
Theoretical
Computer Science

Theoretical Computer Science 170 (1996) 146

Fundamental Study

Interval logics and their decision procedures

Part II: A real-time interval logic ’

Y.S. Ramakrishna *, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, G. Kutty2

Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106, USA

Received September 1994; revised December 1995
Communicated by M. Nivat

Abstract

In a companion paper, we presented an interval logic, and showed that it is elementarily

decidable. In this paper we extend the logic to allow reasoning about real-time properties of
concurrent systems; we call this logic real-time future interval logic (RTFIL). We model time by
the real numbers, and allow our syntax to state the bounds on the duration of an interval. RTFIL
possesses the “real-time interpolation property,” which appears to be the natural quantitative
counterpart of invariance under finite stuttering. As the main result of this paper, we show that
RTFIL is decidable; the decision algorithm is slightly more expensive than for the untimed logic.
Our decidability proof is based on the reduction of the satisfiability problem for the logic to the
emptiness problem for timed Btichi automata. The latter problem was shown decidable by Alur
and Dill in a landmark paper, in which this real-time extension of w-automata was introduced.
Finally, we consider an extension of the logic that allows intervals to be constructed by means of
“real-time offsets”, and show that even this simple extension renders the logic highly undecidable.

* Corresponding address. Computer Science Department, SUNY Stony Brook, NY 11794, USA.; e-mail:

ysr@cs.sunysb.edu.

’ Research partially supported by NSF/ARPA grant CCR-9014382. Portions of this paper have appeared in

preliminary form as: A real-time interval logic and its decision procedure, in: Proc. 13th Found. Softw.

Tech. and Theoret. Comput. Sci., Lecture Notes in Computer Science, Vol. 761 (Springer, Berlin, 1993)

173-192. Most of the results also appear in the first author’s Ph.D. Thesis, Interval Logics for Temporal

Specification and Verification, Dept. of Elec. and Comput. Eng., University of California, Santa Barbara,

1993.
’ Current address: G.K. Mathew, GE Medical Systems, P.O. Box 414, W-657, Milwaukee, WI 53201-0414,

USA.

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
PZZ 0304-3975(96)00255-3

2 YS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Contents

1. Introduction .. 2

2. The extension to real time ... 3

2.1. syntax .. 4

2.2. Models .. 5

2.3. Semantics ... 7

2.4. On the choice of timing primitives ... 9

3. Decision procedure ... 11
3.1. Some preliminaries ... 13

3.2. Decision procedure .. .22
3.3. Proof of correctness3 0

3.4. Complexity of the decision problem .. .33
3.5. Tableaux: Reducing average-case complexity35

4. An undecidable extension35
4.1. Adding the “+ +” construct3 6

5. Related work .. .36

6. Conclusion .. .39
Appendix A .. .40

Appendix B .. .42
References45

1. Introduction

Much of the elegance and ease of using temporal logic derives from the abstraction

away from physical time, concentrating instead on the essential property of causal

ordering of events in a concurrent system. While many systems and algorithms are

amenable to this form of analysis, there are many situations where the correctness of

the system depends not only on the causal ordering of events, but also on their relative

real-time delays. In such cases one must be able to reason about the real-time values

of these delays in order to establish correct behavior.

There is growing consensus among practitioners that physical time should not be

treated as just another state variable - that it is special enough and used frequently

enough to require the development of explicit mechanisms for its manipulation. The

growing body of recent work in real time specification and verification more than attests

to this fact; as a small sampling of this work, we mention [1,4,6,13,20,23,28,29].

In this paper, we investigate an extension, with real time, of the purely qualitative

Future Interval Logic (FIL) that we presented in a companion paper [27]. We do so

by introducing a special duration predicate, parameterized with two rational constants,

which can be applied to intervals. This simple extension, as we show in the sequel, not

only gives us reasonable expressiveness, but also preserves decidability, thus making

the logic amenable to automation. Moreover, the resulting logic, in keeping with the

tradition in temporal logic, “hides” the time variable, thus preventing its improper

manipulation. We call this logic Real-Time Future Interval Logic (RTFIL).

The remainder of this paper approximately parallels our presentation of FIL in [27].

We start, in Section 2, with a brief informal description of the logic, then formally

introduce the extensions to FIL that yield RTFIL. After first introducing some

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 3

Fig. 1. The system for the example of Section 2.

preliminary background and machinery, we describe the decision procedure in Sec-

tion 3. We briefly discuss complexity issues at the end of that section. We then consider

an extension of RTFIL, and comment on related decidability issues in Section 4. Fi-

nally, we compare our logic with several other dense real-time logics and comment

briefly on related results. Section 6 contains concluding remarks and states some open

problems. An appendix gives details of proofs that do not appear in the body of the

paper.

Note: We make heavy reference, in this paper, to [27], where the untimed logic FIL

was introduced. In the remainder of the paper, we shall use “Part I” to mean the

companion paper [27].

2. The extension to real time

We introduce the real-time features of the logic with a simple example, expressed

in the graphical representation for RTFIL. We shall assume that the reader is already

familiar with the graphical representation for FIL introduced in Part I, Section 1.

Consider two interacting systems AB and C connected as shown in Fig. 1. System AB

requests permission to perform an action by raising signal a, and system C authorizes

the action by raising signal c and AB performs the action by raising signal b. Many

examples of such request/response protocols occur in real-time systems. The wires Q

and b are outputs from AB, and the wire c is an output of C. Wires a and c also

serve, respectively, as inputs to systems C and AB.

The external specification of AB is that whenever a is asserted, b remains false at

least until the input c becomes true. Moreover, whenever the input c is asserted, if the

module AB asserts its output b, it must do so within 4.0 time units. This specification

is represented graphically in the following formula:

t)
.-.----..--_ *

a
L ________. _ _____ __w

C

[
lb

L
.-------.--.-..--. +I

C
L,._,._,.,._______.)

Ib
len(0.0,4.0]

I

(1)

4 FYS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Note how the real-time property is stated by asserting that the duration of every interval

from a c-state to a b-state is more than 0.0 and at most 4.0 time units. In general,

the predicate len(di,dz] is true at the initial point of an interval if the duration of

the interval is more than di, and at most dz, time units. This duration predicate on

intervals is the only real-time construct in the syntax of RTFIL.

The following specification of C states that whenever input a is asserted, the output

c becomes true within 2.0 time units. The property is stated as a conjunction of two

formulae, the first stating a qualitative reactivity property, and the second specifying

the real-time requirement:

._____.. +I

a
L_......_..~.._.__~_._.~_.~~~~___~_~~~~~~~.... _______+r

I A
v 1

C

a
I________..........~

C
c-4

len(0.0,2.0]

The following example is a property of the overall system that can be deduced from

the preceding specifications; it states that the duration of every interval starting with a

and ending with the first subsequent b is at most 6.0 time units:

[1 ._____- _*
a
L_____._____.__.__.._____._____________~

b

;en(O.O,f3.0]
I

The deduction is shown in Fig. 2, with the endpoints of the intervals appropriately

aligned to illustrate better the underlying temporal intuitions.

For the remainder of the paper, we revert to the more compact textual representation

of formulae that we introduced in Part I. Recall that, using the textual representation,

the formula (2) above would be written

q ([+UI +)oc/\[-+u~ +a,+c)len(O,2])

2.1. Syntax

The syntax for RTFIL is simply that of FIL in Part I, with the extra primitives

len(O,d],d any non-negative rational, introduced at the level of propositions.

Thus, for the sake of recapitulation, the syntax of RTFIL is given by the BNF

grammar for FIL (Section 2.2, Part I), except that we also have duration

YS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 5

r 1’
L

._______.)I
I

a
L____.__________.__.__________________________________

[

A
V

C

,_______,y

a
L_____.__.__....__W

PC
len(0.0,2.0]

L
._______*

/

a
L_____.__....__.__pj

lb

E ,__________________w 1

C
L.______________.._.W

rb

len(0.0,4.0]

3

[._______.N 1

a
L______________..______________________~

r tb
L

len(0.0,6.0]
I

Fig. 2. Graphical representation of a deduction in RTFIL.

predicates.

f :: =true 1 p 1 len(O,d] 1 7f 1 fi A fi 1 If

I::=[-I@ I WI -) I uAl~2)

8::=+f I -f,tl

Note that any formula can be used to define the target of a search. The predicate

len(dI,m) is defined by 4en(0,dl], within any context, and consequently len(d,,d2]
is simply len(O,d2] A len(dl,a). We shall shortly comment upon our choice of the

half-open bound rather than all four different possibilities.

2.2. Models

We introduce real time into our semantic model by considering computations over

a dense time domain. Thus, RTFIL models are dense traces, providing a valuation to

every proposition at every instant t E R, where our time domain is the set R of non-

negative real numbers. Note that we could have chosen Q, the non-negative rationals,

6 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

as our time domain, requiring only denseness, but not completeness. However, it is

convenient to assume completeness as this simplifies the presentation of the seman-

tics. An RTFIL model is thus an element of (2”)R, where 9 is a set of primitive

propositions, as before.

Since the time domain is now no longer order-isomorphic with o, as was the case

with the untimed logic, FIL, we must restrict our models appropriately so as to rule

out non-Zen0 behaviours (or equivalently, so that we enforce finite variability). Finite

variability ensures that if any finite segment of R there are only finitely many state

changes of the system. This automatically ensures non-Zenoness, which requires that

in any infinite computation, time must progress beyond any bound.

We also make another restriction, which is not strictly necessary for our decidability

results, but which is natural in a state-based view of the world. We do not admit

models in which there are instantaneous states, i.e. states with no duration. Another

logic that explicitly makes this restriction is the Duration Calculus [131. Kurshan [181

also advocates this restriction in the context of modelling and verifying asynchronous

systems of processes. In the context of RTFIL, without this restriction, we could have

the anomalous situation of two events (marking, respectively, the transitions into and

out of an instantaneous state) occurring at the same real time, yet being ordered one

after the other. As indicated previously, such a semantics can be quite unintuitive.

Note, however, that the time spent in a state can be arbitrarily small as long as that

time is non-zero.

It is often convenient, for proofs by successive refinement, to use a logic that satisfies

a property that, after Schneider [29], we call temporal interpolation: Between the current

instant and the next instant at which the system is in a different state, the system resides

in the current state. We therefore require our models to be right-continuous, a property

that we define formally below. We complete the resulting model by closing the interval

on the left, i.e. for every state there is a first instant at which the system is in that

state (although, because of the above, there is no corresponding last instant). 3

The following definition of admissibility is relative to an arbitrary discrete, and

possibly partial, valuation function on R.

Definition 2.1 (Admissibility). A function F: R + X &J {I} is4

l finitely variable iff for any two elements tl < t2 in R, there are only finitely many

changes between tl and t2;
l right continuous iff for any t E R, limtl_,,+ F(t’)-= F(t);
l domain clopen iff dom F = {t E R 1 F(t> #I} is a left-closed right-open, not

necessarily proper, segment of R;
l image jinite iff im F = {x E X 13 E R.F(t) =x} is finite.

F is admissible iff it is all of the above.

3 Note how each state resembles our overall domain R in which there is a first instant but no last instant.

In the terminology of [16] this gives RTFIL the properties of homogeneity and reflection, which appear to

be desirable while doing proofs by successive refinement.
4 As in Part I, U is used to denote disjoint union.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 I

With the above definition, an RTFIL formula may be interpreted on any admissible

partial function J!: R + 2”. When the model represents a computation, however, we

also require it to be total, i.e. dom& = R.
Notice that an admissible computation jlil partitions the real line into at most o

contiguous segments [0, tt), [ti , t2), . . . such that J%’ is constant over each segment, and

differs between successive segments. Our representation is therefore equivalent to the

timed w-string representation used elsewhere in the literature (see, for instance, [l]),

an equivalence that we shall often implicitly exploit in the sequel. A formal definition

of timed o-strings appears in Section 3.1.1.

2.3. Semantics

The semantics that follow are a natural extension of the semantics for FIL, gener-

alized to the dense domain R with the usual metric. We use the “locator” function II

for locating the result of a search and the “constructor” function % for constructing

the subinterval, given the current interval and the states located by the searches. For

brevity, we use RI to denote R U {I}, RI, to denote R U {I, co}, and 1~ to denote

the null model with dom 1~= 0.

Definition 2.2. The search-locator function

A.:srchp(P) x ((2”)~)~ x RI + RI,,

is defined by

l if J%! =I& or t =-L then n(t), (4, t)) =I

l if _M #I& and t #I then

A(-, (A, 4) = t

A(-+, (&‘, t)) = sup dom JH

I if (A, t’) /& a

A(-, 4 (A, 4) =

1

for all t’ 2 t, 1’ E dom &’

inf { t’ 1 t’ 2 t, (A, t’) k u} otherwise

A(+ a, 0, (A, t)) = 40, (A, 4-t 4 (A, t))))

The model-constructor function

%?: imod(9) x ((29)~)R x R + ((2q)l)R

is defined by

owl P2>, (A, 4) = ~[~(e*,(~,t)),1(e2,(~,t)))

where J@[~,,Q with tl,t2 E RL,~, represents the subcontext model defined by

A[t*,&) ‘J-.M if tl=-L ortz=_L ortl2t.2

and otherwise, J!ltl,tz) is the restriction of JG? to [tl, t2).

