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In this work we study the QCD corrections to the top quark doubly decay rate with a detected B hadron
containing a b quark. We focus on the regime among which the emitted W boson nearly carries its
maximum energy. The tool that we use here is the soft-collinear effective theory (SCET). The factorization
theorem based on SCET indicates a novel fragmenting jet function. We calculate this function to next-
to-leading order in αs . Large logarithms due to several well separated scales are summed up using the
renormalization group equation (RGE). Finally we reach an analytic formula for the distribution which
could easily be generalized to other heavy hadron decays.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Top quark physics is one of the main subjects in theoreti-
cal and experimental particle physics [1]. Recently an interesting
proposal [2] has been suggested that top quark mass can be ac-
curately measured by studying top quark decays to an exclusive
hadronic state, for example t → W + + B(b) → W + + J/ψ . For the
sake of performing accurate studies of the top quark properties,
a reliable description of the distribution for top quark decay ac-
companied with bottom quark fragmentation is required. Unlike
inclusive quantities, for analyses that require a detailed description
of final states large logarithmic contributions arise due to the fact
that the cancellation between infrared and ultraviolet divergence is
not clean. These large logarithms must be resummed to all orders
to make sensible predictions. For processes with highly energetic
hadron jets involved, a theoretical framework called soft collinear
effective theory (SCET) [3–6] has the ability to sum up all those
large logarithmic enhanced corrections.

In our case, we consider the doubly decay rate d2Γ /dy dz,
with z is the energy fraction carried by the B hadron in the rest
frame of the top quark and y = m2

XB/(m
2
t − m2

W ) being propor-
tional to the invariant mass of the jet including the B hadron.
y → 0 and z → 1 correspond to collinear and soft limit, respec-
tively. We focus on the region which y → 0 but z is around its
intermediate region (neither close to 1 nor to 0). In this situation,
the hadronic jet including the B meson is highly energetic and can
be treated as massless. At this limit, m2

XB = 2qB · kX , thus y can be
related to the HERWIG [7] variable ξ by y = (1 + r)2/2z(1 − z)ξ ,
where r is the ratio of the W boson mass to the top quark

E-mail address: xil41@pitt.edu.
0370-2693 © 2011 Elsevier B.V.
doi:10.1016/j.physletb.2011.03.055

Open access under CC BY license.
mass. In SCET, a factorization theorem can be derived in a sim-
ilar manner as the B → K Xγ case where a two-step matching
(QCD → SCETI → SCETII) is needed due to the existence of the ex-
ternal hadronic state. For details, see Ref. [8] and we quote the
result here

d2Γ

dy dz
= Γ0|C H |2 m2

t (1 − r)2

16π3

×
p+

XB∫
0

dk+ G B
b

(
mt

(
1 − r2)k+, z,μ

)
St

(
p+

XB − k+,μ
)
, (1)

where r = mW /mt , p+
XB = mt(1 − r)/(1 + r)y and St is a function

to describe the soft non-perturbative gluons emitted by the top
quark. Γ0 is the decay rate at tree level which is

Γ0 = G F m3
t

8
√

2π

(
1 − r2)2(

1 + 2r2). (2)

One interesting piece in the factorization theorem (1) is the
fragmenting jet function [8], which naturally arises under SCET
scheme. Compare to the traditional fragmentation function, the
fragmenting jet function incorporate additional information about
the invariant mass of the jet. Performing an operator product ex-
pansion, the fragmenting jet function can be written as a convolu-
tion of a perturbatively calculable coefficient T and the standard
fragmentation function. Ignoring mixing, this gives

G B
b (t, z,μ) =

1∫
dx

x
Tbb

(
t,

z

x
,μ

)
D B

b (x,μ). (3)
z
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Fig. 1. Tree level Feynman diagram for t → b + W + in both QCD and SCET. Here the
double line is an incoming top quark, single line stands for the b quark and the W
boson is given by the wavy line.

Fig. 2. QCD virtual corrections to the SCETI operator at the order O(αs). The spring
line is a usoft gluon and the collinear gluon are represented by a spring with a line
going through.

