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Abstract

The term visual adaptation describes the processes by which the visual system alters its operating properties in response to changes in
the environment. These continual adjustments in sensory processing are diagnostic as to the computational principles underlying the neu-
ral coding of information and can have profound consequences for our perceptual experience. New physiological and psychophysical
data, along with emerging statistical and computational models, make this an opportune time to bring together experimental and the-
oretical perspectives. Here, we discuss functional ideas about adaptation in the light of recent data and identify exciting directions for
future research.
� 2007 Elsevier Ltd. All rights reserved.
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1. Encoding aspects of adaptation

Our sensory systems encode information about the envi-
ronment as patterns of activity across populations of neu-
rons. An appealing hypothesis states that the response
properties of neurons in sensory areas of the brain are
matched to the signals to which they are exposed (e.g. Att-
neave, 1954; Barlow, 1961; Chechik et al., 2006; Fairhall,
Lewen, Bialek, & de Ruyter Van Steveninck, 2001).
According to this hypothesis, adaptation serves to main-
tain that match across changes in the diet of sensory stim-
ulation. Understanding the link between sensory
processing and environmental stimuli requires a better
grasp of the statistical structure of environmental stimuli.
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This area has progressed rapidly over the past decade, lar-
gely due to stronger computing power and advances in sig-
nal processing methodologies (Simoncelli & Olshausen,
2001).

Images of the natural world are highly structured over
both space and time. For instance, the intensity values of
neighboring spatial regions of an image tend to be similar
(Field, 1987; Ruderman & Bialek, 1994; Simoncelli & Ols-
hausen, 2001). This means that information about any
given point in the image is contained in the recent history
of the image structure at that point (temporal context)
and the structure of the surrounding image (spatial con-
text). Adaptation and surround modulation at the neuro-
nal level might then exploit these regularities in image
structure to optimize sensory coding (Schwartz, Hsu, &
Dayan, 2007). The statistical analysis of natural images
has been used to derive neural models using principles of
efficient coding of the input signals such as redundancy
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Fig. 1. Schematic of the repulsive direction aftereffect (Levinson and
Sekuler, 1976). (a) Prior to adaptation, the direction of a pattern of dots
moving vertically upwards is perceived veridically. (b) Adaptation is
induced by prolonged exposure to a pattern of dots moving in an oblique
direction. (c) Following adaptation, the perceived direction of a pattern of
dots moving vertically upwards is repelled away from the adapting
direction of motion.
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reduction so that the outputs of neurons in the model tend
towards statistical independence (e.g. Li & Atick, 1994;
Olshausen & Field, 1996). Image statistics approaches have
led to models of contextual modulation that can be directly
tested against neuronal data from visual cortex (e.g. Rao &
Ballard, 1999; Schwartz & Simoncelli, 2001). While such
approaches have largely been applied to neuronal data
on simultaneous spatial context, there have been only pre-
liminary studies on adaptation (Buiatti & van Vreeswijk,
2003; Wainwright, Schwartz, & Simoncelli, 2002). There
thus remains extensive scope to consider models of adapta-
tion informed by the statistical structure of natural image
sequences.

2. Decoding aspects of adaptation

To support decisions or behaviours, the information
encoded by our sensory systems must be decoded into an
appropriate form. Increasing evidence suggests that
humans can combine stored knowledge and noisy sensory
observations in an optimal fashion when performing a per-
ceptual task. The Bayesian formulation of this problem
defines the optimal strategy and provides a principled yet
simple computational framework for perception. The
Bayesian approach can account for a large range of exist-
ing perceptual data (see Knill & Richards, 1996, for a col-
lection of early work) and has also found resonance in
image statistics frameworks (e.g. Geisler, Perry, Super, &
Gallogly, 2001).

In a recent study of visual motion perception, Stocker
and Simoncelli (2006a) showed that human performance
on a trial-by-trial basis is well explained by a Bayesian
observer model that is optimal with respect to uncertainty
reflected in the encoded sensory signals, where uncertainty
includes external (stimulus) as well as internal (neural)
noise. If the Bayesian observer model provides a valid
and general computational explanation of perception then
it ought to account for the known aftereffects of adapta-
tion. Adaptation results in two fundamental changes on
subsequent perception of suprathreshold stimuli (Clifford,
2002). Firstly and most saliently, it leads to a perceptual
bias (Levinson & Sekuler, 1976) where the estimate of the
stimulus parameter is repelled from the value of the adap-
tor (Fig. 1). Secondly, it changes the ability of the observer
to discriminate stimulus parameters, where discrimination
thresholds typically decrease for parameter values very
similar to the adaptor, yet increase at values rather different
from the adaptor (e.g. Phinney, Bowd, & Patterson, 1997).