8 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Definition 2.3 (Semantics). The valuation of an RTFIL formula is defined at a point

t E R in an admissible model &! E ((29)1)R using the satisfaction relation defined

below:

l if _M =I& then (4, t) k f;

l if JZ?? #IA and t E dom & then

(A, t) + true

(Af,t)+p forpEPiff PEA(t)

(A,t) k-f ifl (A,t) Ff

(d,t) bf As iff (d,t) l=f and (A,t) kg

(A!,t) k len(O,d] iff t < sup dom.&‘<t + d

(A’,t) FIf iff (JZ’,inf domA’) k f where .&” = ‘$(I,(~?‘,tj)

A formula f is satisfiable iff there exists a total admissible model J%’ E (29)R such

that (A, 0) k f. A formula f is valid iff every total admissible model is a satisfying

model for f.

Theorem 2.4. RTFIL is a conservative extension of FIL.

Proof. We show that given any wff f of FIL (which is, therefore, also a wff of RTFIL),

f is FIL-satisfiable iff it is RTFIL-satisfiable. For this purpose, we give two mappings,

one that takes an FIL model ~.@rn for f and produces a corresponding RTFIL model

~%‘s~ri~ that satisfies f, and another that takes us in the reverse direction. But these

mappings are trivial.

(=s) We simply let A!RTFIL(t) = AFIL([tJ) for all t E R, where It] is the greatest

integer less than or equal to t.

(-e=) From the admissibility of the RTFIL model, there exists a monotonically

increasing sequence (tijiEw such that limi,, ti = co, which partitions R so that

AfRTFIL(t) is constant over each [ti, ti+l). We simply let A’FrL(i) = .AfRTFIL(ti) for

each i E CO.
That each of these mappings preserves satisfaction is proved by induction on the

structure of formulae and on the sequence using the semantics of each of the logics, a

routine and tedious exercise. 0

The mapping we gave above for going from an FIL model for f to an RTFIL

model for f shows how we could have given an alternative dense time semantics

to FIL. In fact, this can be done for any logic that is invariant under stuttering

[10].5

5 As is clear from the preceding discussion, our requirement of finite variability, makes each RTFIL model
“isomorphic” to a timed o-string (Definition 3.1).

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 9

2.4. On the choice of timing primitives

The following theorem gives RTFIL a property which, after [29], we call “temporal

interpolation.” Intuitively, this means that a system continues to remain in the “current”

state until it undergoes some observable change, when it enters the “next” state. Thus,

if a timed o-string (see Section 3.1.1) is a model for an RTFIL formula, so is any

other timed w-string in which the only difference is the insertion of finitely many

copies of a state in the old string, so long as the time stamps6 for the newly inserted

states lie between the time stamps of the previous state and the next state. The newly

inserted states then comprise stuttering states. This property appears to have the same

significance for proofs by successive refinement within a real-time framework as does

the property of invariance under stuttering in a non-realtime framework.

The following theorem is a corollary to Theorem 3.10 which appears in Section 3.1.2.

Theorem 2.5. Let f be any RTFIL formula and let A’ be an admissible model.
Then for any t E R, (M, t) k f ifs there exists E > 0 such that for all t < t’ <

t+E,(A,t’) kf.

The theorem strengthens our observation made earlier regarding right continuity. It

implies that the valuation of any RTFIL formula interpreted over an admissible model

partitions the real line into a sequence of contiguous left-closed right-open intervals,

over each of which the valuation is constant. Of course, this partition is at least as

fine as that induced by the valuations for each of the primitive propositions men-

tioned in the formula, and often might be finer (when the formula mentions duration

predicates).

The theorem also motivates our choice of len(O,d] and, by negation, len(d,co) as

timing primitives. Had we, for instance, chosen len[d, 00) (with the intuitive semantics)

as a basic timing primitive, then the RTFIL model A%’ defined on S = {p} by

JQt> = ypi I
violates Theorem 2.5

(ATO) I= [-I +

but

for t E [O,l)

otherwise

since

P> WL 00)

P) Wl, 00) (A,t) F [-I -+

for any t,O < t < 1.

Theorem 2.5 is useful in proofs by successive refinement, and it appears to have

the same significance for real-time temporal logics as does the qualitative notion of

stuttering invariance for non-real-time temporal logics; see, for instance, [9,18], where

6 The time stamp of the nth state of the timed @-string ((ai, ti))i is tn.

10 KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

some general models, methods and calculi for refinement (and its inverse, reduction) are

presented. Theorem 2.5 implies that RTFIL should fit smoothly into such a framework,

since we are automatically ensured that any of the refinements that these methodologies

permit would still preserve all of the RTFIL properties that were proved at the higher,

more abstract level.

Because of the above choice of timing primitives, the logic might appear to lack the

ability to specify, for instance, that the duration from the next positive transition of a

to the subsequent positive transition of b is precisely 4.2. Recall that, in the syntax

that we have just presented, the following formula is not allowed, since len[d,d] is

not a legal primitive:

L
.___ ____* ______- @

la a
L____________)t...-..----*

I
len[4.2,4.21 1

I

However, the following formula does express the required condition:

!...__._,...._._~
ia a

L._._.___.___W ---------- +I

b CI
I
len(0.0,4.21 1

,_______H
ia L___.__*_____________~----------~

a lb
[._______W

len(0.0,4.21 L_____.__.__________-----.H
[
a

(4)

(5)

where the conjunct Cl ensures that the first positive b-transition, following the a-

transition, does not occur too late, and the conjunct C2 ensures that the a-transition

occurs at the right moment. Note that both conjuncts are required to state the required

condition, and neither suffices by itself.

However, whether or not RTFIL has the ability to state this property for arbitrary

temporal formulae, a and b, is an open question. 7 It appears from our experience that

such a general property is usually not needed in practice.

We note here, for the record, that even if we relax our notion of admissibility and/or

allow the primitive len[d,oo), in addition to len(O,d] (thus allowing the formula

7 It is easy to see that such a property can be stated for arbitrary temporal formulae if one uses auxiliary

variables.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 11

len[d,d] to be expressible), the resulting logic is still decidable, by an appropriate

(very minor) modification of the method that we present shortly, and with essentially

no change in complexity. However, for reasons already stated, such a logic might have

some drawbacks while using a refinement-based proof methodology, and its semantics

would not be quite as natural.

3. Decision procedure

Since RTFIL is a conservative extension of FIL, the only new feature in the deci-

sion strategy is that required to deal with timed formulae, i.e. formulae involving the

duration predicate. Here the careful groundwork of Part I, where we set up our notion

of syntactic reductions between interval formulae, is useful again. Consider, for the

moment, replacing each occurrence of a timing primitive by a fresh primitive propo-

sition symbol and running the decision strategy for FIL on the resulting formula. If

the formula is not satisfiable, then clearly the original formula is not satisfiable, either.

However, if the rewritten formula is satisfiable, we must now check the effect of the

presence of timing constraints in the original formula. At this juncture, Alur and Dill’s

timed Biichi automata (TBA) [3] come into play. Thus, the automata for our decision

strategy are now TBAs rather than simply BAs.

A formal definition of TBAs is postponed until the next section. Intuitively, however,

a TBA is like a BA, except that it is also equipped with a finite set of clocks. The

TBA can activate a clock (to start with the value 0) on a transition, as well as check

the reading (of active clocks) before taking a transition. All active clocks, however,

progress at the same rate, representing the flow of real time.

With this brief description of TBAs, we sketch, using an example RTFIL formula,

a strategy that such an automaton can follow to verify satisfiability. For simplicity,

assume that we are given the formula

f “Af [- al 4 b) len(2.0,4.2]

and are asked to verify whether of holds on a given timed string.

Since we know how to deal with negated formulae, and since conjunctions and

disjunctions can be handled, respectively, by a product of constituent automata or by

non-deterministic choice between them, the general algorithm is a simple generalization

of the given strategy. Moreover, since we have already discussed in Part I, informally

as well as formally, the constructibility of contexts, here we shall ignore that issue,

and let the reader fill in the (untimed) details.

Observe that f is equivalent to the condition that every u-state, at which b does

not hold, must be separated from the first subsequent b-state by more than 2.0, but at

most 4.2, time units. Of course, since this a-state will itself “persist” for some time

(because of our assumption of right continuity), the same condition must be satisfied

at every point in the intervening interval, call it S, before b becomes true. Thus, this

12 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

condition must be verified at uncountably many points. However, observe that f is

really the conjunction of two conditions:

l fi 'Af [+ a 1 -+ b) len(0.0,4.2], asserting that the upper bound holds, and

l f2 "gf [+ a 1 + b)llen(0.0,2.0], stating that the lower bound holds.

Observe that if fi holds at the “start” of S, as described above, it must also hold at

every point in S. Thus, verifying, fi for the point marking the beginning of S suffices

to verify that fi holds also for all the uncountably many points in S. But, this can be

done simply by starting an upper-bound timer as soon as we enter S, and checking that

its value does not exceed 4.2 when the first subsequent b-state is encountered (that is,

when we exit S).

For verifying a lower-bound condition we argue as follows. If fz holds at the “end”

of S, as described above, it must have held at every point in S. Thus, verifying the

formula for the point marking the end of S subsumes its verification for all points within

S. This argument works recursively - so if f2 holds in the duration S’ succeeding S,

and b does not hold at S’, then its verification for S’ subsumes its verification for S.

Our strategy therefore works as follows. If a holds in a state for which we must

verify f2 this is equivalent to verifying fi 'Lf [- 1 -+ b)llen(0.0,2.0] at that state.

But condition f3 which states that the first subsequent b state is at least 2.0 in the

future, must stop holding at some point in the future, when we get sufficiently close

to the said b-state, but before we reach a b-state. Thus, before reaching that b-state,

our automaton non-deterministically guesses at some point that the b-state is precisely

2.0 in the future - this is the first point at which [- 1 + b) len(0.0,2.0] starts holding

(and continues to hold until we reach the b-state). At this point we start a “lower-

bound” clock and verify, when b happens, that the clock reads precisely 2.0 time

units.

For this particular example, it is clear that two clocks, one for timing the upper-bound

requirement, and one for timing the lower-bound requirement, will suffice. However,

we shall need more clocks if the right end of the interval is located through a series

of searches. We encourage the reader to try out the case of, for instance, the formula

[- 1 + b, + c) len(0, d], for which we shall need two clocks to verify this condition

of every state at which it holds. When intervals are nested, these clocks must now

be kept local to each active context within which a timing condition is being verified.

This increases the number of timers even further.

Although the situation becomes more complicated - with a fair bit of timer juggling

needed to ensure that we use only finitely many, but not too many, timers - it still

remains “tractable.” Also, even though the number of timers increases with the length

of the search patterns in, and nesting depth of, the interval modalities surrounding a

duration predicate, as we show in the sequel, this number does not grow too fast (each

new search in an outermost context adds to the number by an additive factor, and

each nesting increases the number by a multiplicative factor). In the next few sections

we give an algorithm to execute a general strategy, a simple instance of which we

sketched above.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 13

3.1. Some preliminaries

Much of this section is a generalization of similar concepts for FIL, introduced in

Section 3.2 of Part I. The important difference is that we must now also deal with the

timing primitives len(0, d], and must explicitly consider timed strings, while extending

those concepts to automata operating on strings representing the extensions of RTFIL

models. Except for this difference, the concepts of subformula closure, reductions and

Hintikka sets remain much the same as before. Therefore, rather than repeat the formal

definitions in this context, we shall often simply refer the reader to the definitions

from Section 3.2 of Part I and, where necessary, simply state the modifications or

generalizations required for those definitions.

The initial portion of this section also introduces TBAs formally, and states related

results, most of which can be found in [l], and which are used for the decision pro-

cedure.

3.1.1. Timed Biichi automata and timed w-strings
As we mentioned earlier, the decision strategy for an arbitrary RTFIL formula can be

executed by a finite-state strategy, using a finite set of real-valued timers. The concrete

machine model capable of executing this strategy is the timed Biichi automaton (TBA)

of Alur and Dill [3]. Thus, we reduce an arbitrary RTFIL formula to such an automaton,

in the sense that the formula is satisfiable iff the language of the corresponding TBA

is non-empty. Note, in this connection, that an admissible RTFIL model is essentially

a timed string, in the sense of [3]. In fact, in some of our subsequent proofs we shall

use the timed o-string representation for RTFIL models rather than the dense map

representation used in the previous section. 8

Definition 3.1 (Timed w-string). A timed o-string over the alphabet C an infinite

sequence ti))iEw in (,X x R)W such that (ti)iEo is an unbounded, strictly monoton-

ically increasing sequence, with to > 0.

Note, thus, that timed o-strings are non-Zeno. It is easy to see that a total admissible

RTFIL model can be represented as a timed o-string. Since our strings are always

infinite, we shall usually skip the qualification CO and simply say “timed string” for a

timed o-string.

The following definition of a timed Btichi automaton (TBA) is a slightly specialized

version of the TBA defined in [3]. The automata defined below are special in the sense

that the only timer conditions employed are conjunctions of conditions of the form c < t

and c = t (however, see also a related discussion preceding Theorem 3.5).

Definition 3.2 (Timed Biichi Automation). A timed Biichi automation & is a tuple

(C, S, C P, SI, SF,) where

8 The presentation of TBAs and timed o-strings that follows is slightly different from the form in which it

appears in [25]. We have found the present approach technically more convenient.

14 YS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

C is a finite input alphabet,

S is a finite set of states,

C is a finite set of clocks,
P:S X c ~ 2sx2cx2”(c) is the transition function, where Q(C), the set of clock

conditions, is the set of inequalities of the form c< t and c = t, for c E C and

t E Q,
St G S is the set of possible initial states,

$4~ 2 S is the set of accepting states.