And we note that the fragmentation function D(z) can be further
factorized into a convolution of a perturbative coefficient and a
non-perturbative function.

In Section 2, we determine the coefficient C H and Tbb(t, z) by
matching between different effective theories. In Section 3, we use
the REG to sum up large logarithmic contributions to derive an
analytic formula for the doubly decay distribution.

2. Matching

In this section, we calculate the coefficients C H and Tbb in
Eq. (1) via matching. The leading order in power counting SCET
operators contribute to the process shown in Fig. 1 is given by

2∑
i=0

∑
ω

Ci(ω)ξ̄n Wnδω,P̄ †Γ
μ

i Y †hv , (4)

where ξn is the collinear light quark propagating in the light cone
direction n and hv is the field annihilating a heavy quark with ve-
locity v . Wn is the collinear Wilson line built out of collinear gauge
field, which is essential in constructing gauge invariant operators
in SCET [5] and Y is the usoft Wilson line emerges from decou-
pling the usoft gluons from the leading order collinear modes [6],
which is crucial in deriving the factorization theorem (1). P̄ is an
operator which picks out large label momentum [5].

The basis for the Dirac structures are

Γ
μ

0 = γ μ P L, Γ
μ

1 = nμ

n · v
P R , Γ

μ
2 = vμ P R , (5)

where P R/L = (1 ± γ 5)/2. C1 and C2 vanish at tree level.
Now we match QCD amplitude onto the SCETI operators to one

loop. We calculate the virtual corrections to the SCETI current at
the order αs , then comparing with the QCD amplitude at the same
order [9], we determine the Wilson coefficients and the matching
scale μH , as well. We should expect that the SCETI calculations
reproduce the infrared divergence in QCD.

The leading order QCD virtual corrections to the SCETI operator
are shown in Fig. 2 except for the self-energy corrections. Once we
ignore the b quark mass, the loop integrals are scaleless and vanish
in dimensional regularization. In order to extract ultraviolet diver-
gence, we put b quark offshell here. Evaluating those diagrams in
d = 4 − 2ε dimensions gives divergences from usoft vertex correc-
tion

Iusoft = −αsC F

4π

(
1

ε2
− 2

ε
log

(
−n · q

μ

))
O0, (6)

as well as the collinear gluon correction

Icoll = −αsC F

4π

(
− 2

ε2
− 2

ε
+ 2

ε
log

(
− n̄ · qn · q

μ2

))
O0. (7)

Here, q is the momentum carried by the outgoing b quark.
The summation of the divergent piece should be canceled by

the operator counterterm δZ O together with the wavefunction
counterterms. Since δZt = αsC F /(2πε) and δZb = −αsC F /(4πε)

for heavy and collinear quark wavefunction countertems, respec-
tively, we can extract δZ O ,

δZ O = αsC F

4π

(
1

ε2
+ 5

2ε
− 2

ε
log

(
n̄ · q

μ

))
. (8)

Thus, in SCETI the leading order plus one-loop virtual correction to
the differential decay rates is

d2Γ I
L+V

dy dz
= Γ0

(
1 + C0 + C1

2

1 − r2

1 + 2r2

)
δ(y)δ(1 − z)

×
(

1 − αsC F

2π

(
1

ε2
+ 5

2ε
− 2

ε
log

(
n̄ · q

μ

)))
. (9)

We see that the SCETI result reproduces exactly the same infrared
poles in QCD [9] as expected and the matching coefficients C0
and C1 are

C0 = αsC F

2π

(
−1

2
log

μ2

m2
t

(
log

μ2

m2
t (1 − r2)4

+ 5

)
− π2

4
− 6

− 2Li2
(
r2) − 2 log2(1 − r)2 − 1 − 3r2

r2
log

(
1 − r2)),

C1 = αsC F

2π

2

r2
log

(
1 − r2), (10)

which have been calculated long time before in Ref. [4]. We choose
the hard matching scale be μH = n̄ · q = mt(1 − r2) to eliminate
large logarithms.

