
Journal of Algebra 322 (2009) 4331–4367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

General runner removal and the Mullineux map

Matthew Fayers

Queen Mary, University of London, Mile End Road, London E1 4NS, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2008
Available online 13 October 2009
Communicated by Masaki Kashiwara

Keywords:
q-decomposition numbers
Abacus
Mullineux map

We prove a new ‘runner removal theorem’ for q-decomposition
numbers of the level 1 Fock space of type A(1)

e−1, generalising earlier
theorems of James–Mathas and the author. By combining this with
another theorem relating to the Mullineux map, we show that
the problem of finding all q-decomposition numbers indexed by
partitions of a given weight is a finite computation.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let e be an integer greater than or equal to 2, and let U denote the quantum algebra Uq(ŝle)

over Q. The level 1 Fock space for U is a Q(q)-vector space with a standard basis indexed by the set of
all partitions. This has the structure of an integrable U -module, and the submodule generated by the
empty partition is isomorphic to the irreducible highest-weight module L(Λ0) for U . On computing
the Lusztig–Kashiwara canonical basis for this submodule and expanding with respect to the standard
basis, one obtains coefficients de

λμ(q) indexed by pairs of partitions λ and μ with μ e-regular. These
polynomials have become known as ‘q-decomposition numbers’ in view of Ariki’s proof of the LLT
Conjecture, which states that if λ and μ are partitions of n with μ e-regular, then de

λμ(1) = [Sλ : Dμ],
where Sλ and Dμ denote a Specht module and a simple module for an Iwahori–Hecke algebra at
an eth root of unity in C. Leclerc and Thibon extended the canonical basis for L(Λ0) to a canonical
basis for the whole of the Fock space, yielding q-decomposition numbers de

λμ(q) for all pairs (λ,μ) of
partitions, and conjectured that when evaluated at q = 1, these polynomials should give decomposi-
tion numbers for appropriate quantised Schur algebras. This conjecture was proved by Varagnolo and
Vasserot [VV].

q-decomposition numbers have been studied extensively in the last ten years or so, with some ef-
fort being devoted to finding faster or more enlightening methods for computing the q-decomposition
numbers. An important theorem on these lines is the ‘runner removal theorem’ of James and
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Mathas [JM], which shows how to equate a q-decomposition number de
λμ(q) with a ‘smaller’

q-decomposition number de−1
ξπ (q) under certain conditions based on abacus displays for λ and μ.

This observation that the q-decomposition numbers are ‘independent of e’ is inherent in Lusztig’s fa-
mous conjecture for the characters of irreducible modules for reductive algebraic groups, and indeed
the James–Mathas theorem admits a very simple proof using the interpretation (due to Goodman and
Wenzl [GW] and Varagnolo and Vasserot [VV]) of q-decomposition numbers as parabolic Kazhdan–
Lusztig polynomials.

In [F2], the author proved another runner removal theorem which is in some sense ‘conjugate’
to the James–Mathas theorem, and more recently Chuang and Miyachi [CM] have shown that there
are Morita equivalences of ζ -Schur algebras underlying some of these results. In this paper, we
prove a rather stronger runner removal theorem for q-decomposition numbers; this includes both the
James–Mathas theorem and the author’s earlier theorem as special cases. The way we do this is to
define an integer Lk(λ) associated to a partition λ and an integer k ∈ {0, . . . , e − 1}, and then to show
that if two partitions λ and μ satisfy Lk(λ) = Lk(μ) for some k, then there is a runner which may be
removed both abacus displays, resulting in an equality of q-decomposition numbers. The proof of this
theorem involves a long calculation using the Leclerc–Thibon algorithm for computing the canonical
basis of the Fock space.

In the remainder of the paper, we prove some results which indicate the strength of our main
theorem; the main result here is Corollary 3.10, in which we show that the problem of computing all
q-decomposition numbers de

λμ(q) for partitions λ and μ of a given e-weight as e varies is a finite com-
putation. This requires a further theorem (Theorem 3.5), which is the result of a detailed computation
describing a relationship between our function Lk and the Mullineux map.

2. Background

2.1. Miscellaneous notation

We begin with some mathematical conventions which might not be considered standard by all
readers.