The transition function p defines, for each state s E S and input (T E Z, a set of

triples, where each triple (s’,C’,q) E p(s,o) specifies a next state s’, a set C’ of

clocks reset with that transition and a set cp of clock conditions that must be satisfied

at the moment of the transition. We say that a clock assignment y E RC satisjies a

set of clock conditions cp c G(C) iff the set of inequalities cp[c t y(c)] obtained by

replacing each clock variable c in cp by the corresponding value y(c) is satisfied.9 If
O,C’,P ,

(s’, C’, cp) E p(s, o), we say that p allows the transition s -+ s .

A ruyl of & on a timed o-string cr = ((pi, ti))i over C is an o-string &(&,a) =

((si, yi))i E (S x Rc)O satisfying

l Initiality: SO E ,541, and for all c E C, 70(c) = 0,

l Transitions: for each i, there is a set Ci & C of clocks and a finite set vi c Q(C) of

clock conditions such that
%GcpL _ p allows the transition si + Si+i,

- the inequalities in Cpi[C + yi(C) + ti - ti_l]ccc are satisfied, where t-1 = 0,
- yi+l(C) = 0 for all C E Ci,

- yi+l(C) = “ji(C) + ti - ti+l for all C E C\Ci.

We write (so,ra) “9 (si, yi) “2 . . . when these conditions hold. Such a run is accept-

ing iff the set {i 1 si E SF}, is infinite. The language of a TBA is non-empty iff there

is a timed w-string over its alphabet on which it has an accepting run.

Intuitively, a TBA reads a timed o-string over its alphabet and makes transitions

satisfying its transition function. It has a finite set of clocks, which proceed at the

same rate, and which it can reset with a transition or compare with rational constants.

Transitions must satisfy the associated clock conditions for the input string to be con-

sumed. The operational intuition for the run shown above is that the automaton stays

in state si for all t E [ti-1, ti). At time ti it moves into state si+i resetting the clocks

in Ci. The remaining clocks have meanwhile advanced by the time spent in si. The

input string g intuitively represents the admissible model J& satisfying, for all i E o,
and all t E R such that ti-1 <t < ti, A&(t) = oi. We say that the TBA d consumes
a timed C-string when there exists a run of d on the string and that it accepts the

string when some such run is accepting. Since we disallow a-moves by our automaton,

the o-trace of states of the automaton as it consumes a timed w-string can also be

regarded as an admissible function from R to S.

9 As usual the empty set of conditions imposes no conditions and, therefore, is always satisfied.

KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) l-46 15

Observe that a TBA with no clocks is simply the BA we defined in Section 3.17

in Part I. When the set of clocks of a TBA is empty, its transition function can be

regarded as a function p : S x C -+ 2’, and it ignores the timing information on a

timed o-string.

Definition 3.3 (Untiming). We define a polymorphic untiming function which, when

given a

l timed o-string (01, ti)igw returns the untimed w-sting

untime((oi, ti)iEco) = (gi)iEw

l TBA ZZ! = (C, S,C,p,Si,Sr) returns the BA

untime(d) = (C, S, p’, SI, SF)

where the transition function p’ : S x C + 2’ is defined by

p’(s, a) = {s’ 1 for some C, cp, (s’, C, ‘p) E p(s, 0))

The following lemma is immediate from the above definition; it is easy to see that

its converse is not valid.

Lemma 3.4. For a timed o-string a and TBA d, if d accepts a then untime(d)

accepts untime(o).

Observe that the admissibility requirement on timed strings makes the acceptance

criterion for our TBAs slightly more restrictive than that in [3]. However, by a simple

modification of our TBAs, namely by introducing a new “admissibility checking clock”,

which is always active, and which is reset at every transition after checking for a

positive reading of the clock (verifying that some non-zero time has passed since the

last transition was made), we can use the emptiness algorithm of [3] without any

modification.

Theorem 3.5 (Alur and Dill [3]). It is decidable whether the language of a TBA is

empty.

3.1.2. Subformulae, reductions and extensions
The concepts of subformula closure set, reductor set and reductions on interval for-

mulae for FIL, introduced in Part I, suffice for RTFIL, relativized now to the lan-

guage of RTFIL, and with the obvious, but important, rider lo that duration predicates

len(O,d] are not purely propositional in the sense of Section 2.2 in Part I. Clearly, the

truth of a duration predicate depends not only on the truth of primitive propositions at

the point of evaluation, but also on the temporal context of the evaluation.

lo Required only for clause 9 in Definition 3.1 of Part I.

16 KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

fl.fL

1 \/”
/ f4’fl\ A””

P2

4 P

true

f

fl

f2

f3

f4

f5

>

f6

f7

f8

f9

fro

fll

fl2

Fig. 3. Example illustrating the subformula closure definition for RTFIL. Edges in the Hasse diagram are

implicitly directed downward, and denote strict inclusion of subformula closure sets.

The following examples illustrate the definitions in the context of a typical formula

containing timing primitives.

Example 3.6. Let f be the formula [+ p] -+ p, +q)-len(O,3] where p, q E 9 and let

“fly..., fl2 represent the subformulae shown in Fig. 3. The subformula closure, SC](~),

consists of precisely the formulae f, f’, . . . , fl2,p,q, true and all their negations. This

is shown in Fig. 3 in the form of a Hasse diagram.

That Lemma 3.4 of Part I extends also to RTFIL should be fairly clear from the

preceding example. The definitions of size and depth for FIL are extended to RTFIL

by stipulating l1

size(len(O,d]) = depth(len(O,d]) = 1

We shall treat the complexity arising from the presence of the constants d separately

later.

As a result of the above, Lemma 3.6 of Part I also extends to RTFIL; see Lemma

3.20.

Reductor sets, reducibility and reductions retain their definitions, now relativized to

RTFIL’s syntax and the corresponding definition of scl. These are illustrated in the

following series of examples.

” For the purposes of induction on the structure of formulae , however we shall assume, as in Part I, that

the size of true as well as that of each logical connective is 1, and that of duration predicates, like that of

primitive propositions, is 2. Recall that this choice gives us the property that whenever scl(ft) C scl(fz),
either size(ft) < size(fz) or depth(ft) < depth(fz).

[-VI-m -+~~~(0,31

[-l-w, -+ I44 31
[-l-m +!d 40,31
Fv++q)~ I4431
[-]-$I, +q)false

[-I-v, -+ue
[--l--e MO, 31
[-I+?) 4% 31
[+p, _)q~+)false

[-l-+q)f.dse

[-_l-+q)true

[+ql+)false

[-+pl+)false

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 17

P P ii fll,P2

fs Ll fs

%fll

\
true

Fig. 4. Example illustrating reductions for RTFIL. The edges are implictly directed downward.

Example 3.7. Continuing with Example 3.6 in Fig. 4, if a formula f’ is reachable from

a formula f” above it by a direct edge labelled with a formula a, then f’ -& f”. Thus,

the fanout labels of a node f’ are precisely the formulae in red(f’). For instance, f is

p-reducible but q-irreducible. Moreover, p transitively reduces f to fe. This reduced

formula is now q-reducible, so that true +TP 4l f. Note also that fg directly reduces ,

f to true.

Recall that for a wff a, the parameterized reduction operator $ on wff, has been

defined so that f’ -& f guarantees that u + (f’ E f) as well as scl(a) c scl(f) and

scI(f ‘) c scl(f). RTFIL satisfies the following counterpart of Lemma 3.11 in Part I,

obtained by the obvious modification of replacing the index i by the time t E R. The

proof follows that of Lemma 3.11 of Part I.

Lemma 3.8. Let f, f’ and a be formulae , and let A! be a model such that (A?, t) + a

and f’ -& f. Then (A, t) k f ifs (A?, t) + f’.

Example 3.9. Thus, for our running example, p + (f E fi), (p A q) s f and

fg + f. Note also that, for any formula f, the formulae which are the (transitive)

reducts of f give rise to a complete lattice under the relation “is a reduct of.”

The concept of model extension introduced in Part I, continues to have its intuitive

meaning, so that for an RTFIL model A’, we have for all t E R, &f(t) = {f, E
scl(f) 1 (A’, t) + fi }. Note that Af exists and is unique. We do not need to be

able to construct it, just to be able to use the fact that it exists. However, for the

case of an admissible model, we can give a straightforward recursive construction by

18 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

exploiting the fact that such a model can be represented as a timed o-string. The next

theorem shows that, in fact, the extension of a model is also admissible and, thus, also

representable as a timed w-string, over the extended alphabet 2Sc’(f). This theorem

plays a crucial role not only in providing intuition for why the method of automata

works for RTFIL, but also in the proof of correctness, since it allows us, as in the

case of FIL, to carry out all of the arguments in terms of extended models, rather than

the models themselves.

Theorem 3.10. Admissibility of (total) models is preserved under extension.

Recall that the real line is partitioned by any primitive proposition p into a se-

quence of segments over each of which the valuation of p is constant. We may extend

this concept to formulae in scl(f), such that two points tl< tz: E R are in the same

equivalence class iff all points t such that tl <t < t2 yield the same valuation for all

formulae in the set. Our proof (which appears in an appendix) of Theorem 3.10 makes

use of the fact that the partition of the real-line induced by any RTFIL formula f, not

involving duration predicates, is at most as fine as the coarset partition that refines the

partitions induced by the formulae in scl(f)\{ f, 1 f }.
Our definition of reductions yields Lemma 3.11, which is the RTFIL counterpart of

Lemma 3.12 in Part I for FIL. The first two clauses of both lemmas are essentially the

same; the last two clauses of Lemma 3.11 below relate the timing constraints between

consecutive states, and capture the essence of the modification that must be made in

the decision algorithm of FIL to obtain a decision algorithm for RTFIL. This motivates

directly the construction of the untimed automation &t (Definition 3.23).

Lemma 3.11. Let J&’ be an admissible model, let t, t’ E domA’, and let fi E scl(f)
be &!f (t)-irreducible. Zf there is a least t’ > t such that &f(t) # Af(t’), then

1. if fi is 9[0 10)f 1 2 2 w ere 81 is not - then (4,t) + f, zf (&,t’) k fi; h
2. iffi is ST[~ 10)f 1 2 2 w h ere 01 is not - then (.M, t) + f, zfs both (k’, t’) + fi

and (A, t’) p Yfalse;

3. if fi is Aen(O,d] and (4, t) /= fi, then (A, t’) k 94en(O,d] ifs (Jz’, t’) +
Yfalse;

4. if fi is 44en(O,d] and (.4!, t) + fi, then (Jll, t’) k Yfalse.

Intuitively, in the first case, if ,O[&]&) can be constructed, it lies in the strict future

of t, and therefore in the reflexive future of t’. In the second case, [& 102) can be

constructed within 9 (its surrounding context), so 9 cannot collapse at t’. For the

third case, 9 must collapse at t’ since its suffix cannot have a longer duration. Finally,

for the last case, 9 cannot collapse before its duration becomes less than d (at the

earliest such point 4 len(O,d] must hold).

Proof of Lemma 3.11. The proofs of the first two clauses are quite similar to those

for Lemma 3.12 in Part I. We consider below only the last two clauses.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 1-46 19

Clause 3. We proceed by induction on the depth of d . For the base case, let
(Jg, t) ~ len(0,d]. We have supdom~C~<t + d. Since t' > t, clearly sup d o m e '
<~t'+d, so that (J[,t ') ~ len(0,d] and (Jg, t') V= false.

For the induction step, let f l = [-IO)dnlen(O,d], where the nesting depth of dn
is equal to n, and that of [-10) is at most n. Since f l is ~'f(t)-irreducible, we
have (J / , t) ~ a for all a E r e d (f l) and, as in the proof of clause 1 of Lemma
3.12 of Part I, we can conclude that t" = 2(0 , (~ ' , t)) = 2(O,(~¢,t')>>.t'. Denoting
~/" = cg([-]0), (J//,t)) and J//" = cg([-]0), (J[,t ')), we can conclude that J//" is a
"suffix" of de", i.e. domJg ' = [t,t") and dom J / " = [t',t"). Using the semantics, we
may conclude that, for any formula g,

(JC',t ') ~ g iff (~ /" , t ') ~ g (*)

Recall, from our definition of reductors, that b E red(dnlen(0,d]) iff [-[O)b E
red(f1). Moreover, from the semantics, for any formula b, we have (s/g',t) ~ b iff
(Jg, t) ~ [-I0)b, and (J/g",t') ~ b iff (J / , t ') ~ [-]O)b. From the irreducibility of
/'1 at (J / , t) , we have the irreducibility of dnlen(0,d] at (J// ' ,t). Since (~ ' , t) ~ f l ,
we have (~ " , t) ~ dnlen(0,d]. Using the induction hypothesis, we can conclude that
(~ " , t ') ~ J ~ l e n (0 , d] iff (s// ' , t ') ~ d~false. From (.) above, we can conclude that
(J / " , t ') ~ d ~ l e n (0 , d] iff (~ /" , t ') ~ dnfalse, and the result now follows, using the
semantics.