An intuitive hypothesis is that adaptation changes the
prior distribution in the Bayesian observer model. The
prior is meant to reflect the distribution of values of the
perceptual variable in the world. If the prior is estimated
from the recent history of values sampled by the organism
then repeated presentation of the same value should
increase the prior probability in its vicinity. A qualitative
examination, however, reveals such a change in the prior
distribution would lead to a perceptual bias that is opposite
to the repulsive aftereffect (Fig. 2). Rather, a sensible
change in the likelihood function within the Bayesian
observer model can account both for aftereffects and for
changes in discrimination threshold induced by adaptation
(Stocker & Simoncelli, 2006b). The likelihood function
changes according to an increase in signal-to-noise ratio
of the sensory signal in the vicinity of the adaptor value.
Such an increase in sensory signal quality seems in qualita-
tive agreement with ideas of efficient coding. This raises the
promise that adaptation may be understood on the basis of
a single, principled computational framework combining
bottom-up efficient sensory encoding and top-down Bayes-
ian decoding.
3. Adaptation at the single cell level

At the neuronal level, various forms of adaptation have
been identified at multiple stages of processing in early sen-
sory pathways. For example, biophysically distinct mecha-
nisms of adaptation to the mean luminance and contrast of



Fig. 2. Hypothetical Bayesian model in which adaptation changes the
prior distribution. Top: a Bayesian estimator optimally combines sensory
evidence (given by the likelihood function—grey curve) with stored
knowledge (represented as the prior probability distribution—bold curve)
by multiplying both functions to obtain a posterior probability distribu-
tion. A sensible choice for the estimate ĥpre is e.g. to select the h with
highest probability. Note, that for reasons of readability, we chose the
prior distribution to be flat initially, in which case the posterior
distribution becomes identical with the likelihood function (up to a scale
factor). Bottom: Assuming that adaptation leads to an increase of the
prior distribution around the adaptor hadapt, the posterior, and thus the
estimate ĥpost, would be shifted toward the adaptor. Thus, changing the
prior distribution results in an attractive shift (red arrow) of the estimate
toward the adaptor rather than the experimentally reported repulsive
aftereffects (e.g. Levinson and Sekuler, 1976). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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sinusoidal visual stimuli have been shown to exist in the
retina (Chander & Chichilnisky, 2001; Enroth-Cugell &
Shapley, 1973; Hosoya, Baccus, & Meister, 2005; Shapley
& Victor, 1978; Smirnakis, Berry, Warland, Bialek, & Mei-
ster, 1997), and similar functional effects have subsequently
been observed in the thalamus and cortex. Given that sen-
sory neurons are capable of diverse forms of adaptation, it
is intriguing to hypothesize that neurons can adapt, at least
partially, to any statistical parameter.

Sensory neurons are commonly characterized using the
linear–nonlinear model (Rieke, Warland, de Ruyter van Ste-
veninck, & Bialek, 1997). In this framework, the neural
response for a given stimulus depends on linear filtering of
the stimulus with a receptive field defined over some region
of visual space and time. The nonlinear aspects of neural
response are modeled by a function that relates the filtered
stimulus values to response probability. Both components
of the linear–nonlinear model—the linear filter and the non-
linear gain function—can be affected by adaptation (Marav-
all, Petersen, Fairhall, Arabzadeh, & Diamond, 2007; Nagel
& Doupe, 2006). Adaptation to different statistical parame-
ters of the stimulus can affect different aspects of neural
responses. Neurons can accommodate changes in the mean
luminance and contrast by adjusting the nonlinear function
(Chander & Chichilnisky, 2001; Rieke, 2001). For example,
if mean luminance is increased, neurons will typically adjust
their threshold for firing to maintain their average firing rate.
However a change in the distribution of image contrast
across different spatial frequencies requires adjustments at
the filtering stage if neurons are to maintain the optimality
of coding (Smirnakis et al., 1997).