• N0 denotes the set of non-negative integers.
• If i, j and e are integers with e � 2, we write i ≡ j (mod e) to mean that i − j is divisible by e,

and we write i Mod e for the residue of i modulo e.
• If I and J are multisets of integers, then we write I � J for the ‘disjoint union’ of I and J ; that

is, the multiset in which the multiplicity of an integer z is the multiplicity of z in I plus the
multiplicity of z in J .

• If I is a multiset of integers and J a set of integers with J ⊆ I , then we write I \ J to indicate
the multiset which consists of I with one copy of each element of J removed.

• If I is a multiset of integers and J a set of integers, then we define |I ∩ J | to be the number of
elements of I with multiplicity which are elements of J .

2.2. Partitions

As usual, a partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . .) of non-negative integers
whose sum is n. We write P for the set of all partitions. When writing a partition, we usually group
equal parts and omit zeroes, so that (42,3,13) represents the partition (4,4,3,1,1,1,0,0, . . .). We
use ∅ to denote the empty partition, i.e. the unique partition of 0.

If λ is a partition, then the conjugate partition λ′ is given by

λ′
i = ∣∣{ j � 1 | λ j � i}∣∣.

If e is an integer greater than 1 and λ is a partition, then we say that λ is e-regular if there does
not exist i � 1 such that λi = λi+e−1 > 0. We say that λ is e-restricted if λi − λi+1 < e for all i, or
equivalently if λ′ is e-regular.
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The Young diagram of a partition λ is the set

[λ] = {
(i, j) ∈ N2

∣∣ j � λi
}
,

whose elements are called nodes of λ. A node (i, j) of λ is removable if [λ] \ {(i, j)} is again the Young
diagram of a partition, while a pair (i, j) not in [λ] is an addable node if [λ] ∪ {(i, j)} is a Young
diagram. If (i, j) and (i′, j′) are addable or removable nodes of λ, then we say that (i, j) is above
(i′, j′) if i < i′ .

With e fixed as above, we define the residue of any node or addable node (i, j) to be j − i Mod e.
Given two partitions λ and μ and k ∈ {0, . . . , e − 1}, we write λ

k−→ μ to mean that [μ] is obtained
from [λ] by adding an addable node of residue k.

2.3. q-decomposition numbers

Suppose e is an integer greater than or equal to 2. The quantised enveloping algebra U = Uq(ŝle) is
an associative algebra over Q(q) which arises as a deformation of the universal enveloping algebra of
the Kac–Moody algebra ŝle . U has Chevalley generators ei, f i,qh for i ∈ Z/eZ and h lying in the coroot
lattice of ŝle; defining relations between these generators are well known; for example, see [LLT, §4.1].
The bar involution is the Q-linear involution of U defined by

ei = ei, f i = f i, q = q−1, qh = q−h.

In this paper we shall be concerned with a particular U -module, namely the level 1 Fock space F .
As a Q(q)-vector space, this has a ‘standard’ basis {|λ〉 | λ ∈ P } indexed by the set of all partitions. The
U -module structure on F was originally described by Hayashi [H], and may be found in [LLT, §4.2]
and many other references; it will suffice for us to describe the action of the generators fk . If λ

is a partition, then fk|λ〉 is a linear combination of vectors |μ〉 indexed by those partitions μ for
which λ

k−→ μ. Given such a partition μ, we write (i, j) for the node added to [λ] to obtain [μ], and
define N(λ,μ) to be the number of addable nodes of λ of residue k above (i, j) minus the number
of removable nodes of λ of residue k above (i, j). Then we have

fk|λ〉 =
∑

λ
k−→μ

qN(λ,μ)|μ〉.

The Fock space is of particular interest, because the submodule M generated by the vector |∅〉 is
isomorphic to the irreducible highest-weight representation of U with highest weight Λ0. Accordingly,
there is a bar involution on M , defined by |∅〉 = |∅〉 and um = um for u ∈ U , m ∈ M .

Leclerc and Thibon [LT] found a way to extend this bar involution to the whole of F ; that is, they
defined a bar involution on the whole of F which extends the bar involution on M and which is
still compatible with the action of U . Furthermore, they provided a way to compute the image of
a standard basis element |μ〉 under the bar involution, which shows that the image |μ〉 of a stan-
dard basis element |μ〉 equals |μ〉 plus a linear combination of standard basis elements indexed by
partitions dominated by μ (see below for a definition of the dominance order on partitions). This
unitriangularity property of the bar involution means that one can prove the following.