Clause 4. The argument for the inductive step is similar to that in the previous
clause, with a suitably modified induction hypothesis. For the base case, assume that
(Jg, t) ~ -~len(0,d]; so t + d < supdomJ/¢'. We have two cases: either supdomJ¢
is infinite or finite. If it is infinite, then every t" > t is in dom J4; in particular, t' E
dom J / , so (J / , t') ~ false. On the other hand, if sup dom de' is finite, then there exists
a t" satisfying t < t" < supdom.i¢ (for example, choose t" = s u p d o m J / - d/2),
and {J//,t") ~ len(0,d]. Since ~[f(t") ~ ~[f(t) , we conclude that (t <)t'<<.t"
(< supdomJg). Thus, (J//,t ') ~ false in this case also. []

Example 3.12. Let ~¢g be defined by J¢(t) = 0 for t E [0,1), J / (t) = {p} for
t E [1,7), and de(t) = {p ,q} for t E [7, cx)). The reader can verify that allY(t) is
defined by the matrix shown in Table 1, where for a given row, denoting an interval 1
of R, a formula appearing in a column is in J / f (t), t E I , iff the entry in that column
is a 1, and its negation is in J[f(t) iff the entry in that column is a 0. The example
also illustrates the ideas in Lemmas 3.8 and 3.11.

Finally, the reader should recall from Part I, Definition 3.13, the definition of the
basis (f) s of a formula f with respect to a set S of formulae . As before, this will
be useful in the description of the eventuality automation.

Example 3.13. For the case of Example 3.12, for instance, f6 = (f)~s(t) for t E [1,7)
and t rue = (f)~tCs(t) for t E [7, oo). Note also that f is irreducible at t E [0, 1) and is
(trivially) its own basis with respect to ~¢/f(t), t C [0, 1).

20 KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Table 1

Example illustrating model extension

true p q f fl .fd f3 f4 f5 f6 f7 f8 f9 fl0 fll fl2

[O,l) 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0

[1,4) 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0

[4,7) 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0

[7,co) 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0

3.1.3. Interval reductions, clocks and conditions
In Example 3.12 there are no formulae involving nested interval modalities. However,

in general, a formula may involve nested modalities, so that for ease in describing the

decision procedure, we require the more general machinery below.

The unit of manipulation by the TBA is a timed current interval formula of the

form 9len(O,d] or 94en(O,d], where 9 = [-le,)[-le,)...[-le,) is a sequence of

zero or more current interval modalities. For the case of such formulae , we also need

the concept of an interval reduct. Interval reduction is a (purely syntactic) relation on

strings of current interval modalities and is parameterized by a set of formulae .

Definition 3.14 (Interval reduction). Let 9 and X’ denote strings of current interval

modalities and let S be a set of RTFIL formulae . The 9’CsY iff #true + Strue.

The transitive closure of Cs is represented by Cl, and the reflexive closure of Cz by

C:. When Y’C~Y, we say that 9 is S-reducible and, moreover, that 9’ is an interval

reduct of 4 with respect to S.

Note that 9’ above may be the “empty” sequence of modalities (which we suppress),

which is always irreducible. Often we shall simply say “9’ is a reduct of X” instead

of “9’ is an interval reduct of 9,” where there is no confusion.

Among the possible reductions on an interval modality is a special kind of reduction

called a collapsing reduction. A collapsing reduction may trigger the checking of clock

conditions on a transition that was just taken, and so our procedure must treat it

differently from a non-collapsing reduction. This will become clear later when we

describe the TBA construction (also see remarks below, regarding the role of reductions

in the timer construction).

Definition 3.15 (Collapsing reductions). Let X = IlIz.. .I,, and 9’ = IiIi.. -ZL_, be

such that $‘Cg9. Then 9’ is a collapsed reduct of 9 and the corresponding operation

is a collapsing reduction, written Ci.

Intuitively, in the above definition (when S represents a point in the extension of a

model), if I,, = [-(+al,...,-+ak), then Ii...l,_iai E S for each i E {l...k}. In

other words, the nth nested context I,, collapses.

KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 21

The important property of interval reductions that we require for the sequel is as

follows. Suppose J’Y is admissible, t E R and 9 is Af(t)-irreducible. Suppose further

that there is a next (least) time t’ > t such that _&f(P) # &f(t). Let X be of

the form $I[-/ + a, 0)9~, and let 9ia E &‘f(t’). Then 9 is &f(t’)-reducible to

$I[- 1 O)&. Intuitively, at time t’, the modality 9 is “equivalent to” the syntactically

simpler modality &[-lO)&. Moreover, when X is of the form 9i[-1 +a), then the

reduction is collapsing, 91 C’ Au/(t,jY, and 9 yields the empty subcontext at t’ in &

(recall the subcontext function of Definition 2.2).

Example 3.16. Continuing with Example 3.12, the modality [- I + q) collapses at all

t E [7, co). The modality [-I + p, + q) reduces to [-I -+ q) at t E [1, ca) and collapses

at t E [7,oo). In each case, the set with respect to which the collapse or reduction

occurs is &f(t) for the appropriate t.

These syntactic reductions on intervals are used by the automaton to activate clocks

and to keep track of the “remaining searches” in an interval that is being timed by an

active clock.

The clock-closure and clock-condition sets, defined below, represent the clocks and

associated conditions required by a TBA during the satisfiability procedure. Thus, while

deciding a formula f, the automation d(f) never needs any timers other than those

in clocks(f) and the conditions appearing on its transitions are all contained in the

set clkconds(f).

Definition 3.17 (Clock set). Given a formula f its clock set, denoted clocks(f), is

the set

{~~"'~I9len(O,d] E scl(f),iE{l ,...,1~p},y~{a,p},n~=card{9’ I .fC&,“))

Definition 3.18 (Clock conditions set). Given a formula f, its clock condition set,

clkconds(f) is the set of conditions of the form

l c <d for all c = I$“,” E clocks(f),

l c = d for all c = cs’f,d E clocks(f). I

In the sequel, a-clocks are used to enforce upper-bound constraints and p-clocks to

enforce lower-bound constraints. States in the TBA for a formula will contain “clock-

activity sets,” which indicate the clocks that are active. Furthermore, with each active

clock crYd (where y IS either a or /I), we shall associate a context-tag, ranging

over { 9’ / 9’& fj Y}. Loosely speaking, the clock ~7~‘~ will be made active at a

state when it is necessary to time the context f. The context tag for this clock is

initialized to 9 when the clock is made active, and it is updated at each transition,

to reflect the remaining context that is being timed; interval reductions are useful for

carrying out these tag upadates. When a transition causes a collapsing reduction of

the tag for its clock ci y,4,d, the clock will be compared to the upper or lower bound

of d.

22 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Example Let f [-pi --t p, + q)-Jen(O, 31. Then clocks(f) contains the
clocks, $I- /~P.~4).3Ca.[-lIP,~4),3) cdoFl+4).3

dition associated with: = c:‘-‘+q’si ’ ’

and their /3 counterparts. The clock con-

IS c < 3 and 8,[- l+qV with its /?-counterpart c’ = c,

is c’ = 3.

Lemma 3.20. For a formula f of size n and depth k, Iscl(f)j = O(d) and Iclocks(f)l

= O(n2k).

3.2. Decision procedure

We now have most of the formal machinery required to describe the construction of

the TBA dm(f) corresponding to a formula f, whose satisfiability we are interested

in checking. The construction of d, is described below in four steps.

In the first step, we construct a BA 4,(f) whose states are subsets of scl(f).

This part of the construction is quite similar to the construction of the local automa-

ton for a formula in the untimed logic FIL (Part I, Section 3.3.1). Intuitively, the

automaton, that is produced in this first step ensures that all safety conditions that

are independent of real time are correctly handled. This automaton also checks some

simple consistency conditions relating to real time. More precisely, zz4(f) accepts the

untiming of any timed string corresponding to a model of f. However, since d”(f)

does not fully take into account the real-time constraints imposed by f, it may also

accept many other strings. The states of JG&(f) are, however, annotated with formulae

involving duration predicates. These formulae encode real-time constraints imposed by

f, and are used in the next step to augment the automaton with real-time recognition

capabilities.

The second step comprises the heart of the construction. In this step the timing

assertions, of the form Ylen(O,d] and 44en(O,d], annotating the states of d”(f) are

used to construct a TBA JcZ~(f) in such a manner that all timing constraints are encoded

into the timer-related actions of the TBA. Each state of z%‘i(f) has a set of “active

clocks,” a subset of clocks(f), that it uses to enforce the timing assertions. Associated

with each active clock is an appropriate context tag which, loosely speaking, represents

the remaining suffix of a context being timed by that clock. The edges of 4(f) have

clock resetting and comparison actions, and the transitions of&i(f) ensure that context

tags associated with clocks are updated in a consistent fashion. Thus, dt(f) ensures

that all safety and timing-dependent properties are checked. In this connection, it is

useful to note that a time-bounded liveness property is really a safety property - the

time bound must not pass before the liveness property is satisfied. That the requisite

time must eventually pass - the condition of non-Zenoness - is essentially an implicit
liveness condition.

To take care of the timeless liveness conditions, we construct the eventuality au-

tomation de(f) in the third step of the construction. This eventuality automation is a

pure BA, without any timers. It is constructed in much the same manner as for FIL

(Section 3.3.2, Part I).

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 23

The final automaton d&f) is the product of dt(f) and &,(f). The formula f is

satisfiable iff the TBA dm(f) accepts some timed string. The latter question can be

answered by a celebrated result of Alur and Dill [3].

The construction reveals an interesting and, from the point of view of expressibility,

important aspect of RTFIL: the local automaton .&s,(f) might consume non-Zero runs,

but dm(f) does not. This is because, in RTFIL, unlike, for instance, in MITL [4],

there is an implicit liveness condition associated with every timing constraint, namely,

that the right endpoint of the interval satisfying the timing constraint is eventually

found. This allows us to dispense with the “progressiveness check” that Alur and

Dill [3] require. In effect, our decision procedure requires only the timing consistency

algorithm of [14]. Observe also the expressiveness implications: In RTFIL, a time-

bounded eventuality is stated as a conjunction of an unbounded eventuality and the

time bounds within which that eventuality must be satisfied.

3.2.1. Hintikka sets

As before, we first restrict our attention to a specific type of subsets of scl(f),
called Hintikka sets, with the property that any state in an extension of a model for f
is a Hintikka set.

Definition 3.21 (Hintikka sets). We refer the reader to the definition of Hintikka sets

for FIL (Section 3.15, Part I). A Hintikka set for RTFIL is constructed using the same

rules, modulo our extended definitions for scl and 4, and the following additional

rule: ‘*

8. for all len(O,d] E scl(f), llen(O,d] E s.

To apply correctly Clause 5 of Definition 3.15 of Part I in the new setting, recall our

rider that len(O,d] is not purely propositional. As before, let H(f) denote the set of

all Hintikka sets for an RTFIL formula.

It is easy to show, following Part I, that Lemma 3.16 of Part I holds for RTFIL in

the new setting.

Example 3.22. In Example 3.12, when A?f is constant throughout the interval [tl, t2),

let A’f [tl, t2) denote its value in that interval. It is clear that the sets ,Si = Af [0, 1),

S2 = Jf [1,4), Ss = Af [4,7), & = J.M~ [7, co) are Hintikka. Each of these Hintikka

sets is satisfiable. However, consider the set Ss = (&\{-f,l})u{fil}. This is Hintikka

by our definition above, but is not satisfiable, because the conjunction of -fs and
fll cannot be satisfied in any model. Such “temporal conflicts” are detected by the

consecution and acceptance conditions of de(f) and &(f), as will become clear in

the sequel.

I2 Intuitively, this rule is a consequence of the assumption that tim eventually exceeds any finite hound

24 YS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) l-46

6 Sl -6 s2 -6 S3 6
- Sl s2 s3 * s4

Fig. 5. Example of an accepting run of d,,([+ p 1 + p, + pjen(3.0, co)).

3.2.2. &timed construction
Having obtained the candidate states for dU(f) as Hintikka sets above, we must

now connect them together appropriately. Compared to FIL (see Part I), the only new

feature is the presence of formulae of the form 9len(O, d] and YTlen(O,d]. Reductions

on such formulae in a given state are essentially as before. However, consecution of

two different states imposes further conditions on the timing assertions that these two

states may contain, in addition to the reducibility of non-current interval formulae from

one state to the next.

Definition 3.23 (Untimed construction). s&,(f) is the BA with

l Input alphabet 2Sc1(f);

l State set H(f);

l Non-deterministic transition function p,, defined on H(f) x 2Sc1(f) such that A, allows

sAt iff

1. i=s,

2. if Y[Qil&)fi E s is s-irreducible and 01 is not -, then Y[Qi]&)fi E t,

3. if 9~[0il&)f~ E s is s-irreducible and 8i is not -, then ,O-[&(&)fi E t and

Yfalse @ t,

4. if 9len(O,d] E s is s-irreducible, then if Yllen(O,d] E t then 9 has a collapsing

reduction in t,

5. if YP,len(O,d] E s is s-irreducible, then 4false 4 t;

l Accepting state set H(f);

l Initial state set {s E H(f) 1 f E s}.

The first transition rule ensures that the automaton consumes only Hintikka sets. The

remaining transition rules reflect the conditions stated in Lemma 3.11. Observe that pU

is reflexive, allowing &,, to (non-detetministically) stay in state s when input with

i = s.

Example 3.24. Consider the Hintikka sets Si, . . . , S, of the last example, and k!f of

Example 3.12. If we untime A?f and feed it to d,(f) as an untimed o-string, then

the resulting run is shown in Fig. 5. The vertices represent states of the automaton and

the edge labels represent letters of the input string.