What could be the goal of such adaptive changes in neural
coding? One theoretical idea is that adaptive behaviors at the
early stages of processing serve to maximize the efficiency of
encoding and, in particular, the amount of information
about the stimulus conveyed by spike times (Brenner, Bialek,
& de Ruyter van Steveninck, 2000; Rieke, Bodnar, & Bialek,
1995). If neurons performed only linear transformation of
incoming signals, then knowledge of input statistical proper-
ties would permit exact description of the filtering operations
that would maximize the amount of information transmis-
sion. Specifically, the transfer function of the optimal filter
for a linear system is inversely proportional to the amplitude
spectrum of the stimulus distribution up to some cut-off fre-
quency beyond which neural noise dominates (Atick & Red-
lich, 1990, 1992; Barlow, 1990; Linsker, 1989; Srinivasan,
Laughlin, & Dubs, 1982).

It is difficult however to generalize this argument to
apply to a linear–nonlinear system. Instead, one can make
predictions for how filtering properties should change after
a change in stimulus statistics in order to maintain coding
efficiency. Suppose the parameters of the linear–nonlinear
system are optimally suited for encoding a stimulus distri-
bution with some amplitude spectrum. Any change in the
stimulus distribution could then be compensated for by
adjusting neural filtering such that the filtered stimulus dis-
tribution remained unchanged. If such adjustments in fil-
tering could be achieved then there would be no need for
any adjustments at the nonlinear stage. Strictly speaking,
this argument only applies to stimuli taken from a corre-
lated Gaussian distribution. Despite this theoretical limita-
tion, simple cells in the primary visual cortex (V1) appear
to follow such an optimization principle in their response
to low spatial frequencies (Sharpee et al., 2006). When
probed with white noise and natural stimuli, neurons
adjust their filtering of low spatial frequencies in such a
way as to keep the spectral content of the filtered stimulus
distribution constant. However, at mid-to-high spatial fre-
quencies there are no changes in filtering so the filtered
stimulus distribution covaries significantly with the stimu-
lus distribution itself (Fig. 3).

Although the time scale of adaptation reported by Shar-
pee et al. (2006) is of the order of tens of seconds, this does
not, of course, exclude the possibility of adaptation at
shorter time scales. Several other forms of adaptation to
changes in stimulus statistics appear to be very rapid,



Fig. 3. Optimal adaptive filtering by simple cells in the primary visual cortex. Spectral content of natural (blue) and noise (red) stimuli is shown in the left
column. Average spectral content of neural filters from the linear–nonlinear model in shown in the middle column; blue (red) when derived from natural
(noise) stimuli. Neural filters were computed for 40 simple cells, using the method of maximally informative dimensions in order to compensate for effects
of non-Gaussian correlations in the input statistics (Sharpee et al., 2006). The rightmost column shows the spectral content of stimuli after filtering. At low
spatial frequencies, where neural filtering is stimulus-dependent, the spectral content of stimuli after filtering is the same. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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occurring nearly instantaneously and thus introducing the
possibility of a static nonlinear mechanism rather than an
active and ongoing process conventionally associated with
adaptation (Brenner et al., 2000; Baccus & Meister, 2002;
Fairhall et al., 2001; Maravall et al., 2007; McCormick,
Connors, Lighthall, & Prince, 1985; Nagel & Doupe,
2006; Nowak, Azouz, Sanchez-Vives, Gray, & McCor-
mick, 2003). A purely static nonlinear property would
not normally be regarded as adaptation rather than, say,
dynamic gain control. However, it is likely that different
elements of adaptation operate on different time scales,
reflecting a continuum from near instantaneous gain con-
trol (Chander & Chichilnisky, 2001; Fairhall et al., 2001;
Nagel & Doupe, 2006; Nowak et al., 2003) to slowly devel-
oping modulations in encoding properties (Baccus &
Meister, 2002; Hosoya et al., 2005; Sharpee et al., 2006).