Now we turn to the matching between SCETI and SCETII, which
will determine the coefficient T (t, z) in the fragmenting jet func-
tion. The matching is done at decay rate level at the limit y → 0.
Thus the coefficient is dominated by those singular terms in this
limit.

The diagrams for usoft and collinear real emissions at next-to-
leading order in αs are shown in Figs. 3 and 4, respectively. The
amplitude square coming from the usoft emission is the same as
making the eikonal approximation in QCD which gives

|M|2usoft = g2
s C F |M|20

(
2

n · kv · k
− 1

(v · k)2

)
, (11)

where k is the momentum for the real gluon emitted.
The collinear diagrams can be evaluated using the SCET Feyn-

man rules [4]. However at certain regions of the phase space, for
example when y → 0 while z → 1, the collinear gluon momen-
tum k will become usoft and scales like Q (λ2, λ2, λ2) rather than
Q (λ2,1, λ). In this regime, the SCET diagrams will include a dou-
ble power counting. To get rid of double counting, we should sub-
tract the “zero-bin” contribution [10] from the collinear diagrams.
In our case, the zero-bin can be calculated simply by treating the
gluon with momentum k in Fig. 4 as a usoft mode. After perform
the zero-bin subtraction, collinear real emission is given by
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Fig. 3. Real emission of a usoft gluon in SCET.

Fig. 4. Real emission of a collinear gluon in SCET.

|M|2coll = g2
s C F |M|20

1

q2
gb

(
4n̄ · q

n̄ · k
+ (2 − 2ε)

n · q

n · qgb
− 4n̄ · qgb

n̄ · k

)
,

(12)

where q is the b quark momentum and qgb is the total momentum
for the b quark–gluon system. The last term in the equation above
corresponds to the zero-bin subtraction.

Combining usoft, collinear and zero subtraction, we calculate
the differential decay rates in SCETI, which yields

d2Γ I
R

dy dz
= αsC F

2π
Γ0|C H |2

(
4πμ2

m2
t (1 − r2)2

)ε
(1 + r)2ε

Γ (1 − ε)

× z−ε(1 − z)−ε

(
y

ymax

)−ε

(ymax − y)−ε

×
[

1

y

(
z2 + 1 − ε(1 − z)2

1 − z

)
− 2

(1 + r)2

1

(1 − z)2

]
,

(13)

where all the hard matching coefficients in Eq. (10) are included
in |CH|2.

To determine the coefficient T (t, z) in the fragmenting jet func-
tion, we compare the cross section calculated within SCETI and the
one in SCETII. The matching procedure is similar to Ref. [11]. How-
ever, in our case, extracting the singular contributions is compli-
cated due to the fact that ymax is not linear in z. A simple way to
do the matching is based on the fact that the fragmenting jet func-
tion is universal and in principle itself has no information about
the W boson mass, thus, formally this function doesn’t depend
on r explicitly. This allows us to set r to 0 to simplify the calcu-
lation. (In this case, ymax = 1 − z which is identical to Ref. [11].)
After obtaining the coefficient T (t, z), we then restore the r de-
pendence.

Here, we keep the r dependence explicitly. We slightly gener-
alize the method proposed in Ref. [11] to investigate the singular
behavior as y → 0 in Eq. (13) in Appendix A. The virtual correc-
tions to the cross section should also be included to this order.
Since the loops are scaleless and thus vanish in dimensional reg-
ularization. Therefore the infrared divergent part is the same as
minus the counterterm. Once including both real and virtual cor-
rections, we find that in SCETI
d2Γ I
R+V

dy dz
= αsC F

2π
Γ0|C H |2

{
δ(y)δ(1 − z)

×
(

− log

(
μ2

H

μ2

)
+ 1

2
log2

(
μ2

H

μ2

)
− π2

4

)

+ δ(y)

[
−1

ε
Pqq(z) + P̄qq(z) log(z)

+ (
1 + z2)( log(1 − z)

1 − z

)
+

+ (1 − z)

]