Note that the automaton d”(f) has many other states and transitions, but for brevity

only those in the locus of this run are shown in the figure. The reader can verify that

the transition conditions given in the definition of &, are satisfied for each transition

shown.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) I46 25

3.2.3. Timing augmentation
The timing augmentation systematically examines each state of the automaton built

above, starting from an initial state, adding activity indicators to its states, associating

a context tag with each active clock, augmenting its transitions with appropriate clock

conditions, and splitting states where necessary. State splitting occurs when different

paths from an initial state to some state of d,(f) require different sets of timers

to be active, or associate different context tags with the active timers. The resulting

automation is the required local TBA, denoted dt(f).

The augmentation is described here in two steps. First, we replicate the states of

s$,(f), pairing the replicas with subsets of clocks(f), and further associating with

each resulting replica a map from its active clocks to context tags - we, thus, obtain

the states of zZ~(f). Thus, each state of &(f) is a triple (s,a,,tag,), where

a s is a subset of scl(f), representing the state of d”(f) “corresponding” to this state

of dt(f)
l a, is a subset of clocks(f), representing the set of clocks active in this replica of

state s of d”(f)

l tag, is a function associating with each clock cpY2d E a, an element in the set

(3’ 1 S’CZS}, representing the remaining contexts being timed by the active clocks.

Next, we define the transition function of dt(f) to ensure that, of all the pos-

sible transitions resulting from this replication process, only the “legal” transitions

are allowed by dt(f). While this style of exposition clarifies the underlying me-

chanics, it is generally more expedient to perform a breadth-first traversal of du(f),

adding clock-activity sets to its states, associating context tags with active clocks,

and splitting states to create replicas only as required. Although the worst-case be-

haviour of this “on-the-fly” procedure may be as bad as the na’ive method used in

our description, in general, the latter procedure never creates many unreachable

replicas.

Observe also that the concept of clock-activity sets that we use here does not appear

either in the original [l] or our own definition of TBAs given earlier. It is easy,

however, to modify our definition as well as the emptiness algorithm to handle this in

a straightforward manner; see, for instance, [14] where a similar concept is used. In

particular, the intuitive complexity of the emptiness algorithm is much reduced because

activity indicators allow us to ignore the values of inactive clocks and thus cut down

substantially on the size of the “configuration space” of the timed automaton that we

need to explore.

Notation. Let K represent the set of context tags {S 19 len(O,d] E scl(f)}. Using I

to represent an undefined value, we use ICI for K &J {I}. For tag E .yksCf), we let

dom tag = {c E clocks(f)) tag(c) # I} represent the domain of the partial function

tag from clocks(f) to IC. We represent by I, the null map I, E rcE:OfkSCf) satisfying

domI, = 0.

We now define the automaton dt(f).

26 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Definition 3.25 (Timing augmentation). Let d”(f) be an untimed automaton such as

obtained above. Then its timing augmentation, denoted ~&‘~(f), is the TBA with

l state set H(f) x 2C’OEkF(f) x K:~~(~);
l input Alphabet 2SC’(f);

l clock set clocks(f);

l Non-deterministic transition function

where X represents the state set defined above, such that pt allows the transition

(s, a,, tag,) ‘3 (t, at, tag,) iff

1. s L t is allowed by pU,

2. for any pair of /?-clocks cTAd E a, and c/” E a,, with j # k, there is no Y’ such

that 4’ C: tag,(ctzd) and 9’ C,* tag,(c,B’g’d),

3. a, = (a,\deact((s,a,, tag,), t)) U act((s,a,, tags), t), where the set of deactivated

clocks is given by

deact((s,a,,tag,),t)

= {c;Xd E a, 1 y E {a,/?}, W.9’ C,i W,(C~Ad))

u {q”” E a, 1 Elk. k # j A czAd E a, A tag,(c~‘d) Cf tag,(cFAd)}

and the set of newly activated clocks is given by

Y len(O,d] E t, 9 irreducible in t,

a3Xd if 9 len(O,d] E s then 9 reducible in s, and

j = min{i 1 cFAd E clocks(f)\(a,\deact((s, %tag,),t))) 1

Y-Jen(O,d] E s, Ylen(O,d] E t,

u c!‘4’d
J

9 reducible in both s and t, and

j = min{i 1 cFAd E clocks(f)\(as\deact((s, a,, tags), t)>)

4. C = act((s,a,, tags), t) where act is as defined above;

5. cp = {c<d]c = CT”” E a,} u {c = d Ic = cFAd E a, ndeact((s,a,,tag,),t)} where

deact is as defined above;

6. tag, satisfying domtag, = at is defined for cTAd E at by

E act((s,a,,tag,), t)

6 act((s,a,,tag,),t), 9’ 1: tag,(cT”‘d),

and 9’ is t-irreducible

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 1-46 27

• Initial state set consisting of the set of triples of the form (s, as,tags) satisfying

- f @ s ,

- as = {c~ i ' d I J l o n (0 , d] C s, J is s-irreducible},

- tag s with domtag s = as satisfying tags(cl~,J,d) = j ,
• Accepting state set H (f) × 2 el°cks(f) × ~c~ °eks(f).

The intuition behind the augmentation procedure is as follows.

Rule 1 ensures that any model of ~¢t(f), when untimed, is accepted by Zgu(f).
Rule 2 is a consistency condition, which we call the f l -clock consis tency condition,

stating that if two lower-bound timers were started in the past to time two presumably
different instances of a context J , then they cannot both end at the same point.

Rule 3 shows how the set of clocks active in the next state are computed. This

set of clocks comprises all those clocks active before the transition that were not
deactivated by the transition, together with all the newly activated clocks. The set of
clocks deactivated by the transition consists of all those active upper-bound timers
for which either the context tag, representing the remaining context, collapsed, or the
verification condition was properly subsumed by the verification condition for another
upper-bound timer. As for clock activation, upper-bound timers are started as soon

as there is a "new" upper-bound condition to verify, representing the start of a new
context with an upper-bound constraint. Lower-bound timers are started at the precise
point of transition when the duration of the remaining context J goes from being more
than d (prior to the transition) to no more than d (following the transition).

Rule 4 ensures that all newly activated clocks are reset with the transition.
Rule 5 ensures that timing conditions are correctly verified. For the case of an ~-

clock, the value is compared against the prescribed upper bound at every transition
preceding the location of the right endpoint of the context that it is timing. For the
case of a fl-clock, the value is compared against the lower bound as soon as the right
endpoint of its context is located.

Rule 6 ensures that the context tags associated with old clocks are appropriately
updated following the transition, and that the newly activated clocks have their context
tags set to the appropriate value (the context they are timing).

The only problem with the above definition is that act might be undefined, because

either of the sets

&,J,a = {i l c~ 'J'a c clocks(f)\(as\deact((S, as, tags),t)) }

S~,j,a = {il cF 'J'a c clocks(f)\(as\deact({s, as,tags), t))}

might be empty. To show that act is well-defined, we need only show the following:
• S~,j,a is non-empty, whenever it is the case that J l o n (0 , d] E t, J is irreducible

in t and if J Ion(0, d] E s then J is reducible in s;
• S#,j,a is non-empty, whenever it is the case that J - q o n (0 , d] c s, J Ion(0, d] E t

and J is irreducible in both s and t.

28 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

c-7 SI _6c_2+*p=:3 (3 - SI’ S2’
c<=3; d=3 s4’

Fig. 6. Example of an accepting run of ~4 for [+ p 1 + p. + pjen(3.0, w).

But this is quite straightforward. Assume, for the first case, that S, is empty. This

implies that a, includes the set of clocks C’sXd = {c~“d}~G[nl, where IZ = card {Y’ 1 Y’

C* 9). Clearly, for any two distinct clocks cl, c2 E Ccc,&‘, it is the case that tag,(ci) #

tag,(cz), for otherwise one of the two could not have been active in a,. l3 Consider now

the clock CE CU,Ad such that tag,(c) = 9. We shall assume now that 9 len(O,d] et,

9 is irreducible in t, and if 9 len(0, d] E s then 9 is reducible in s, and exhibit a

contradiction. Since tag,(c) = Y, clearly 3 is irreducible in s, so 9 len(0, d] # s. This

implies, by the definition of Hintikka sets, that 97len(O,d] E s. But the fact that c is

active in s, means that it was activated in some prior state which contained 9 len(O,d].

This implies, by the transition rules of -9eU, that 4-len(O,d] could not have become

true across a subsequent transition unless Y had a reduction. Clearly, $1len(O,d] $i s,
giving us a contradiction. The case of Sb is similar.

Example 3.26. Recall Example 3.24, where we illustrated an accepting run of d,(f).

Fig. 6 shows the corresponding accepting run of dt(f) on our now familiar Mf.

The states of dt(f) shown in the figure are Si = (Si,!&&), Si = (&,,O,IK), Si =

(&{c,c’},ta&,), $ = (&,0,&), h w ere c and c’ are the clocks of Example 3.19,

dom tags, = {c, c’} and tags3(c) = tags, (c’) = [-I + q). The edge labels also indicate

associated clock conditions and/or clock actions.

Although the role of clock c is superfluous in the example run shown above, it may

be required in general - for instance, when (&‘, 0) k p, requiring the verification of

[-I + q) len(0.0,3.0] starting from an initial state.

3.2.4. Eventuality automaton

The construction of the eventually automaton for an RTFIL formula is essentially

the same as that for an FIL formula, relativized to the new definition of scl. We refer

the reader to Part I (Section 3.3.2) for details and for intuition. Note that the eventually

automaton is a BA (see our comments following Definition 3.2, regarding TBAs with

no clocks).

As we noted earlier, &(f) handles only unbounded liveness conditions. Time-

bounded liveness conditions are handled by the combination of de(f) and &X f);
de(f) ensures that the required state is eventually reached (without regard to real

time) and zZ~(f) ensures that the related timing constraints are met when the state is

I3 This can be established by a routine inductive argument, starting from an initial state of ~4, an argument

that we skip for the sake of brevity.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 29

s4 Sl s2, s3

0 0 0

-4
Sl

s2

> El - E2

Fig. 7. Example of an accepting run of de for [+ p 1 + p, + p)len(3.0, cw).

reached. A similar “communication” (via the “input” string) also occurs in the purely

untimed case of FIL while dealing with eventualities that are bounded within intervals

(Section 3.3.2, Part I).

Example 3.27. In our running example, we have E(f) = {-fg, ~fil, lfiz}. As in

the previous two examples, we illustrate the accepting run of &(f) on (untimed)

A?f in Fig. 7. The states shown are 8 (the only accepting state of &(f)), El =

{7f8,7fll,7f12}, and E2 = {~fll}.

3.2.5. Combining the automata
The decision procedure is now straightforward. We construct d”(f) and augment

it using the timing construction to obtain dt(f). We then take the product of &(f)

with the eventuality automaton d,(f) (the & component of the product ignores timing

information in the input). Finally, we check the emptiness of the resulting automaton

z&,(f), using the emptiness algorithm of [3]. We thus have our main theorem.

Theorem 3.28 (Decision procedure). Given an RTFIL formula f, it is decidable
whether or not f is satisfiable.

The main lemma required in the proof of Theorem 3.28 is

Lemma 3.29. The language of&,(f) is empty lr f is not satis-able.

Proof. The proof follows from the following lemmas, which are proved in the next

section.

Lemma 3.30 (Completeness). Let f be an RTFIL formula and A’ a satisfying model
for it. Then Mf is accepted by dm(f).

Lemma 3.31 (Soundness). Let f be an RTFIL formula, and (ai, ti)iEw a timed string
accepted by J&(f). Then there is a model A, such that J%e + f.

The construction given above for our decision procedure shows that RTFIL is in-

variant under finite infinitesimal timed stuttering. This property was stated and proved

30 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

directly in Theorem 2.5, but is further clarified by noting that the local TBA ,_&(f)

has a reflexive transition relation with the self-loops containing only edge conditions

of the form c <d and no clock resetting actions.

3.3. Proof of correctness

We devote the next two sections to proving the Soundness and Completeness Lem-

mas. Since many of the details for the “non-real-time component” of the proof are

similar to the case of FIL, we shall here emphasize the handling of the real-time

constructs of the logic.

3.3.1. Completeness

Throughout this subsection we assume that Af is the extension of a satisfying model

for f, as stated in the Completeness Lemma above. Moreover, we use the timed o-

sting representation for Af. It is easy to see that the admissibility of Af implies

that there is a timed o-string representation for it. However, for convenience, we use

a “canonical” representation, with Af represented by the timed w-string (ci, ti)igw,

defined inductively as follows for all i (let t-1 = 0):

(Ti = Af(ti_l)

ti = inf({t > ti-1 1 dlf(t) # Af(ti_l} U { Lti-l] + 1))

where [t] represents the largest integer in t.

The proof of the Completeness Lemma follows from the Lemmas 3.33 and 3.35.

Lemma 3.32. d”(f) accepts untime(d’f).

Proof. The proof is similar to that for Lemma 3.21 of Part I, with minor changes

to account for the denseness of the time domain. In the induction step, we invoke

Lemma 3.11 in the place of Lemma 3.12 of Part I. 0

As in Part I, it is easy to see that the accepting run is, in fact, unique. This is useful

for the proof of the next lemma.

Lemma 3.33. J&(Y) accepts Af.

Proof. From the previous lemma, &,, must accept the untimed string (oi)i. We know

from our earlier observations (see the proof of Lemma 3.21 in Part I, and Lemma 3.32)

that the run of dU on (ai)i is unique and is, in fact, (Oi)iEo itself.