4. Adaptation within a neural processing hierarchy

Adaptation has been investigated most extensively in the
early visual system, but several recent studies have explored
the adaptation of cortical areas linked more closely to per-
ceptual experience. One such study, by Kohn and Movs-
hon (2003), measured the spatial specificity of contrast
adaptation in area MT, an extrastriate area in the macaque
visual system important for motion processing (Dubner &
Zeki, 1971). They found that adaptation could alter con-
trast sensitivity in one subregion of an MT receptive field
without affecting sensitivity elsewhere, consistent with con-
trast adaptation occurring early in the processing stream
and simply being inherited by MT. Subsequently, Kohn
and Movshon (2004) reported that adaptation alters direc-
tion tuning in MT in a manner opposite to previously
described effects on tuning in V1 (Dragoi, Rivadulla, &
Sur, 2001; Dragoi, Sharma, & Sur, 2000; Dragoi, Sharma,
Miller, & Sur, 2002). Specifically, adaptation on the flank
of an MT tuning curve was found to cause the tuning curve
to shift toward the adaptor, rather than to be repelled from
it as in V1 (see also Krekelberg, van Wezel, & Albright,
2006). With a simple population decoding model, these
attractive shifts in tuning can explain the perceptual repul-
sion that follows adaptation. Such shifts also lead to a rel-
ative enhancement of the representation of frequently
occurring stimuli, a potential neural basis for the changes
in likelihood function required by Bayesian explanations
for perceptual effects (Stocker & Simoncelli, 2006b).

To understand adaptation at higher levels of a sensory
stream, it is important to know how neurons at each stage
of processing adapt and how plasticity occurring early in
the processing stream impacts downstream areas. In maca-
que IT cortex, for example, neuronal adaptation has been
reported to show greater selectivity than the response of
the corresponding neuron, suggesting that adaptation is
occurring at or before the level of synapses onto the neuron
(Sawamura, Orban, & Vogels, 2006). The effects observed
by Kohn and Movshon (2003, 2004) can also be attributed
to adaptation early in the visual system, with the novel
changes in MT tuning arising from an interaction between
adapted feedforward input and unaltered recurrent excit-
atory and inhibitory connections within MT. The complex
nature of some perceptual aftereffects (see below) suggests,
however, that higher levels of the visual system also adapt.
Further work is needed to understand the relative impor-
tance of low-level vs. high-level effects. Tracing the effects
of adaptation through the sensory system will undoubtedly
also elucidate the functional organization of the visual sys-
tem more generally.

Remarkably, adaptation to stimulus properties as
sophisticated as orientation, spatio-temporal correlation
(Hosoya et al., 2005) and relative motion can be observed
as early as the ganglion cells of the retina even though neu-
ronal selectivity for these properties is typically not
observed outside visual cortex. These findings go against
the long held view that pattern adaptation is evidence of
a feature detecting neuron selective for that pattern (Mol-
lon, 1977), suggesting that caution is required in interpret-
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ing the results of psychophysical studies of pattern adapta-
tion. Instead, Hosoya et al. (2005) demonstrate that a
recurrent network of model amacrine cells can implement
predictive coding (Srinivasan et al., 1982) dynamically
through synaptic plasticity, such that the stimulus proper-
ties to which the network adapts are modified ‘‘on the fly’’
in response to the changing environment.
5. Perceptual consequences of adaptation

Behavioural studies with human observers have recently
reported perceptual aftereffects to higher-level stimulus
properties such as the identity, gender, ethnicity, emotion
and attractiveness of faces (e.g. Rhodes, Jeffery, Watson,
Clifford, & Nakayama, 2003; Webster, Kaping, Mizokami,
& Duhamel, 2004). The robustness of these effects across
variations in size, position and orientation between the
adapting and test faces indicates that they are generated
at a high-level of the visual processing hierarchy rather
than inherited from adaptation at earlier stages of the
visual pathway (e.g. Watson & Clifford, 2003). The exis-
tence of such high-level aftereffects suggests that adaptive
coding is not only a property of the early stages of sensory
processing but is instead a strategy employed throughout
the perceptual processing hierarchy.

The dramatic nature of face aftereffects (Fig. 4) suggests
that one of the primary functions of adaptation may be to
regulate how things look (Webster, Werner, & Field, 2005).
One way this is important is to provide perceptual con-
stancy. Adapting to extraneous variations in the stimulus
(e.g. a change in the color signal when the lighting changes)
helps allow the visual system to maintain a stable percep-
tion of object properties (e.g. the surface reflectance). This
process may also be important for maintaining constancy
despite variations in the observer as sensitivity changes
during the lifespan, or even for different points in the visual
field. Thus, the object that appears white or in focus
remains largely the same in old or young observers, and
in the fovea or periphery, despite large differences in spec-
tral sensitivity or spatial resolution.