Theorem 2.1. (See [LT, Theorem 4.1].) For each partition μ, there is a unique vector

G(μ) =
∑
λ∈P

de
λμ(q)|λ〉 ∈ F

such that:
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• G(μ) = G(μ);
• de

μμ(q) = 1, while de
λμ(q) is a polynomial divisible by q for λ �= μ.

The vectors G(μ) form a Q(q)-basis of F , which is called the canonical basis; this is a global basis
in the sense of Kashiwara [Ka].

This paper is chiefly concerned with computing the transition coefficients de
λμ(q) arising in Theo-

rem 2.1. These polynomials are known as q-decomposition numbers, in view of the following theorem.

Theorem 2.2. Suppose λ and μ are partitions of n, and let �(λ) and L(μ) denote the corresponding Weyl
module and simple module for the ζ -Schur algebra Sζ (n,n), where ζ is a primitive eth root of unity in C. Then

[
�(λ) : L(μ)

] = de
λ′μ′(1).

This theorem is due to Varagnolo and Vasserot [VV, §11, Theorem]; it generalises a version for
decomposition numbers of Iwahori–Hecke algebras conjectured by Lascoux, Leclerc and Thibon and
proved by Ariki [A, Theorem 4.4].

2.4. The Mullineux map

Fix an integer e � 2. Given any non-negative integer n, there is a bijection m from the set of
e-regular partitions of n to itself, known as the Mullineux map. This map depends on the value
of e, and we may write it as me if necessary. This map was introduced by Mullineux in the case
where e is a prime, in an attempt to solve the problem of tensoring a simple module for the sym-
metric group in characteristic e with the one-dimensional signature representation. Specifically, if μ
is an e-regular partition of n and Dμ is the corresponding simple FeSn-module, then the module
Dμ ⊗ sgn is also a simple module, and is therefore labelled by an e-regular partition which we de-
note M(μ). Mullineux’s conjecture states that M(μ) = m(μ) for all μ. This conjecture was proved
by Ford and Kleshchev [FK], using Kleshchev’s alternative combinatorial characterisation [Kl] of the
map M . Kleshchev’s results have since been generalised by Brundan [B] to Iwahori–Hecke algebras of
type A at an eth root of unity (where e need no longer be prime), and an analogue of the Mullineux
conjecture holds in this context as well.

Our interest in the Mullineux map derives from the following connection with q-decomposition
numbers; see the next section for the definition of the e-weight of a partition.

Proposition 2.3. (See [LLT, Theorem 7.2].) Suppose λ and μ are partitions with e-weight w, and that μ is
e-regular. Then

de
λ′m(μ)(q) = qwde

λμ

(
q−1).

Understanding the Mullineux map will be very helpful for us in computing q-decomposition num-
bers. Our main result concerning the Mullineux map is Theorem 3.5; this is proved in Section 6,
where a detailed description of the Mullineux map is given.

2.5. The abacus

Suppose λ is a partition, and r is an integer greater than or equal to λ′
1. For i = 1, . . . , r set

βi = λi + r − i. The integers β1, . . . , βr are distinct, and we refer to the set Br(λ) = {β1, . . . , βr} as the
r-beta-set for λ.
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Now we suppose e � 2, and take an abacus with e vertical runners numbered 0, . . . , e − 1 from
left to right. On runner i we mark positions labelled with the integers i, i + e, i + 2e, . . . from the top
down. For example, if e = 4 then the abacus is marked as follows.

Placing a bead on the abacus at position βi for each i = 1, . . . , r, we obtain an abacus display for λ.
In an abacus display, we call a position occupied if it contains a bead, and empty if it does not, and
we say that position i is later than or after position j if i > j. For example, we may speak of the ‘last
occupied position’ on the abacus, meaning the position β1.

Taking an abacus display for λ and sliding all the beads up their runners as far as they will go,
we obtain an abacus display for a new partition, which is called the e-core of λ; this partition is
independent of the choice of abacus display (i.e. the choice of r). The total distance the beads move
when we slide them up to obtain the e-core of λ is the e-weight of λ. The e-weight and e-core are
of interest in this paper, because two standard basis vectors |λ〉 and |μ〉 lie in the same weight space
of F if and only if λ and μ have the same e-weight and e-core. (It is unfortunate that the word
‘weight’ is conventionally used in two different ways in this subject; we hope to avoid ambiguity by
consistently saying ‘e-weight’, reserving ‘weight’ for the Lie-theoretic term.) Moreover, we have the
following statement concerning q-decomposition numbers; this essentially says that each canonical
basis vector is a weight vector in F .