− 2

[
κ

(
1

κ y

)
+

+ κ

(
log(κ y)

κ y

)
+

]
δ(1 − z)

+ κμ2
H

μ2

(
1

κμ2
H

μ2 y

)
+

P̄qq(z)

}
, (14)

where we define κ = 1/(1 + r)2 and μH = mt(1 − r2). We have
used the identity (38) for the plus-prescription in Appendix A.
Here

Pqq(z) = 1 + z2

(1 − z)+
+ 3

2
δ(1 − z) = P̄qq(z) + 3

2
δ(1 − z), (15)

is the quark to quark splitting function.
In SCETII the decay rates read as

d2ΓII

dy dz
= Γ0|C H |2 m2

t (1 − r)2

2(2π)3

×
p+

gb∫
0

dk+
1∫

z

dx

x
Tbb

(
μHk+,

z

x

)
Db(x)St

(
p+

gb − k+)
.

(16)

By definition, p+
gb = mt(1 − r)/(1 + r)y and we suppress the scale

dependence here. We can perform expansions for those functions
involved in the differential decay rates to order αs ,

Tbb
(
ωk+, z

) = 2(2π)3
(

δ
(
ωk+)

δ(1 − z) + αsC F

2π
T (1)

bb

(
ωk+, z

))
,

St
(
k+) = δ

(
k+) + αsC F

π
S(1)

t

(
k+)

,

Db(x) = δ(1 − x) − αsC F

2πε
Pqq(x). (17)

Therefore, omitting the leading term in αs , we can manipulate
Eq. (16) to the form

d2Γ
(1)

II

dy dz
= αsC F

2π
Γ0|C H |2

[
δ(y)

−Pqq(z)

ε

+ 2δ(1 − z)(κμH )S(1)
t (κμH y)

+ (
κμ2

H

)
T (1)

bb

(
κμ2

H y, z
)]

. (18)

The shape function here is the same as the one in B meson
decay which has been calculated in Ref. [3]. We follow their pro-
cedure to get

(κμH )S(1)
t (κμH y)

= δ(y)

(
−1

2
log

(
μ2

H

μ2

)
+ 1

4
log2

(
μ2

H

μ2

)
− π2

24

)

− κ

(
1

κ y

)
+

− κ

(
log(κ y)

κ y

)
+

− κμ2
H

μ2

(
log(

κμ2
H

μ2 y)

κμ2
H

μ2 y

)
+
.

(19)



90 X. Liu / Physics Letters B 699 (2011) 87–92
Plugging Eq. (19) into Eq. (18) and comparing with the decay rate
in SCETI (14), we can derive the coefficient Tbb

T (1)

bb (t, z) = δ(t)

(
P̄qq(z) log(z) + (

1 + z2)( log(1 − z)

1 − z

)
+

+ (1 − z) − π2

6
δ(1 − z)

)
+ 1

μ2

(
1

t/μ2

)
+

P̄qq(z)

+ 2

μ2

(
log(t/μ2)

t/μ2

)
+
δ(1 − z). (20)

Here t = κμ2
H y is the invariant jet mass. Requiring all large loga-

rithms to vanish, the intermediate matching scale should be set to
the jet mass, μ2

c = t . And we see from Eq. (20) that formally the
matching coefficient can not depend on r as we explained before.
We can check that after integrating Eq. (20) over z, we recover the
massless collinear quark jet function at order αs in SCET.

3. Running

The differential decay rate has several well separated scales μH ,
μc and μs involved. To go from one scale to another, we use the
renormalization group equation to sum up large logarithms. First
the SCETI operators are run from hard scale μH , using the SCETI
RGEs, down to the collinear scale μc at which SCETI is matched
onto SCETII. Then we run the shape function to the scale μs =
μ2

c /μH .
There are several ways to perform this procedure [12–14]. We

choose to do the running in the moment space then by take the
inverse Mellin transform to obtain a resummed decay rate [12]. In
the moment space the formula for the decay rate could be written
as

ΓN = Γ0
∣∣C H (μc)

