal bandwidth).

The moral is that flat-top kernels can indeed be useful in practice,
although more work may be in order on the subject of optimal data-based
bandwidth choice. Indeed, an interesting interplay between kernel choice
(choosing c) and bandwidth choice (choosing h) has been observed in our
simulations -see the discussion preceeding Table I. Our theoretical results
indicate that higher (and infinite) order kernels have a practical advantage
(in terms of increasing estimation accuracy) over second order kernels in
case the true density is very smooth. On the contrary, if ``the true density
has features that make their presence felt, but can not be well recovered,
the higher order kernels have no advantage over the nonnegative kernel'';
cf. Marron and Wand (1992, p. 732).

4. TECHNICAL PROOFS

Proof of Theorem 1. Let x # Rd; then,

Bias( f� c(x)=Ef� c(x)& f (x)

=
1

(2?)d | *c(s) E,N(s) e&i(s } x) ds&
1

(2?)d | ,(s) e&i(s } x) ds
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=
1

(2?)d | (*c(s)&1) ,(s) e&i(s } x) ds

=
1

(2?)d |
&s&p>1�h

(*c(s)&1) ,(s) e&i(s } x) ds, (14)

since *c(s)=1, for all s such that &s&p�1�h.
Now note that

|Bias( f� c(x))|

�
2

(2?)d |
&s&p>1�h

|,(s)| ds

=
2

(2?)d |&s&p>1�h

&s& r
p

&s&r
p

|,(s)| ds�hr 2
(2?)d |&s&p>1�h

&s&r
p |,(s)| ds=o(hr),

where it was used that, since | g*(s, h)|�1, |*c(s)&1|�2. The reason the
little o( } ) arises in the above is the following: note that

| &s& r
p |,(s)| ds=|

&s&p>1�h
&s&r

p |,(s)| ds+|
&s&p�1�h

&s&r
p |,(s)| ds;

as h � 0, we have

|&s&p�1�h
&s&r

p |,(s)| ds � | &s&r
p |,(s)| ds.

which is finite by Condition C1 , and thus it follows that
�&s&p>1�h &s&r

p |,(s)| ds � 0.
Therefore, Bias( f� c(x))=o(hr), uniformly in x # Rd. Finally, under Condi-

tion C1 , f is continuous at x; now if f (x)>0, equation (4) holds true, and
the theorem is proved. Q.E.D.

Proof of Theorem 2. We will do the proof in the case p=�, the other
cases p # [1, �) being similar; alternatively, note that if Condition C2 is
true for some p # [1, �], then (by the equivalence of lp norms for Rd) it
is also true for any p # [1, �], perhaps with a change in the constants B
and K, therefore for p=� as well. Let x be any point in Rd and, as in the
proof of Theorem 1, note that

Bias( f� c(x))=
1

(2?)d |
&s&�>1�h

(*c(s)&1) ,(s) e&i(s } x) ds,

since *c(s)=1 for &s&��1�h.
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Consider the following partition of the set [&s&�>1�h], namely
[&s&�>1�h]=�d

i=1 (Ai _ A� i), where Ai=[s such that &s&�>1�h and
si=maxk |sk |], and A� i=[s such that &s&�>1�h and &s i=maxk |sk |].
Note that the Ai 's and A� i 's are essentially disjoint except for their bound-
aries, e.g., in the case where s1=s2=maxk |sk |, etc.

Therefore, we can write

Bias( f� c(x))=|
A1

+|
A2

+ } } } +|
An

+|
A� 1

+|
A� 2

+ } } } +|
A� n

, (15)

where for j=1, 2, ..., n,

|
Aj

=
1

(2?)d |
s # Aj

(*c(s)&1) ,(s) e&i(s } x) ds,

and

|
A� j

=
1

(2?)d |
s # A� j

(*c(s)&1) ,(s) e&i(s } x) ds.

We now proceed to analyze in detail the first term, i.e., �A1
. Observe

again that

} |A1
}� 2

(2?)d |
&s&�>1�h

|,(s)| ds,

since | g*(s, h)|�1 implies |*c(s)&1|�2. But

|
&s&�>1�h

|,(s)| ds�|
�

1�h
sd&1

1 Be&Ks1 ds1=O \e&K�h

hd&1+ .

Note that to bound the multiple integral by the single integral above, the
following argument was used: let 21=[s: s1 # (s1 , s1+ds1)]; the volume of
the set Al & 21 is sd&1

1 ds1 , and |,(s)|�Be&Ks1, for s # A1 & 21 , since
s1=&s&� over A1 .

A similar analysis shows the terms �A2
, ..., �An

, �A� 1
, ..., �A� n

being bounded
above by O(e&K�h�hd&1) uniformly in x # Rd. Hence, |Bias( f� c(x))|=
O(e&K�h�hd&1), uniformly in x # Rd. Letting htA�log N, where A is a con-
stant such that A<2K, it follows that

sup
x # R d

|Bias( f� c(x))|=O \(log N)d&1

NK�A +=o \ 1

- N+ ,

as required. Finally, under Condition C2 , f is continuous at x; now if
f (x)>0, equation (4) holds true, and the theorem is proved. Q.E.D.
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Proof of Theorem 3. The proof of Theorem 3 is again based on the
decomposition (15) presented in the proof of Theorem 2. We take p=�
here as well; the other cases p # [1, �) are similar.

Note that h<B&1, and thus 1�h>B. Since |,(s)|=0, if &s&�>B, it
follows that |,(s)|=0, if &s&�>1�h. Hence,

sup
x # R d

|Bias( f� c(x))|=0,

as stated in the theorem.
Finally, under Condition C3 , f is continuous at x; now if f (x)>0, equa-

tion (5) holds true, and the theorem is proved. K
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