We can now build an accepting run of dt, as follows. Recall that a state of ~2~

consists of three components: a Hintikka component, a second component consisting

of the active clocks, and a third component associating a context with each active clock.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 31

The “Hintikka component” of the run &t on (cri, ti)i is simply the sequence (oi)i.

From the construction in Definition 3.25, given a transition from the state (~i,ai, tag,)

to the state (oi+t, ai+l, tag,+i), ai+i is a (deterministic) function of oi and oi+i, and, in

turn, tag,+i is a (deterministic) function of ci, ci+t and ai+t. Moreover, for the initial

state, given go, a0 is determined uniquely by 00, and tag0 is then determined uniquely

from ao.

We only need to show that, for the above run, the following hold:

0 (ao,ao, tago) is an initial state of ~4,

l for every i E w, G?~ allows a transition from the state (ai,ai, tag,) to the state

That 60 is an initial state of &t is immediate from the proof of Lemma 3.32, and our

construction of the run. So we need only show that the P-clock consistency criterion and

the clock conditions associated with the transition relation to .J&‘~ are always respected

by the above run. We consider the two cases below.

Case 1 (/?-&A consistency). Let tD be the least time at which the above run violates

the P-clock consistency condition. We show that this leads to a contradiction. Observe

first that if two clocks c!,” and cBTAd ,z # j, are simultaneously active then, by

Definition 3.25, they must must have been activated at different transitions. Let the times

of activation be, respectively, ti, tj < t,, with ti # ti. Let 9 = [-]f3i)[-]&)..* [--I&).

Then the irreducibility of 4 at ti implies that for the sequence of models A!: defined

by A@/ = $?([-IOk),(cAf-‘,ti)) for all k E [n] = {l,...,n} (let A%‘: = A!), we have

for all k E [n],

l Jq#LC
0 inf dom yk = ti,

0 SupdOm&< SUpdOmgk_1.

In fact, defining first(o) to be the target of the first search in the search pattern 0 (for

instance, first (- a, + b) = a) it is easy to see the following:

Fact 3.34. If t’ 2 ti is the least time at which the first reduction occurs on 9 then,
for some k E [n], it is the case that A(first(&), (Jif-‘, ti)) = t’ and, for all I E [n], it
is the case that &first(&), (J$-~, ti)) B t’.

By repeatedly using this fact on each resulting pattern sufficiently many times, we

can reach the least point where a collapsing reduction occurs. Since supdomA7 <

sup dom .A’! for all k E [n - 11, we can conclude that the least time at which a series of

interval reductions starting with 9 at ti leads to a collapse is the point sup domAy = Ti

(say).
Consider now the point tv where, for some Y, we have 9’ 1:” tag,_l(c~‘d), 3’

being cr,-irreducible. Using arguments as above, it follows that supdomA’: = c

where, as above, we let 9’ = [- lel,) + . . [- 10;) and denote, for all k E [n], A’f: =
%‘([-IO;), (At-l,tJ) with A%!!-~ = A!.

On the other hand, since (A, t) b 94en(O,d] for all t E [ti_l, ti) it follows

that t + d < ~updom%?(Y,(~?‘,t)) = ~~pdom%(X,(&,ti)) for all t E [ti_l,ti). Since

32 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

(A, ti) k 9len(O,d], we have ti + d> supdom+Z($(&,ti)) = Ti, and it follows that

ti + d = Ti.

Using an identical series of arguments with the index i uniformly replaced by j, we

can conclude, similarly, that supdom& = Tj. Thus Tj = 7;:. Moreover, as above, we

also obtain tj + d = Tj. So ti = tj, giving us the required contradiction.

Case 2 (Clock conditions). Assume that a clock condition of the form cfAd = d
is present on the uth transition. Let tj be the time of the most recent transition that

activated &Xd
J ’

so the value of the clock at the uth transition is t, - tj. Arguing as in

the last case, we have to = sup dom JZ~, as well as tj + d = sup dom ,“ei”, giving us

t, - tj = d, so that the clock condition is met.

A similar argument can be used to show that cl-clock conditions are also met. I7

Lemma 3.35. de(f) accepts untime(Af).

Proof. The proof is along the lines of that of Lemma 3.22 in Part I. 0

3.3.2. Soundness
The proof parallels the corresponding proof for FIL. We shall here concentrate on

the real-time constructs. We show that, given a (timed) string in the language of CC&,,

one can construct a satisfying model J&’ for f. Let (ci, ti)iEw be a string in the language

Of J&. Let (Gi, ai, tagi)iEo be the accepting run of ~2~ on the timed string (ai, ti)i, and

let (@)i be the corresponding accepting run of de. Let A’ be defined by

J@(t) = {fl E scl(f > 1 fl E ci, t E [ti-l,ti)}

where we have assumed t-1 = 0. Moreover, let JY be defined by

To prove the lemma, we must show that (A, 0) + f. In fact, we show the following

stronger result.

Lemma 3.36. For any t E R and fi E scl(f), f, E A?“(t) ifs (d’,t) + f,.

Proof. The proof is substantially along the lines of that of Lemma 3.24 of Part I.

As before, we induct, for an arbitrary t, on the inclusion order induced by scl on the

formulae. Let t E [ti_l, ti) as defined above.

The base case for the primitive propositions remains the same. For the base case

of timing formulae of the form len(O,d] E scl(f), we have by construction that

len(O,d] @ ci, and from the semantics that (A, t) F len(O,d].

For the inductive step, we consider below the sample case of a timing asser-

tion .Ylen(O,d], call it f’. For the forward direction, assume that f’ E oi. We

have two subcases depending on whether or not Ylen(O,d] is reducible with respect

t0 0i.

KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 1-S 33

For the subcase in which it is reducible, we have for some formula a E ci, f I' +a f ',
and by construction then f" E Oi. By the induction hypothesis, we have (A?, t) b f ‘I,
as well as (A, t) + a. By the RTFIL counterpart of Lemma 3.11 of Part I, we then

have (A!,t) + f’.

For the subcase in which f’ is irreducible, so is 9, and therefore there is a k, such

that ci”‘” E ai, and tagi = 9. By an argument similar to that in the proof of

Lemma 3.33, it follows that supdom%(4, (A, ti-1)) = d, where tl is the least time

greater than ti-1, at which a series of reductions starting with 4 at ti-1 leads to a

collapse. (To show that such a tl must exist, we make use of the irreducibility of

Ylen(O,d] with respect to Gi, along with the acceptance criteria for J&, just as we did

in the proof of the Soundness Lemma for FIL in Part I.) Let tj < ti-1 be the time of

the most recent activation of cz”, It follows from our construction that d - tj <d,

so tl - ti_1 <d, and therefore (A,ti_l) + Xlen(O,d]. Now, since &f is constant in

[ti_l, ti), it follows by the inductive assumption and the irreducibility of Aen(O,d] at

ti_1 that (.&‘, t p a for all a E red(Aen(O,d]). By Fact 3.34 and the semantics, we

also have (A,t) k Aen(O,d] for any t E [ti_lyti).

For the backward direction, we prove its contrapositive. By construction, Slen(O,d]

$ ci implies -Ylen(O,d] E ci. The case where T$len(O,d] is reducible is straight-

forward. When it is not reducible, we have by construction that 9llen(O,d] E oi.

We now use Lemma 3.11 and arguments regarding /&blocks, analogous to those used

above for a-clocks, to establish the result. q

The soundness lemma follows since f is in M’(O).

3.4. Complexity of the decision problem

Let f be an RTFIL formula of size n and depth k, and let T be the size of the binary

encoding of the timing constant appearing in f. By Lemma 3.20, (scl(f)I = O(nk).

Clearly, ._&(f) and JX$(f) can have at most 2’(“) states each. The timing augmen-

tation can introduce 0(n2k) clocks, and the number of states of &(f) is 2°(n2k.k10gn).
Thus, dm(f) can have at most 2 o(n2”k10gn) states and 0(n2k) clocks. The final empti-

ness check has a complexity of O(C! . (S + E) .2r“‘sr), where C is the size of the

clock set, S and E are the number of states and edges in the TBA, and T is the size

of the binary encoding of the timing constants appearing on the edge conditions of the

TBA [3]. The overall complexity of the decision procedure is thus 2°(nZL~k’osn+T10sT).

The main source of the blow-up is due to the large number of clocks. Note, however,

that usually the number of clocks will be much less than that indicated by the large

upper bound because timing conditions in specifications will generally involve relations

between a few simple predicates rather than long sequences of events. As a result the

overall complexity will be closer to 2°(nk+C’k10sn+r’os r+clOsc), where C is the number

of clocks introduced in the timing augmentation. Comparing this with the 2O@) upper
bound for FIL, the price for real time is seen to be an additional factor exponential

in the number of timers and the constants appearing in the specification. However, the

34 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

decision procedure is still doubly exponential (deterministic time), essentially the same

as for the timeless logic FIL [27].

In fact, we can show, using a method similar to that used for FIL, that the de-

cision problem can be solved in EXPSPACE. Observe that a configuration of (the

region automaton [3] corresponding to) &,, can be encoded as a tuple consisting

of

l the set of formulae in the state,

l the set of clocks active in the state,

l for each active clock, the associated context tag,

l for each active clock, its integer value, when it is less than the value it will be

compared against (i.e. when it is less than d for the clock cTXd),

l the relative ordering of the fractional parts of each active clock.

The number O(nk) of formulae and the number O(n2k) of clocks in a state is at most

exponential in the size n of the input formula (since k is O(n)), so a configuration

can be represented in space exponential in n. Our TM begins by guessing an initial

configuration, and verifying that the conditions of Definition 3.25 are satisfied. At

each subsequent stage it now guesses the next configuration and verifies that all the

transition conditions are satisfied. This now includes verifying that the ordering of the

fractional parts of the clocks that are active across the transition, and which do not

change their integral value, is the same in both configurations, and that the fractional

part of every newly activated clock, and every clock for which there is an increase in

the integral value, is zero. The remaining arguments are analogous to the case of FIL;

in particular, the values of the two counters can be represented in exponential space,

since the number of regions of the region automaton are bounded above by a triple

exponential.

We have, however, not been able to show a matching lower bound for the problem.

The best lower bound that we have is the PSPACE-hardness of Part I. (Recall that

there is also an exponential gap between the upper and lower bounds we gave, in Part

I, for FIL for the general case.) The rather clever encoding of the computation of an

EXPSPACE-bounded Turing machine in MITL [2] does not extend, as far as we can

see, to our logic, since RTFIL lacks the ability (see Section 5) to relate states separated

by a given duration.

The satisfiability procedure can be adapted, in a straightforward manner, to obtain a

model-checking algorithm for RTFIL. This is done by checking the emptiness of the

product of the automaton for the negation of the formula with that representing the

model. The resulting algorithm runs in time doubly exponential in the input formula

(the same as the satisfiability procedure) and linear in the size of the input model

(given in the form of a fair timed transition system).

Analogous to the result for FIL, it is easy to show that if we bound the largest

constant appearing in a formula and the largest depth of nesting of interval modalities,

then this bounded version of satisfiability for RTFIL is PSPACE-complete in the size

of the formula. This result may be more indicative of the type of scaling behaviour

one might expect for the logic.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 35

3.5. Tableaux: Reducing average-case complexity

A tableau-based analogue of the algorithm presented above can result in a reduction

in the average-case complexity. The construction of the tableau is based on the follow-

ing observations: it is not necessary to build all the subsets of scl(f) while constructing

I&, and thus immediately pay an almost worst-case penalty. Firstly, there may be

many states that are unreachable from any initial state. It may be possible to avoid

exploring such states. Secondly, there may be states that are trace-equivalent, in the

sense that the language of the automaton starting at either state is identical. It may be

possible to save the duplication in effort involved in exploring these states separately.

Before we make our third observation, we need to make a brief digression into

the emptiness algorithm for TBAs. Recall our statements in Section 3.4 regarding the

number of “regions” of the region automaton corresponding to a TBA. The complexity

in checking the emptiness of the TBA stems, to a large extent, from the need to explore

all the regions defined by the TBA. However, in many cases, the timed-language

accepted by a TBA, starting in different regions, may be the same. When such regions

are contiguous (and their union is convex) it may be possible to explore this set of

regions simultaneously by considering their union. This optimization can be done using

a method proposed by Dill et al. [2,14].

Finally, the emptiness checking need not wait until the entire graph of the re-

gion automaton has been constructed. On-the-fly methods exist for maintaining the

strongly connected components of the tableau, as it is “grown” from its initial node.

The method terminates upon finding a reachable bottom strongly connected component

that is timing-consistent and eventuality-fulfilling.

Using these simple heuristics, it is possible to obtain a tableau-based refinement of

the automata-theoretic algorithm that, in many cases, terminates much faster than the

automata-theoretic method. In [24] we present a version of such a method. This method

also underlies an implementation of a proof-assistant for the logic [21,22,26]. Wolper

[31] gives a good overview of tableau-based methods for non-quantitative temporal

logics.

4. An undecidable extension

In [20] an extension of (qualitative) Interval Logic to real time was suggested that

makes use of two main constructs. The first construct allows the language to specify

bounds on the duration of intervals. This is precisely what we have in RTFIL. The

second construct that was suggested is a real-time offset operator, + +d, much like the

search operator, which moves a point of reference by a given real time from the point

where it began. These extensions were, of course, suggested in the context of an interval

logic different from ours. Several examples were given showing the expressiveness and

naturalness of such a construct. We show in the next section that the addition of such

a construct to RTFIL, which has a dense notion of time, makes the logic undecidable.