Proposition 2.4. (See [LT, §4].) Suppose λ,μ ∈ P with de
λμ(q) �= 0. Then λ and μ have the same e-core and

e-weight.

From the definition, we see that two partitions λ and μ have the same e-core if and only if when
we take abacus displays for λ and μ (with the same number of beads on each), there are equal
numbers of beads on corresponding runners.

The abacus formulation provides a way to compare different values of e. Suppose e and r are
chosen as above. Given k ∈ {0, . . . , e − 1}, we set d = (r + k) Mod e, and we say that a partition λ is
k-empty if all the beads on runner d of the abacus display for λ are as high as possible; that is, there
is no t such that position d + te is occupied while d + (t − 1)e is empty. The way we have defined this
means that this definition does not depend on the choice of r. The term ‘k-empty’ derives from the
fact λ is k-empty if and only if the kth component of the e-quotient of λ is the empty partition; we
refrain from defining and using e-quotients in this paper in order to avoid over-complicating notation.

Throughout this paper, if we are given such a triple (λ,k, r), we set d = (k + r) Mod e, and we
define c to be the number of beads on runner d of the abacus display for λ. The assertion that λ is
k-empty means that these beads lie in positions d,d + e, . . . ,d + (c − 1)e.

Example. Suppose e = 4, and λ is the partition (14,11,9,5,4,15). Taking r = 14, we obtain the fol-
lowing abacus display for λ.

We see that λ is k-empty for both k = 0 and k = 3. For k = 0, we have d = c = 2, while for k = 3 we
have d = 1, c = 4.
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2.6. The dominance order

Now we introduce a partial order on the set of partitions, which we shall use in place of the usual
dominance order. First we need a partial order on the set of multisets of integers; this is sometimes
referred to as the Bruhat order. Suppose I = {i1, . . . , is} and J = { j1, . . . , jt} are multisets of non-
negative integers. We write I � J if and only if s = t and there is a permutation σ ∈ Ss such that
ik � jσ(k) for all k. It is easy to see that � is a partial order.

Now for any finite multiset B of non-negative integers, we define the e-extension of B to be the
multiset Xe(B) of non-negative integers in which the multiplicity of an integer z is∣∣B ∩ {z, z + e, z + 2e, . . .}∣∣.
If λ is a partition and r a large integer, we define the r-beta-set Br(λ) for λ as above, and then define
the extended beta-set

Xe
r (λ) = Xe(Br(λ)

)
.

Given two partitions λ and μ, we say that μ dominates λ (and write μ � λ) if λ and μ have the
same e-core and Xe

r (μ) � Xe
r (λ). We note that this order does not depend on the choice of r. Indeed,

Xe
r+1(λ) may be obtained from Xe

r (λ) by increasing each entry by 1, and then adding b copies of the
integer 0, where b is the number of beads on runner 0 of the abacus display for λ with r + 1 beads.
From this it is easy to see that Xe

r (μ) � Xe
r (λ) if and only if Xe

r+1(μ) � Xe
r+1(λ).

We use � to denote this order throughout this paper; the usual dominance order will not be used.
Our dominance order depends on the integer e, and we may write �e where there is a possibility of
ambiguity.

2.7. The Scopes equivalence

In this section, we briefly recall the Scopes equivalence, as it relates to q-decomposition numbers.
Let us define a block to be an equivalence class of partitions under the equivalence relation ‘has the
same e-core and e-weight as’. In view of Proposition 2.4, any non-zero q-decomposition number can
be regarded as a q-decomposition number for (partitions lying in) a particular block. We define the
e-core and e-weight of a block to be the common e-core and e-weight of the partitions in that block.
It is easy to see (either combinatorially, or using the fact that F has finite-dimensional weight spaces)
that any block is finite.

Scopes defined an equivalence relation on the set of blocks of a given e-weight, for a given value
of e. To describe this, suppose B is a block with e-weight w and core β . Suppose that for some
k ∈ {0, . . . , e − 1} β has a addable nodes of residue k for some a � w , and let γ be the partition
obtained by adding all these addable nodes. Then γ is also an e-core; we let C denote the block
with e-weight w and core γ . We say that B and C are Scopes equivalent, and we make the Scopes
equivalence into an equivalence relation by extending transitively and reflexively.