∣∣2
1∫

z

dx

x
T̂

(
z

x
, N,μc

)
Db(x,μc) Ŝt(N,μs). (21)

To obtain the moment space decay rate above, we first normalize
the fragmenting jet function and the shape function in a way that
both functions are dimensionless quantities, which we use hats to
represent for. We define a variable ȳ = 1 − y and the moments are
taken respect to ȳ. Also we introduce u to express k+ in Eq. (16)
in terms of κμH (1 − u). In the regime y → 0, ȳ → 1, large N limit
is achieved. In moment space, the scales are μc = μH

√
κ/

√
N̄ and

μs = κμH/N̄ . The hard scale μH is the same as defined in the
previous section.

At the collinear scale μc , the large logarithms in the matching
coefficient T̂ vanish, which gives

T̂ (z, N,μc) = δ(1 − z) + αsC F

2π

(
log(z) P̄qq(z)

+ (
1 + z2)( log(1 − z)

1 − z

)
+

+ (1 − z)

)
. (22)

The only N dependence are through μc in the strong coupling αs .
Now we take another Merlin transform respect to z,

ΓN M = Γ0
∣∣C H (μc)

∣∣2
(

1 + αs(μc)C F

2π
T (M)

)
× Db(M,μc) Ŝt(N,μs). (23)

The running of the fragmentation function D(M,μ) in the moment
space is given by

μ
d

D(M,μ) = αs
a(M)D(M,μ). (24)
dμ 4π
The leading order solution is then

D(M,μc) = D(M,μH )exp

(
a(M)

2β0
log(1 − χ)

)
≡ D(M,μH )exp

(
hM(χ)

)
, (25)

with χ = log(N̄/κ)αs(μH )β0/4π and β0 = (11C A − 2n f )/3. To the
leading order, the running of the combination αsC F /(2π)T (M)×
D(M,μ) satisfies similar equation as Eq. (25) with a(M) replaced
by 4a(M) − 2β0. Therefore, we can define h′

M(χ) in the same way
as hM(χ) and have

αs(μc)C F

2π
T (M)D(M,μc)

= αs(μH )C F

2π
T (M)D(M,μH )exp

(
h′

M(χ)
)
. (26)

All M dependence has been moved into factor hM and h′
M .

The running of the SCETI currents along with the shape func-
tion could be lifted from Ref. [11]. We obtain the following re-
summed decay rate in the moment space:

ΓN M = Γ0
∣∣C H (μH )

∣∣2
elog(N/κ)g1(χ)+g2(χ) Ŝt(N,μs)

×
(

ehM (χ) + eh′
M (χ) αs(μH )C F

2π
T (M)

)
Db(M,μH ), (27)

where

g1(χ) = − 2Γ1

β0χ

[
(1 − 2χ) log(1 − 2χ) − 2(1 − χ) log(1 − χ)

]
,

g2(χ) = −8Γ2

β2
0

[− log(1 − 2χ) + 2 log(1 − χ)
]

− 2Γ1β1

β3
0

[
log(1 − 2χ) − 2 log(1 − χ)

+ 1

2
log2(1 − 2χ) − log2(1 − χ)

]

+ 4γ1

β0
log(1 − χ) + 2B1

β0
log(1 − 2χ)

− 4Γ1

β0
log n0

[
log(1 − 2χ) − log(1 − χ)

]
, (28)

with n0 = eγE and

Γ1 = 4C F , Γ2 = C F

[
C A

(
67

36
− π2

12

)
− 5n f

18

]
,

B1 = −4C F , 2γ1 = −3

2
C F ,

β1 =
(

34

3
C2

A − 10

3
C An f − 2C F n f

)
. (29)

Evaluating the inverse Mellin transform with respect to N using
the results of Ref. [12] shows that

dΓM

dy
= Γ0

∣∣C H (μH )
∣∣2

1∫
1−y

du

u
Ŝt

(
1 − y

u

)

×
[
−u

d

du

(
θ(1 − u)

elg1(l)+g2(l)

Γ [1 − g1(l) − lg′
1(l)]

×
(

ehM (l) + eh′
M (l) αs(μH )C F

2π
T (M)

)
Db(M,μH )

)]
,

(30)
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where l = −αsβ0/(4π) log(1 − u) and g′
1(l) = dg1(l)/dl. The factor

hM(l) can be eliminated using Eq. (25)

ehM (l)D(M,μH ) = exp

[
a(M)

2β0
log(1 − l)

]
D(M,μH )

= D(M, κμH
√

1 − u ), (31)

and the same thing holds for h′
M(l).

