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1. Introduction 

There is a good deal of evidence suggesting that 
adenosine and its phosphorylated derivatives (adeno- 
sine mono-, di- and triphosphate) might act in the 
brain like a neurohumoral substances. These com- 
pounds can be taken up into brain slices [ 1,2] or 
synaptosomal fractions [3] through a specific uptake 
system. Furthermore they are released by electrical 
field stimulation and K’ [2,4,5] such release being 
Ca” dependent [3]. Adenosine and its phosphorylated 
derivatives inhibit the firing of Purkinje [6] and 
olfactory cortex neurones [7]. Like other well-known 
neurotransmitters, adenosine derivatives induce the 
accumulation of adenosine 3’,5’-monophosphate 
(cyclic AMP) in brain slices [ 1,7,1 l] and neuronal 
cell lines in culture [ 12,151. Two mechanisms may 
be involved in this effect. Adenosine can be converted 
into ATP in a pool accessible to adenylate cyclase, 
but this is unlikely, since prevention of adenosine 
uptake by dipyridamole does not inhibit cyclic AMP 
accumulation induced by adenosine [ 121. In addition, 
2 chloro-adenosine, which is not converted into AT?, 
increases cyclic AMP production [ 161. Adenosine 
(and possibly its phosphorylated derivatives) could 
increase cyclic AMP production by actin extra cellu- 
larly on a specific membrane receptor coupled with an 
adenylate cyclase. The present report confirms this 
last hypothesis since we were able to demonstrate the 
presence of an adenosine-sensitive adenylate cyclase 
in striatum homogenates. 

2. Methods 

Male Charles River rats of the Sprague Dawley 
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strain (35%450 g) were killed by decapitation, their 
brain removed and the striata dissected at 4°C with 
glass manipulators. Tissues were homogenized (five 
strokes) using a Dounce homogenizer in 2 mM Tris- 
maleate, pH 7.2 and 2 mM EGTA (2 striata in 3 ml) 
at 4°C. Homogenates were filtered through a silk- 
screen (150 w pore diameter). Homogenate, 20 ~1, 
was then added to 60 d of a solution containing 41 mM 
Tris-maleate, pH 7.2,1.6 mM MgS04, 0.42 mM ATP, 
33 mM creatine phosphate, 0.33 mg/ml creatine 
kinase, 1.6 X lOa M papaverine and adenosine-dea- 
minase (0.4 IU/ml) when necessary. After 2 min incu- 
bation at 30°C, 20 /.d of a solution containing l-3 ~1 
[~Y-‘~P] ATP and 0.00 1 ,ul cyclic- [ 3H] AMP as an internal 
recovery standard were added. The reaction was allow- 
ed to proceed for 5 min. The cyclic-[ti-32P]AMP 
formed was isolated according to Salomon et al. [ 171. 

3. Results and discussion 

When the phosphodiesterases present in the homo- 
genates were inhibited by papaverine, the addition of 
methylxanthines (theophylline, caffeine and isobutyl- 
methylxanthine (IBMX) reduced adenylate cyclase 
activity by about 60% (fig. 1). In this experiment, 
papaverine effectively blocked the phosphodiesterases 
since the addition of 1 mM unlabelled cyclic AMP, 
which should reduce the eventual hydrolysis of the 
labelled cyclic AMP formed, did not increase the 
amount of labelled cyclic AMP recovered (fig.1). 
Moreover external cyclic- [ 3H] AMP was added during 
incubation to correct the slight hydrolysis of cyclic- 
[32P]AMP formed during the assay. In any case, the 
decrease in adenylate cyclase activity induced by 
methylxanthines cannot be related to the latter’s 
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Fig.1. Effect of cyclic AMP, methylxanthines and adenosine- 
deaminase on the adenylate cyclase activity of rat striatal 
homogenates. The concentrations of drugs were as follows: 
cyclic AMP low3 M, theophylline, (Theo) 6 X lo-“ M, caffeine 
(Gaff) 5 X lo-” M, isobutylmethylxanthine (IBMX) lo-’ M 
and adenosine-deaminase (ADA) 0.4 N/ml. The protein con- 
centration in the assay was 0.310 mg/ml. Each value is the 
mean f SE of three determinations. 

known phosphodiesterase-blocking activity. Since 

methylxanthines prevent the increase in cyclic AMP 
accumulation induced by adenosine in brain slices [B] , 
their inhibiting effect on the adenylate cyclase activity 
in our cell-free preparation might result from the 
blockade of an adenosine-sensitive adenylate cyclase 

stimulated by endogeneous adenosine. To test this 
hypothesis, adenosine-deaminase (ADA) was added 

for a preincubation period of 2 min and throughout 
the adenylate cyclase assay. As shown in fig. 1, ADA 

reduced control adenylate cyclase activity by 47%. 
Furthermore, the ADA and theophylline effects were 
not additive. These results confirm the presence of 
adenosine in the incubation medium and its stimulating 
effect on basal adenylate cyclase activity. The inhibi- 
tion of the adenylate cyclase activity by theophylline, 
was concentration-dependent and was reversed by 
increasing concentrations of adenosine (fig.2). In the 
absence of theophylline, adenosine did not significa- 
tively enhance cyclic AMP production (tig.2). Thus, 
adenosine was present in the assay at a concentration 
leading to maximal stimulation of the adenosine- 
sensitive adenylate cyclase. In preliminary experiments, 
an adenosine concentration of 10 f 2.25 X 10e6 M 
(n = 4) was found in striatal homogenates correspond- 