If B and C are as above, then any λ ∈ B has exactly a addable nodes of residue k and no removable
nodes of this residue. If we define Φ(λ) to be the partition obtained by adding these addable nodes,
then Φ is a bijection between B and C ; these results are proved in [S, §2]. The condition on addable
and removable nodes, together with the action of fk described in Section 2.3, implies that for any
λ ∈ B we have

f (a)

k |λ〉 = ∣∣Φ(λ)
〉
,

where f (a)

k denotes the quantum divided power f a
k /[a]!. This implies the following.

Proposition 2.5. (See [LM, Theorem 20].) Let B and C be as above, and take λ,μ ∈ B. Then

de
λμ(q) = de

Φ(λ)Φ(μ)(q).
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Proof. Since the q-decomposition number de
νμ(q) is zero unless μ and ν have the same e-core and

e-weight, we can write

G(μ) =
∑
ν∈B

de
νμ(q)|ν〉.

Then by the above remarks we have

f (a)

k G(μ) =
∑
ν∈B

de
νμ(q)

∣∣Φ(ν)
〉
.

This vector is invariant under the bar involution (since G(μ) is, and the bar involution is com-
patible with the action of U ), and hence by the uniqueness statement in Theorem 2.1 must equal
G(Φ(μ)). �

This gives us an important finiteness result for q-decomposition numbers.

Corollary 2.6. Suppose e, w are fixed, and let

De
w = {

de
λμ(q)

∣∣ λ,μ partitions of e-weight w
}
.

Then De
w is finite, and there is a finite algorithm to compute it.

Proof. For any block B , write

D B = {
de

λμ(q)
∣∣ λ,μ ∈ B

}
.

Then by Proposition 2.4, we have

De
w = {0} ∪

⋃
B

D B ,

taking the union over all blocks of e-weight w . If B and C are as in Proposition 2.5, then by that result
we have D B = DC ; extending transitively, we get D B = DC whenever B and C are Scopes equivalent
blocks. So to compute De

w it suffices to consider just one block in each Scopes equivalence class.
Scopes [S, Theorem 1] shows that for given w, e there are only finitely many classes (and indicates
how to find a representative of each class), and so one only has finitely many blocks to consider. But
any block B is finite, and so the set D B is finite and may be found with a finite computation. �
3. Removing a runner from the abacus – the main results

In this section, we describe the procedure of removing a runner from the abacus, and state our
main theorems.

3.1. The runner removal theorems

Suppose e � 3, k ∈ {0, . . . , e − 1} and λ is a k-empty partition. Choose a large integer r, and let
c, d be as defined in Section 2.5. Construct the abacus display for λ with r beads, and then remove
runner d. The resulting configuration will be the abacus display, with e − 1 runners and r − c beads,
for a partition which we denote λ−k . It is a simple exercise to show that the definition of λ−k does
not depend on the choice of r.
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We describe this construction in terms of beta-sets. Define a function

φd :
{

z ∈ N0
∣∣ z �≡ d (mod e)

} → N0

by setting

φd(z) = z −
⌊

z + e − d

e

⌋
.

Then φd is an order-preserving bijection. If λ is k-empty, then the r-beta-set for λ consists of the in-
tegers d,d + e, . . . ,d + (c −1)e, together with some integers h1, . . . ,hr−c not congruent to d modulo e.
The set {φd(h1), . . . , φd(hr−c)} is then the (r − c)-beta-set for λ−k .

The idea of removing a runner from the abacus was introduced by James and Mathas, who proved
the first ‘runner removal theorem’ for q-decomposition numbers; the author subsequently proved a
‘conjugate’ theorem to the James–Mathas theorem. The idea of these theorems is that if λ and μ are
partitions which are k-empty and satisfy some other specified condition, then there is an equality of
q-decomposition numbers

de
λμ(q) = de−1

λ−kμ−k (q).

To give precise statements, we suppose that r, k are chosen as above, and set d = (r + k) Mod e.

Theorem 3.1. (See [JM, Theorem 4.5].) Suppose e � 3 and λ and μ are k-empty partitions with the same
e-core and e-weight. Suppose that in the r-bead abacus displays for each of λ and μ the last occupied position
on runner d is earlier than the first empty position on any runner. Then

de
λμ(q) = de−1

λ−kμ−k (q).