After eliminating both factors hM and h′
M , all the M depen-

dence is now entirely included in the moments of the fragmenta-
tion function, so the inverse Mellin transform with respect to M is
straightforward. Hence we derive the resummed decay rate:

d2Γ

dy dz
= Γ0

∣∣C H (μH )
∣∣2

1∫
1−y

du

u
Ŝt

(
1 − y

u

)

×
[
−u

d

du

(
θ(1 − u)

elg1(l)+g2(l)

Γ [1 − g1(l) − lg′
1(l)]

×
(

δ(1 − z) + αsC F

2π
T̃ (1)(z)

)
⊗ Db(z, κμH

√
1 − u)

)]
,

(32)

where the convolution is defined as f ⊗ g = ∫ 1
z dx/x f (x)g(x/z)

and T̃ (1)(z) is the second term in Eq. (22). We note that in the
second line the αs has an scale dependence on κμH

√
1 − u which

has been suppressed. Due to the universality of the fragmenting
jet function, Eq. (32) can also be applied to other processes like
heavy meson decay B → X Kγ and so on. When applying Eq. (32),
we should be careful in dealing with the Landau poles since the
functions gi(l) blow up as u approach 1. A simple way to avoid
Landau pole is to set an upper limit on u. And it has been argued
that the difference between integrating to this upper limit umax
and to one is of order power suppressed corrections [15].

4. Summary

We have discussed the top quark doubly differential decay rate
near the phase space boundary where the W boson carries its
maxim energy within the framework of soft collinear effective the-
ory. The factorization theorem for top quark decay is similar to
the one for B → X Kγ , in which a novel fragmenting jet func-
tion arises in replacement of the standard parton fragmentation
function. The fragmenting jet function provides information on the
invariant mass of the jet from which a detected hadron fragments.
In this work we calculated the fragmenting jet function to next-
to-leading order in αs by comparing the decay rates calculated
in SCETI and SCETII. We also check the relation between our de-
rived fragmenting jet function with the inclusive collinear quark
jet function, finding that they satisfy J (t) → G(t, z)dz as indicated
in Ref. [8]. We use the renormalization group equation to sum up
large logarithms involved in the decay rates. After resummation,
we arrive at an analytic formula for the distribution. Our results
can be applied to other heavy hadron decay processes with a de-
tected light hadron like B meson radiative decay. And the result of
this work may help tuning event generators such as Herwig.
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Appendix A

In this appendix, we show how to extract contributions which
are singular as y → 0. And for this reason we will drop all terms
which are regular in this limit.

First we consider the combination of the form

I1[y, z] ≡ (1 + r)2ε y−1−ε yε
max(ymax − y)−ε

(1 − z)1+ε
, (33)

where ymax = (1 + r)2z(1 − z)/(z + r2(1 − z)).
We start with considering the integration

zmax∫
zmin

dz I1[y, z](g(z) − g(1)
) + g(1)

zmax∫
zmin

dz I1[y, z], (34)

with zmax = 1−1/(1+r)2 y + O(y2) and zmin = O(y). So zmax goes
to 1 as y goes to 0 while zmin approaches to 0 in this limit.

Due to the distributional identity,

1

y1+ε
= −1

ε
δ(y) +

(
1

y

)
+

− ε

(
log y

y

)
+
, (35)

the non-singular contributions as y → 0, including the integration
limits, in the first term of Eq. (34) could be expanded around y = 0
and leaves out all terms of order O(y) or higher. Thus the first
term becomes

(1 + r)2ε y−1−ε

1∫
0

dz
g(z) − g(1)

(1 − z)1+ε

= (1 + r)2ε y−1−ε

1∫
0

dz

[(
1

1 − z

)
+

− ε

(
log(1 − z)

1 − z

)
+

]
g(z).