36 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

The results of the next section underscore our earlier points regarding the difficulty

of obtaining an expressive dense-time logic without sacrificing decidability.

4.1. Adding the ‘I--+ +” construct

We extend RTFIL to the logic RTFIL+ by adding an offset construct similar to the

one mentioned in [20]. The syntax of RTFIL+ consists of that defined by the BNF

grammar for RTFIL in Section 2.1 except that wfsps have an extra terminal + +d

with d E Q, i.e.

6’ ::== --f f) -++d 1 +f,O 1 -++d,8

The semantics of RTFIL+ are defined by the semantics for RTFIL in Section 2.3

and the following additional rule for interpreting offset searches, which extends the

definition of the search-locator function for the case A’ # J-d and t # I:

A(+ +d, (A, t)) =
C

;+ d z;e;;s,> sup dam J&’

RTFIL+ thus allows natural expression of constructs that RTFIL cannot express.

For instance, to require the occurrence of a q-state precisely 4.2 time units from every

p-state, one can simply assert

q (P + [-+ +4.2] +)q)

Note that this construct also preserves right-continuity of models under extension. Un-

fortunately, the augmentation of RTFIL with this construct leads to undecidability.

Theorem 4.1 (Undecidability of RTFIL+). The satisjability problem for RTFZL+ is

undecidable.

Our undecidability proof, which appears in the appendix, is by reduction from the

halting problem for two-counter Minsky machines. That is, we give an encoding f
from a given input program x for a two-counter machine to an RTFIL formula f(x),
such that f(x) is satisfiable in RTFIL iff the machine has a halting computation on

x. This gives us undecidability since a two-counter machine is universal [15, p. 1721.

The strategy and the idea of the encoding are similar to those used in the proof of

undecidability of Metric Interval Temporal Logic with singular intervals, which appears

in [4]. In fact, the proof is trivially modified to give a ZIi lower-bound for the validity

problem, showing that the proposed extension is not even axiomatizable.

5. Related work

Our approach of extending a qualitative temporal logic to real time is not new,

having been introduced into temporal logic by Koymans [171, and falls roughly into

KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 37

the category of bounded-operator temporal logics. Indeed, the precise construct that we

use is one of two suggested by Melliar-Smith [20], in the context of the Interval Logic

of [30]. Our main contribution has been in formalizing the syntax and semantics of

the logic, and in giving a decision procedure for it.

Proposals for real time interval logics also appear in [23,28]. However, neither of

these papers provides a decision procedure for the proposed logic. In fact, the logic

of Razouk and Gorlick [28] is so powerful that it is highly undecidable. The logics

of Aaby and Narayana [23] and of Melliar-Smith [20] allow the expression of the

forbidden “punctuality” construct of [4], so that they can be shown to be undecidable

if interpreted over a dense time domain, in much the same way as we do for RTFIL+

in the appendix (see proof of Theorem 4.1).

The Duration Calculus [13] differs from RTFIL in that it treats intervals as prim-

itive semantic objects. It is well-suited to describing and reasoning about cumulative

behaviour, a feature especially useful for hybrid systems. The operator J in that logic,

for instance, allows one to bound the duration of a fragment of a computation dur-

ing which a predicate holds. This ability to integrate over non-convex intervals, com-

bined with the “non-local” character of the logic, makes it very expressive. However,

as is shown in [12], over dense time even the simplest real time fragment of the

calculus is undecidable and, even without real time, the simplest fragment is non-

elementary.

Many of the recent advances in dense real time specification and verification theory

spring from the important paper [3] of Alur and Dill, where a very expressive concrete

model of real time, in the form of timed automata, was first presented. The usefulness

of their model derives from its expressiveness and the fact that the emptiness problem

for these automata is solvable. Its expressiveness allows many quite powerful real time

logics to be interpreted in that model, as is the case for (qualitative) temporal logics

vis-a-vis w-automata. The solvability of the emptiness problem for timed automata then

yields decision procedures for the real time logics thus interpreted. One can, therefore,

expect these automata to play the same central role in real time temporal logic decision

procedures that Bi.ichi automata (and their many variants) have played in qualitative

temporal logics. l4

Decidable dense real time logics are relatively rare because a dense real time logic

must tread the fine line between expressiveness and undecidability. Indeed, RTFIL and

the Metric Interval Temporal Logic (MITL) of Alur et al. [4] are two of the few

real time temporal logics known today that admit a dense notion of time and yet

are decidable. The logics RTFIL and MITL adopt different compromises and neither,

we believe, is as expressive as the other. MITL appears to have no direct means of

expressing RTFIL formulae that constrain the length of an interval defined between the

endpoints of a sequence of (more than two) searches. Correspondingly, RTFIL cannot

l4 The only stumbling block may be that, unlike untimed automata, these automata are not closed under
complementation. However, recently, Alur, et al. [5] have identified a large determinizable subclass of TBAs.

38 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

express the MITL construct p%$q, which requires q to occur within the time bounds

denoted by I (while not constraining its occurrence outside that interval), and p to

hold until that occurrence. I5

In effect, RTFIL defines events in relation to other events, and then imposes real

time constraints on their relative occurrence. In contrast, MITL first defines real time

intervals and then requires events within those intervals, possibly in relation to other

events. Thus, it appears that MITL will be found more satisfactory for reasoning about

synchronous real time systems (where the synchronization is by real time), whereas

RTFIL may be more effective for reasoning about asynchronous real time systems. A

natural question, then, is whether there is a reasonable combination of the two logics

that retains decidability. We conjecture that the answer is in the affirmative, and that

a decision procedure for the combination would follow from a suitable “composition”

of the procedures for the two logics. This is the case, for instance, for the untimed

logics FIL and PTL(Y, a), where such a “combined” decision procedure follows from

purely automata-theoretic methods (see some related comments in Part I, Section 5).

However, MITL when extended with the (untimed) past operator Y appears to be

more expressive. For instance, the RTFIL formula

[+a/ +a,+b,+c)len(2.0,4.2]

can be expressed, modulo the interval constructibility condition, which we ignore for

the sake of simplicity, in this extended version of MITL, which we call MITL(Y),

a

-b

where, as in [l], we have assumed the operator Y and @ to be strict in both ar-

guments. It is an open question whether MITL(Y) can express an arbitrary property

expressible in RTFIL. Methods such as those used by Kutty et al. [19] may be helpful

in trying to answer the question. We believe, however, that even if the answer were

to be in the affirmative, this might involve a severe succinctness penalty, especially

in the case of RTFIL formulae with timing constraints nested deeply within interval

modalities.

l5 In each case, the introduction of auxiliary predicates mitigates the problem. Note also that the TPTL
[6], with “freeze” quantification, can express the RTFIL property given earlier. Unforhmately, TPTL is

undecidable when interpreted over a dense time domain.

KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 39

A related, although somewhat academic, question concerns the complexity of the va-

lidity problems for real time versions of GIL of Part I. In other words, what happens to

the validity problem for RTFIL when we extend it with backwards searches, obtaining

the real time counterpart RTGIL of GIL? By the results of Part I, it is clearly at least

non-elementary - but, is it even decidable?

6. Conclusion

We have presented a real time interval logic RTFIL which conservatively extends

the timeless logic FIL. The logic extends FIL in a natural way to allow real time

specification, without sacrificing decidability. We have presented a formal semantics

for the logic and have given a decision procedure for it. That RTFIL involves an

additional exponential factor proportional to the number of clocks and the constants

appearing in the specification should come as no surprise to those familiar with other

dense-time logics.

A prototype RTFIL theorem-prover based on a tableau-theoretic analogue of the de-

cision procedure given in this paper has been implemented and used to verify some

simple real time systems [2 1,22,26]. However, many opportunities remain for improv-

ing the system and making it more practical as a real life verification system. Apart

from the use of efficient data structures, such as binary decision diagrams for state

encoding, efficient heuristics, such as those used in [8], will need to be used in order

to reduce the space requirements for the verification. Since our procedure is automata-

theoretic, it can directly benefit from any advances in verification technology based on

o-automata and their real time extensions. The tools are available by anonymous ftp

from alpha.ece.ucsb.edu in the directory/pub/RTGIL.

There is also a need for a proof calculus for the logic in the style of the natural

deduction calculi that are now gaining popularity in many applications. The success or

failure of an “expensive” logic such as RTFIL would depend crucially upon whether

one is able to obtain a clean proof system. We consider our decision procedure an

important first step in this direction. For instance, our reduction and transition rules

can be seen as a form of “rewrite roles” for a tableau proof system. The incorporation

of timers in a formal manner into such tableaux, however, presents non-trivial difficul-

ties. One approach might be to use time variables with such operations as resetting,

assignment, comparison and difference, to simulate the role of timers. However, such

an approach is probably far too low level to be useful. On the other hand, some ap-

propriate mixture of automated inference within such a proof system, along with user

assistance at crucial points, would be more practical.

Finally from a more theoretical standpoint, there are interesting expressiveness ques-

tions regarding RTFIL and other decidable real time logics based on a dense model

of time. The apparent duality between our approach and that of MITL, as outlined in

the previous section, clearly merits further study. Another interesting direction involves

identifying a natural decidable fragment of parametric RTFIL, in the sense of [7].

40 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

Acknowledgements

We thank Rajeev Alur for his comments on the conference version of this paper. We

are also grateful to the anonymous referees for their critical reading, and for pointing

out several errors in the first version.

Appendix A: Proof of Theorem 3.10

The proof of Theorem 3.10 makes heavy use of the following fact.

Fact 1. Let Xl and X2 be finitely variable and right continuous functions from R
to finite subsets of a set S. Let P(bl,. . . , b,) be a boolean function of n variables
bl,.. .,b,, and let xl,. . ., x, be elements of S. Then the functions ‘6

1. X:R + 2’ dejined by X(t) =XI(~)U&(~),

2. B : R + {true, false} defined by B(t) = P[bi t x&, where xi E X,(t)
are also finitely variable and right continuous.

Proof of Theorem 3.10. Let ~2 be an admissible model. Then dom&‘f = domA.

Moreover, since scl(f) is finite for any formula f, clearly Af is image finite. It

remains to prove that ~%‘f is finitely variable and right continuous. The proof is by

induction on the inclusion order induced by the subformula closure.

For the first of two base cases, we note that

Ap(t) =

{true, P> if p E A(t)

{true, 7p) otherwise

Finite variability and right continuity of AJ’ then follows easily from that of ~2 for

any p E 9.
For the remaining base case, we note that sup dom JZ # t for t E dom & so that,

for any t E dom(&),d E Q,

~ten(aPl(t) =

{

{true, len(0, d]} if sup domA- t<d

{true, 4en(O, d]} otherwise

Thus there is at most one right-continuous change in the valuation of JZ’~“(~JI over
dam ~ten(aK.

For the induction step, we consider two sample cases. The remaining cases are

similar.

Case 1. Consider A!flAf2. We have

d!fl*fqt) = JHfyt> u &f’(t) ux(t)

I6 The abbreviation P[Xi - yi]i denotes simultaneous substitution of yi for Xi, for every i.

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) I-46 41

where

x(t) =

If1 A f2) if f~ E df’(t) and fz E =&f’(t)

13fl A f2)) otherwise

Clearly, X is finitely variable and right continuous by the second caluse of Fact 1,

since A’fl and JZf2 are. By the first clause of Fact 1, so is .AflAf2.

Case 2. Consider now the case of A?f with f = [- a, 8, (-+ b, e2)f’.
From the definitions of extension and subformula closure, we have

.&f(t) = fi &f*(t) u AU(t) u A@(t) LJX(t)
i=l

with

X(t) =

where

if) if

f 1 E df’(t) or

f2 E Af2(t) or

a E A”(t) and f3 E df3(t) or

b E Mb(t) and f4 E Af4(t) or

B(t)

1-f) otherwise

f 1 = [- a, e1 I -+)false

f 2 = [- b, e2(-+)false

f3 = [hi+ b,e,)f’

f4 = [-a~~11e2)f’

and B(t) is a boolean condition defined by

1

3t, , t

(

a E A’(t’) A f3 E .df3(t’)A
Vt”(t < t” < t’ + Tb E 48’(t”) A Ta E .A”(t”)) >

B(t) = or

3t, > t

(

b E di@(t’) A f4 E Af4(t’)A
Vt”(t < t” < t’ =+ lb E d@(t”) A la E A!“(t”)) >

We now show that B(t) is itself right continuous and finitely variable. By the induc-

tion hypothesis each of the functions Ma,dZb,Af~ and A?fd is right continuous and

finitely variable. Consider now an arbitrary point t E dom A!. We have the following

possibilities. Either a E A’(t) or b E db(t) or neither. In the first two cases B(t) is

false, and continues to be false at least up to (but possibly not including) the least t’

where neither a E A’“(t’) nor b E db(t’). Consider therefore the third case, for which

la E d”(t) and lb E Jib(t). Now we have two cases depending on whether there is

any point t’ > t where either a E d”(t’) or b E A”(t’).

42

.

.

Y.S. Ramakrbhna et al. I Theoretical Computer Science 170 (1996) 146

Assume not. Then clearly B continues to be false for all t’> t.