Theorem 3.2. (See [F2, Theorem 4.1].) Suppose e � 3 and λ and μ are k-empty partitions with the same
e-core and e-weight. Suppose that in the r-bead abacus displays for each of λ and μ the first empty position
on runner d is later than the last occupied position on any runner. Then

de
λμ(q) = de−1

λ−kμ−k (q).

The theorem we shall prove in this paper generalises both of these theorems; the way we achieve
this generality is by finding a condition which is actually a relation between λ and μ rather than just
an absolute condition which both λ and μ satisfy. In order to state our theorem, we need to introduce
some more notation; the following is the key definition in this paper.

Definition 3.3. Suppose λ is k-empty for some k; choose a large r, and let c, d be as in Section 2.5.
Construct the extended beta-set Xe

r (λ) as in Section 2.6, and then define Lk(λ) to be the number of
elements of Xe

r (λ) (with multiplicity) which are greater than d + ce.

It is straightforward to show that the definition of Lk(λ) does not depend on the choice of r. Now
we can state our main theorem.

Theorem 3.4. Suppose e � 3, λ and μ are partitions with the same e-core and e-weight, and k ∈ {0, . . . ,

e − 1}. If λ and μ are k-empty and Lk(λ) = Lk(μ), then

de
λμ(q) = de−1

λ−kμ−k (q).
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Remark. We comment that the hypothesis ‘λ and μ have the same e-core and e-weight’ in Theo-
rems 3.1, 3.2 and 3.4 is not at all restrictive from the point of view of computing q-decomposition
numbers, because of Proposition 2.4. We include the hypothesis about the e-cores of λ and μ in order
to avoid counterexamples where the abacus displays for λ and μ have different numbers of beads on
runner d; and we include the hypothesis concerning the e-weights of λ and μ so that Theorem 3.4 is
actually a generalisation of Theorem 3.1 (see the remark following Corollary 4.9 below).

Example. Suppose e = 4, λ = (7,4,2,12) and μ = (11,2,12). Taking r = 9, we obtain the following
abacus displays:

We see that λ and μ both have the same 4-core and are 1-empty. We compute

X4
9(λ) = {0,0,1,1,2,2,3,3,3,4,5,6,7,7,8,11,11,15},

X4
9(μ) = {0,0,1,1,2,2,3,3,3,4,5,6,7,7,9,11,15,19}.

So, taking c = d = 2, we have L1(λ) = L1(μ) = 3, and hence

d4
λμ(q) = d3

λ−1μ−1(q),

where

λ−1 = = (5,3,2,1), μ−1 = = (8,2,1).

Theorem 3.4 will be proved in Section 5. We now give our second main theorem, which concerns
the relationship between the Mullineux map and the function Lk . Fix e � 2, and let m denote the
Mullineux map (see Section 2.4).

Theorem 3.5. Suppose μ is an e-regular partition. If μ and m(μ)′ are both k-empty, then Lk(μ) =
Lk(m(μ)′).

Theorem 3.5 will be proved in Section 6, where a detailed description of the Mullineux map will
be given.

3.2. Consequences for the computation of q-decomposition numbers

For the rest of this section, we examine the consequences of Theorems 3.4 and 3.5 for the com-
putation of q-decomposition numbers. In order to get to our third main result as quickly as possible,
we quote some results which we do not prove until later.

First we need a result which relates q-decomposition numbers with the dominance order and the
Mullineux map.
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Lemma 3.6. Suppose λ and μ are partitions with μ e-regular. If de
λμ(q) �= 0, then

μ � λ � m(μ)′.

Proof. The left-hand inequality is a standard result if � is taken to be the usual dominance order;
that it holds with our refined dominance order is proved in Proposition 5.3 below. The right-hand
inequality follows from this result, together with Proposition 2.3 and the fact that conjugation of
partitions reverses the dominance order (Proposition 4.2). �

Now we prove a useful lemma which seems to be well known but which the author cannot find
in print.

Proposition 3.7. Suppose λ and μ are partitions of e-weight w. If μ is e-regular and λ = m(μ)′ , then
de

λμ(q) = qw . Otherwise, de
λμ(q) has degree at most w − 1.