(36)

Using the distributional identity and expand in ε gives that

zmax∫
zmin

dz I1[y, z](g(z) − g(1)
)

=
1∫

0

dz

{
δ(y)

[
−1

ε

(
1

1 − z

)
+

+
(

log(1 − z)

1 − z

)
+

]

+ κ

(
1

κ y

)
+

(
1

1 − z

)
+

}
g(z). (37)

Here κ = 1/(1 + r)2 and we have applied the relation

κ

(
logn(κ y)

κ y

)
+

= logn+1(κ)

n + 1
δ(y)

+
n∑

k=0

n!
(n − k)!k! logn−k(κ)

(
logk(y)

y

)
+
. (38)

Now we turns to the second term in Eq. (34) by considering a fur-
ther integration

1∫
0

dy

zmax∫
zmin

dz I1[y, z]( f (y) − f (0)
) + f (0)

1∫
0

dy

zmax∫
zmin

dz I1[y, z].

(39)
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Since the first term in the equation above is finite as y → 0. We
can set ε = 0 and then perform the integration over z, which re-
sults in

1∫
0

dy

zmax∫
zmin

dz I1[y, z]( f (y) − f (0)
)

= −
1∫

0

dy
1

y
log

(
1 − zmax

1 − zmin

)(
f (y) − f (0)

)

= −
1∫

0

dy κ

(
log(κ y)

κ y

)
+

f (y). (40)

The last equation is obtained by expanding zmax and zmin around
y = 0, e.g., log(1 − zmax) = log(κ y(1 + O(y))) = log(κ y) + O(y),
and ignore all the non-singular contributions in y.

Evaluating the integration of the second term in Eq. (39) gives

f (0)

1∫
0

dy

zmax∫
zmin

dz I1[y, z] =
(

1

2ε2
− π2

12

)
f (0). (41)

Gathering all the pieces, we have
zmax∫

zmin

dz I1[y, z]g(z)

=
1∫

0

dz

[
δ(y)

((
1

2ε2
− π2

12

)
δ(1 − z)

− 1

ε

(
1

1 − z

)
+

+
(

log(1 − z)

1 − z

)
+

)

+ κ

(
1

κ y

)
+

(
1

1 − z

)
+

− κ

(
log(κ y)

κ y

)
+
δ(1 − z)

]
g(z).

(42)

Next we consider another integration which will contribute to
the non-singular part as y goes to 0
zmax∫

zmin

dz I2[y, z]g(z)

= 2

(1 + r)2−2ε
y−ε

zmax∫
zmin

dz
yε

max(ymax − y)−ε

(1 − z)2+ε
g(z). (43)
We note that here g(z) can be replaced by g(1) since those terms
behave like

∫
d1/(1 − z) ∝ log(y) are non-singular.

Then we use

1∫
0

dy

zmax∫
zmin

dz I2[y, z]( f (y) − f (0)
) + f (0)

1∫
0

dy

zmax∫
zmin

dz I2[y, z]

= 2

(1 + r)2

1∫
0

dy

zmax∫
zmin

dz
1

(1 − z)2

(
f (y) − f (0)

)

+ f (0)

1∫
0

dy

zmax∫
zmin

dz I2[y, z]

=
1∫

0

dy

(
2κ

(
1

κ y

)
+
δ(1 − z) − 1

ε
δ(y)δ(1 − z)

)
f (y). (44)

Again, we have expand zmax and zmin around y = 0 and throw
away regular contributions.

Therefore

zmax∫
zmin

dz I2[y, z]g(z)

=
1∫

0

dz

(
−1

ε
δ(y)δ(1 − z) + 2κ

(
1

κ y

)
+
δ(1 − z)

)
g(z). (45)
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