In addition, this constancy may be important for syn-
chronizing perception among observers by adapting them
Fig. 4. Adapting to a particular expression (e.g. a happy face) induces an
to a common environment. Qualities like ‘‘white’’ or ‘‘in
focus’’ represent perceptual norms. These norms play a
special role in anchoring many perceptions, from color to
faces, and adaptation may anchor these by normalizing
visual coding relative to the stimulus distributions to which
the observer is currently exposed, such as the average color
or the average face (Webster et al., 2004). These norms also
represent a prediction about the world, allowing higher-
level mechanisms the same economy of explicitly coding
only the ‘‘errors’’ in the predictions as is evident in the ret-
ina (Hosoya et al., 2005; Smirnakis et al., 1997; Srinivasan
et al., 1982) and primary visual cortex (Sharpee et al.,
2006). By discounting expected properties, a further func-
tional consequence of adaptation may be to increase the
salience of novel stimuli (Barlow, 1990). These novel stim-
uli are the very features of the world to which we are not
currently adapted, so much of what we notice about the
world arguably amounts to a visual ‘aftereffect’ (Webster
et al., 2005). For example, changes in motion sensitivity
are largely imperceptible while adapting to a waterfall
but have striking consequences when we shift our gaze to
the static surround. What is specifically striking is the
aftereffect—how the scene differs from the adapting pat-
tern. In the same way, at any moment we are under adap-
tation to certain recurring properties of the ambient
environment. The ‘aftereffect’ of this adaptation may be
that novel properties of the environment appear the most
conspicuous.

6. Summary and future directions

Consideration of efficiency suggests that the goal of sen-
sory coding and the goal of adaptation are intimately
related: to match the response properties of our sensory
systems to the prevailing environment. Establishing a com-
putational theory of sensory adaptation then entails deter-
mining which properties of the response distribution tend
to remain invariant across different stimulus distributions
(e.g. Sharpee, Rust, & Bialek, 2004) and establishing the
significance of potential constraints such as the metabolic
cost of neuronal activity (Laughlin, de Ruyter van Steven-
inck, & Anderson, 1998; Lennie, 2003).
after-‘‘affect’’ in a neutral face (e.g. so that it appears more angry).
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The natural environment has shaped the evolution and
development of our visual systems. Recent research has
shown that neuronal responses to naturalistic stimuli can-
not necessarily be inferred from the responses to conven-
tional ‘laboratory’ stimuli such as sine wave gratings
(Mante, Frazor, Bonin, Geisler, & Carandini, 2005; Shar-
pee et al., 2006). The difficulty of generalizing from simple
to complex stimuli underscores the need for a better under-
standing of the statistical structure of the environment.
Such an understanding will enable the development of arti-
ficial stimuli more closely matched to the statistical proper-
ties of naturalistic stimuli but whose properties can be
controlled systematically. The use of naturalistic stimulus
ensembles in turn requires new approaches for characteriz-
ing neuronal nonlinearities (e.g. Sharpee et al., 2004) if it is
to enhance our understanding of the computational basis
of adaptation.

As well as an appreciation of the statistics of natural
images, a complete model of sensory adaptation will
require detailed consideration of the uses to which the
encoded sensory information is to be put. The search for
a common computational framework in which to consider
the adaptive encoding of sensory information and the cor-
responding decoding operations is of major theoretical sig-
nificance. The integration of efficient sensory encoding with
Bayesian decoding (Stocker & Simoncelli, 2006b) is an
exciting innovation in this regard. Future work should
investigate the implementation of such a computational
framework in a biologically realizable architecture (e.g.
Rao, 2004) and explore the behaviour of such networks
under adaptation (e.g. Teich & Qian, 2003). Proposals of
the functional benefit provided by altered neuronal respon-
siveness and tuning will need to consider how these changes
affect downstream networks if any theory is to encompass
the multiple levels of the visual hierarchy and the range of
time scales over which adaptation occurs.

Finally, better characterization of the behavioural effects
of adaptation is required if psychophysical data are to
prove decisive between models. In domains such as orienta-
tion and motion perception, attractive aftereffects are
observed under some conditions instead of repulsion. The
ability to account for these phenomena may prove diagnos-
tic of the underlying mechanisms (Clifford, Wenderoth, &
Spehar, 2000). Application of techniques from signal detec-
tion theory such as equivalent noise analysis (Dao, Lu, &
Dosher, 2006; Pelli & Farell, 1999) might also be profitably
applied to tease apart the effects of adaptation on various
determinants of psychophysical discrimination perfor-
mance such as observer’s level of internal noise and sam-
pling efficiency.
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