Fig.2. Effect of theophylline and adenosine on adenylate 
Wlase activity. A, Dose-dependency of theophylline inhibi- 
tion. B, Effect of adenosine on adenylate cyclase activity in 
the absence and presence of theophylline (6 X 10m4 M). The 
experiment was conducted in the absence of ADA. The 
protein concentration in the assay was 0.280 mg/ml. Each 
value is the mean of two determinations with 5% of the mean. 

ing to a final concentration of 2 X 10m6 M in the assay. 
The slight inhibition of adenylate cyclase activity by 

high concentrations of adenosine (> 1 O-’ M, tig.2) 

was probably a result of the competition between 
adenosine and ATP for the catalytic site of the adeny- 

late cyclase. 
The effects of several adenosine analogs and deriva- 

tives on the adenosine-sensitive adenylate cyclase were 

evaluated under three conditions: 
(i) Control (presence of endogeneous adenosine). 
(ii) In the presence of ADA. 
(iii) In the combined presence of ADA and Nh- 

phenyl-isopropyl-adenosine (PIA), an adenosine analo- 

gue resistant to the deamination. 
5’-Adenosine-monophosphate (5’-AMP) was neither 

an agonist nor an antagonist of the adenosine receptor 
(table 1). This contrasts with what was observed in 

brain slices [ 7,8,11] . A dephosphorylation of ?-AMP 
might occur in intact tissues. Inosine, the product of 
adenosine-deaminase and adenine, the precursor of 
adenosine, did not stimulate or inhibit the adenosine- 
sensitive adenylate cyclase (table 1). 2’- and 3’-deoxy 

adenosine reduced the stimulating effect of adenosine 
(see Control, table 1). However this effect was non- 
competitive with adenosine and was probably due to 
an action on the catalytic site of the enzyme (manu- 
script in preparation). 2 chloro-adenosine and PIA, 
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Table 1 
Specificity of adenosine-sensitive adenylate cyclase 

Adenylate cyclase activities (cyclic AMP pmol/5 min/mg protein) 

Addition Control ADA ADA + PIA Deaminated by ADA 

None 1767 1093 1770 
Adenine 1697 976 1697 - 

Adenosine 1720 nd nd + 
2’-Deoxyadenosine 1441 1116 1767 + 
3’-Deoxyadenosine 1395 1069 1860 + 
5’-Deoxyadenosine 1511 1418 1395 - 
2-chloro-adenosine 1786 1802 1848 - 
5’-AMP 1744 976 1697 - 
Inosine 1674 976 1697 - 

Drug concentrations were 10S4 M except for 5’-AMP and PIA which were at lo-’ M. 
The protein concentration was 0.43 mg/ml. Each value is the mean of two determina- 
tions which were within 5% of the mean. 

two compounds not deaminated by ADA, were potent 

agonists (table 1 and fig.3). Finally, as in brain slices 
[11],5’-deoxyadenosine was found to be a partial 

$ 1000 
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Fig.3. Effect of 2-chloro-adenosine and N,-phenyl-isopropyl- 
adenosine (PIA) on adenosine-sensitive adenylate cyclase 
activity. The experiment was conducted in the presence of 
adenosine-deaminase (0.4 W/ml). These two adenosine 
analogues were chosen because of their resistance to deamina- 
tion. In the presence of ADA and absence of an agonist, 
the adenylate cyclase activity was 877 f 14 pmol/5 min/mg 
protein (n = 4). The apparent affinities of 2-chloro-adenosine 
and N,-phenyl-isopropyl-adenosine for the adenosine receptor 
site were 1.2 X low6 M and 3.2 X lOWe M respectively. The 
protein concentration was 0.290 mg/ml. Each value is the 
mean of two determinations which were within 5% of the 
mean. 

agonist of the adenosine-sensitive adenylate cyclase 

(table 1). Whereas adenosine is known to stimulate 

adenylate cyclase in a cell-free preparation from 
several cultured nervous cell lines [13,14], fibroblasts 
and bone cells [ 181, the foregoing results provide, to 
our knowledge, the first indication of an adenosine 

sensitive adenylate cyclase in a cell-free preparation 
from central nervous system. 

The presence of an adenosine-sensitive adenylate 
cyclase in a cell-free preparation of the brain confirms 
the assumption that, in brain slices, adenosine- 

induced cyclic AMP formation is mediated by the inter- 

action of adenosine with a specific receptor coupled 
with an adenylate cyclase. This adenylate cyclase 

system could be of further help in studying the 

possible role of adenosine in neurotransmission pro- 

cesses. The adenosine-sensitive adenylate cyclase in 

cell-free preparation is exclusively stimulated by 
adenosine, which contrasts with what was observed in 
brain slices, where phosphorylated derivatives of 
adenosine acted as agonists [7,8] . Adenosine is therefore 

the best candidate to be the purine neurotransmitter 
in the central nervous system. 
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