In the alternative case, let t’ > t be the least point such that either a E A”(t’) or

- b E J&‘(t’). Then B is false on [t, t’) if

-((a E A”(t’) A f3 E Ar3(t’)) V (b E Ji@(t’) A f4

and otherwise B is true on [t, t’)

This establishes the right continuity of B.
Let DA~ represent the set of points at which 4” has a (left) discontinuity, and

similarly D&~llb for JZb. For a subset S of R and t E R, let S l t = {s E S 1 s < t}. The
finite variability condition for &P is then equivalent to saying that D&a 1 t is finite for

any t E R. By the induction hypothesis .4” and JZb are finitely variable, so each of

D_p and DAb has this property and, therefore, so also does DA~ U D&b, and a fortiori

any subset of DdAc” U DAb. As our argument above for the right continuity of B clearly

shows, B is constant between any two consecutive points (in the usual ordering) in

Dda U DAb. Therefore, DB C Dda U D&b, giving finite variability for B.
Now, using Fact 1, we obtain right continuity and finitely variability, first for X,

and then for Af. 0

Note that the proof of right continuity, above, is equivalent to a proof of Theorem

2.5.

Appendix B: Proof of Theorem 4.1

As we stated earlier, our proof is by reduction to the halting problem for two-counter

Minsky machines. A two-counter machine M has two counters Ci and C2. Assume

that it is started on an input tape with a sequence of n instructions (PI,. . . , P,,). An

instruction specifies that one of the two counters must be incremented or decremented

(by one), or the head must move to another instruction conditional on one of the coun-

ters being zero; following a non-jump instruction, the head must non-deterministically

proceed to one of two specified instructions. A configuration of M is a triple (i, cl, cz),

where i E [n] is the tape cell containing the instruction Pi that the head is reading, and

cl, 13, are the values of the counters Cl and C2. We assume, without loss of generality,

that the machine accepts if it reaches the last instruction, P,,.

Proof of Theorem 4.1. We encode a computation of M as a sequence of configurations

along the time axis as follows. To encode the configuration (i, cl, cz), we let the predi-

cate Pi be true in the first half (of duration 1) of the “cell” of duration 2, representing

the configuration, and false throughout the remaining duration of the cell. During this

remaining half (of duration 1) of the cell, we let Ci and C2 oscillate precisely cl and

c2 times, respectively, before the start of the next configuration. However, at the end

of the cell, we require all propositions to become quiescent, so that there is a non-zero

duration during which all propositions are false. The next time that one of the Pi’s

Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146 43

(instruction predicates) becomes true, represents the start of the next configuration.

Crucial to this is the ability to copy an entire prefix of a configuration into the next,

so that the moves of A4 are simulated appropriately.

In the encoding that follows, we shall let x range over the set [2], and i, k, ki, k2 over

[n]. Recall, for the sequel, the following definitional abbreviations from Section 2.2 of

Part I. As before, we also use vertical juxtaposition as an abbreviation for conjunction.

oa dZf 7[--+ al +)false

def
oa=707a

We first define well-behavedness of Pi’s, well,, i.e. instructions are active only during

the first half of a cycle, and never in the second half:

Similarly, we define by well, the well-behavedness of the counters, i.e. counters are

active only during the second half and never during the first half, and counter pulses

are coterminally false within any configuration:

well, dAf (
[-I -+ +1)0/\-C,

[+ +lI +)[-I + Vf”i)OmA7Cx
i x)

In the following set of definitions, one-ins encodes the fact that precisely one instruction

is being read at any instant; ZERO(X), x E [2] that the value of counter x is zero. The

predicate ram(k), k E [n], when true at the beginning of a new configuration, indicates

that in the next configuration the instruction Pk is being read.

ZERO(X)dgf[-] --+ +2)07C,

READ(k) dAf [- +21 -‘)Pk

The following predicates are useful for encoding the changes in value of the counters,

and testing for zero. The predicate NOMORE(x E [2], indicates when true that there

are no more pulses of C, until the beginning of the next configuration. The predicate

LAST(X) when true indicates that this is the last pulse of C, within this configuration.

The predicate ONEMORE indicates that there is precisely one more “complete” pulse

44 KS. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

of C, in this configuration before the start of the next conhguration.

NOMORE

ONEMORE
def

-G

= [- 1 + NOMORE(
ocx

[- c,,--+ -C,] -t)o%Yx ,)

LAST(C,)
def

=(

CX

1 - 1 + NOMORE(X >

Making use of the above abbreviations, we now define NO-DECR(X), x E [2], to mean

that counter X does not decrease from the current configuration to the next. Similarly,

TNCR(X) indicates that counter X is incremented by one from this configuration to the

next, and DECR(X) indicates that it is incremented from the current configuration to the

next.

NO-DECR(X) y(C, = [- +2] -+)C,%NOMORP(C,)

INCR(X) dAf
NO - DECR(X)

[- NOMORE(C,), + +2 1 +)ONEMORE(X) >

DECR(X) dzf
(C, E [- +2] -+)C,)%LAST(C,)

[-+ LAST(G), -+ +2] +)NOMORE(C,) >

For the purpose of encoding a move on a specific instruction, we assume that corre-

sponding to each instruction Pi the following predicates are available (essentially this

is the “input” to our encoding procedure):

INCR,(Pi) dzf increment counter x

DECR,(Pi) dzf decrement counter x

TEST,,k(Pi) dzf if counter x is zero, g0 to Pk

MPk,, k2 (Pi) dzf non-deterministically go to& or&

Thus, there are n* + 2n + 4 predicates on each instruction Pi, a total of O(n3) propo-

sitions. Let us define an auxiliary predicate ND-JMP(Z) as

ND-JMP(i)dAf A (JMPk,,k*(Pi) * (READ V READ(k2)))
kl,k2

Using the above, the well-behavedness of the moves is encoded as follows: move
ensures that the correct action is taken on an instruction, and exec ensures that all the

Y.S. Ramakrtshna et al. I Theoretical Computer Science 170 (1996) 146

moves are well-behaved, i.e. that the encoding is indeed an execution of M.

move dAf A
i

/)~CR.x(Pi) * A (zz$i,>
ADECRx(Pi) * A (lZERO(X)+ DECR(X)

x ND-JMP(i) >

ATESTx,k(Pi) * A
ZERO(X)+ READ(k)

x,k -ZERO(X)+ ND-JMP(i) >

one-ins
def

exec = we& A well, A move

\0(7vPj * [-+ i/Pi1 -+)well, A we& A move 1 I i

45

The encoding of the halting problem for the given M is now straightforward, as-

suming as stated before that the machine accepts iff it reaches the last instruction P,:

PI A A ZERO(X)A~~~~A oP,, q
i

In fact, by simply replacing eventual acceptance oP,, above, by recurrent acceptance

q o P,,, we obtain an encoding of the recurrence problem for two-counter machines. It

is shown in [l] that this problem is Et-hard. It follows that the validity problem for

RTFIL+ is at least Hi-hard, so there is no finitary axiomatization for RTFIL+.

References

[l] R. Alur, Techniques for automatic verification of real time systems, Ph.D. Thesis, Dept. of Comput.

Sci., Stanford University, 1991.

[2] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs and H. Wong-Toi, An implementation of three

algorithms for timing verification based on automata emptiness, in: Proc. 13th IEEE Real Time Syst.
Symp. (1992) 157-166.

[3] R. Alur and D. Dill, Automata for modeling real time systems, in: Proc. 17th Znt. Colloq. Automata,
Languages and Programming, Lecture notes in Computer Science, Vol. 443 (Springer, Berlin, 1990)

322-335.

[4] R. Aim, T. Feder and T. Henzinger, The benefits of relaxing punctuality, in: Proc. 10th ACM Principles
of Dist. Comput. (1991) 139-152.

[5] R. Alur, L. Fix and T.A. Henzinger, A determinizable calss of timed automata, in: Proc. 6th Workshop
Comput. Aided Ver$, 818 (Springer, Berlin, 1994) 1-13.

[6] R. Alur and T. Henzinger, A really temporal logic, in: Proc. 30th IEEE Found. Comput. Sci. (1989)
164169.

[7] R. Alur, T.A. Henzinger and M.Y. Vardi, Parametric real time reasoning, in: Proc. 25th ACM Symp.
Theory of Comput. (1993) 592601.

[8] R. Alur, A. Itai, R. Kurshan and M. Yamrakakis, Timing verification by successive approximation, in:

Proc. 4th Workshop Comput. Aided Verif: Lecture notes in Computer Science, Vol. 663 (Springer,

Berlin, 1992) 137-150.
[9] R.J.R. Back, Refinement calculus, Part II: Parallel and reactive programs, in: Proc REX Workshop on

Stepwise Rejnement of Distributed Systems: Models, Formalisms, Correctness, 430 (Springer, Berlin,

1989) 67- 93.

[lo] H. Barringer, R. Kuiper and A. Pnueli, A really abstract concurrent code1 and its temporal logic, in:

Proc. 18th ACM Principles Prog. Lang. (1986) 173-183.

46 Y.S. Ramakrishna et al. I Theoretical Computer Science 170 (1996) 146

[Ill J.R. Biichi, Gn a decision method in restricted second-order arithmetic, in: Logic, Methodology and
Philosophy of Science, Proc. 1960 Congress (Stanford University Press, Palo Alto, CA, 1960) l-l 1.

[12] Z. Chaochen, M.R. Hansen and P. Sestofi, Decidability and undecidability results for the duration

calculus, in: Proc. 10th Symp. Theoret. Aspects Comput. Sci., 665 (Springer, Berlin, 1993) 58-68.

[13] Z. Chaochen, C.A.R. Hoare and A.P. Ravn, A calculus of durations, in: Inform Processing Lett. 40
(1991) 269-276.

[14] D. Dill, Timing assumptions and verification of finite-state concurrent systems, in: Proc. Znt. Workshop
Automatic Verification Methods for Finite-State Systems, Lecture notes in Computer Science, Vol.

407 (Springer, Berlin, 1989) 196212.

[15] J. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computations
(Addison-Wesley, Reading, MA, 1st ed., 1979).

[16] R. Koymans, (Real) time: a philosophical perspective, in: Proc. REX Workshop Real-Time: Theory
in Practice, Lecture notes in Computer Science, Vol. 600 (Springer, Berlin, 1991) 353-370

[17] R. Koymans, J. Vytopil and W.-P. de Roever, Real-time programming and asynchronous message-

passing, in: Proc. 2nd ACM Principles of Dist. Comput. (1983) 187-197.
[18] R.P. Kurshan, Analysis of discrete event coordination, in: Proc. REX Workshop Stepwise Refinement

of Distributed Systems: Models, Formalisms, Correctness, 430 (Springer, Berlin, 1989) 414-453.

[19] G. Kutty, L.E. Moser, P.M. Melliar-Smith, Y.S. Ramakrishna and L.K. Dillon, Axiomatizations of

interval logics, Fundam Inform XXIV (1995) 313-331.

[20] P.M. Melliar-Smith, Extending interval logic to real times systems, in: Proc. Conf: Temporal Logic in
Speci$cation, Lecture notes in Computer Science, Vol. 398 (Springer, Berlin, 1987) 224-242.

[21] P.M. Melliar-Smith, L.E. Moser, Y.S. Ramakrishna, G. Kutty and L.K. Dillon, A system for automated

deduction in graphical interval logic, in: Proc. 1st Znt. Conf Temporal Logic, Lecture Notes in Artificial

Intelligence, Vol. 827 (subseries of Lecture Notes in Computer Science) (Springer, Berlin, 1994)).

[22] L.E. Moser, Y.S. Ramakrishna, G. Kutty, P.M. Melliar- Smith and L.K. Dillon, A graphical environment

for design of concurrent real time systems,submitted.

[23] K.T. Narayana and A. Aaby, Specification of real time systems in real time temporal interval logic, in:

Proc. 9th IEEE Real Time Syst. Symp. (1988) 8695.

[24] Y.S. Ramakrishna, Interval logics for temporal specification and verification, Ph.D. Thesis, Dept. of

Elec. and Comput. Eng., University of California, Santa Barbara, 1993.

[25] Y.S. Ramakrishna, L.K. Dillon, L.E. Moser, P.M. Melliar-Smith and G. Kutty, A real time interval

logic and its decision procedure, in: Proc. 13th Found. Softw. Tech. & Theoret. Comput. Sci., Lecture

notes in Computer Science, Vol. 761 (Springer, Berlin, 1993) 173-192.

[26] Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon and G. Kutty, Really visual temporal

reasoning, in: Proc. 14th IEEE Real Time Syst. Symp. (1993) 262-273.
[27] Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon and G. Kutty, Interval logics and their

decision procedures, Part I: An interval logic, Theoret. Comput. Sci. 166 (1996) 147.

[28] R.R. Razouk and M.M. Gorlick, A real time interval logic for reasoning about executions of real time

programs, in: Proc. 3rd Symp. Testing, Analysis and Vertf, SZGSOFT Softw. Eng. Notes, Vol. 114

(1989) 10-19.

[29] F.B. Schneider, B. Bloom and K. Marzullo, Putting time into proof outlines, in: Proc. REX Workshop
Real Time: Theory in Practice, Lecture notes in Computer Science, Vol. 600 (Springer, Berlin, 1991)

618-639.

[30] R.L. Schwartz, P.M. Melliar-Smith and F. Vogt, An interval logic for higher-level temporal reasoning,

in: Proc. 2nd ACM Principles of Dist. Comput. (1983) 173-186.
[31] P. Wolper, The tableau method for temporal logic: an overview, Logique et Analyse, Novelle Serie

28e Ann&e, Vol. 110-111 (1985) 119-136.