Proof. When μ is e-regular, this is a straightforward consequence of Proposition 2.3, since de
λ′m(μ)

(q)

is a polynomial which is divisible by q unless λ′ = m(μ). So we assume that μ is e-singular, and for
a contradiction we suppose de

λμ(q) has degree at least w .
Taking abacus displays for λ and μ, we add a new runner at the left of each display, containing

no beads. Let λ+ and μ+ be the partitions defined by the resulting displays. Then by Theorem 3.1
we have de

λμ(q) = de+1
λ+μ+ (q). λ+ and μ+ obviously have (e + 1)-weight w and μ+ is (e + 1)-regular,

and so by the ‘regular’ case of the present proposition we see that λ+ = me+1(μ
+)′ . This implies in

particular that λ+ is (e + 1)-restricted, and it is easy to see that this implies that λ is e-restricted.
So we can define ξ = m(λ′); then ξ is e-regular, and de

λξ (q) = qw . Let ξ+ be the partition obtained
by adding an empty runner at the left of the abacus display for ξ ; then ξ+ is (e + 1)-regular, and
we have de+1

λ+ξ+ (q) = de
λξ (q) = qw . Applying the ‘regular’ part of the present proposition again, we find

that λ+ = me+1(ξ
+)′ . So

ξ+ = me+1
(
(λ+)′

) = μ+,

and hence ξ = μ. But this means that μ is e-regular; contradiction. �
Now we can combine Theorems 3.4 and 3.5.

Proposition 3.8. Suppose e � 3 and k ∈ {0, . . . , e − 1}. Suppose that μ is an e-regular partition such that
both μ and m(μ)′ are k-empty. Then

1. μ−k is (e − 1)-regular, with me−1(μ
−k)′ = (m(μ)′)−k, and

2. for every partition λ with de
λμ(q) �= 0, we have de

λμ(q) = de−1
λ−kμ−k (q).

Proof. We prove (2) first. Since de
λμ(q) �= 0, we have μ � λ � m(μ)′ by Lemma 3.6, so by Lemma 4.6

below and Theorem 3.5 λ is k-empty and Lk(λ) = Lk(μ). Hence by Theorem 3.4 we have de−1
λ−kμ−k (q) =

de
λμ(q).

Now we prove (1). Putting λ = m(μ)′ in (2), we have de−1
λ−kμ−k (q) = qw , where w is the e-weight

of μ (and therefore the (e − 1)-weight of μ−k). Now (1) follows from Proposition 3.7. �
Now we can show that every q-decomposition number which occurs for partitions of e-weight w

occurs with e � 2w .



M. Fayers / Journal of Algebra 322 (2009) 4331–4367 4341
Corollary 3.9. Suppose e > 2w > 0. If λ, μ are partitions with e-weight w and with de
λμ(q) �= 0, then there

are partitions ξ , ρ of (2w)-weight w such that de
λμ(q) = d2w

ξρ (q).

Proof. We begin with the case where μ is e-regular. There are at least e − w values of k for which μ
is k-empty, and at least e − w values for which m(μ)′ is k-empty. Since e > 2w , there must therefore
be some k such that μ and m(μ)′ are both k-empty. By Proposition 3.8, μ−k is (e − 1)-regular and
de

λμ(q) equals de−1
λ−kμ−k (q). By induction on e, this equals d2w

ξρ (q) for some ξ , ρ of (2w)-weight w .

Now we consider the case where μ is e-singular. In this case, we take abacus displays for λ and μ,
and add an empty runner at the left of each display. The resulting partitions λ+ and μ+ both have
(e + 1)-weight w , and μ+ is (e + 1)-regular, and we have de

λμ(q) = de+1
λ+μ+ (q). So we may apply the

‘regular’ case of the present proposition, replacing λ, μ, e with λ+ , μ+ , e + 1. �
This yields our third main result.

Corollary 3.10. Fix w > 0. Then the set{
de

λμ(q)
∣∣ e � 2, λ, μ partitions of e-weight w

}
is finite, and there is a finite algorithm to compute it.

Proof. By Corollary 3.9, the given set equals

{
de

λμ(q)
∣∣ 2 � e � 2w, λ, μ partitions of e-weight w

} = D2
w ∪ D3

w ∪ · · · ∪ D2w
w ,

where De
w is given in Corollary 2.6. Now Corollary 2.6 gives the result. �

As an application of Corollary 3.10, consider the case w = 3. In this case, one can check that each
q-decomposition number de

λμ(q) is always zero or a monic monomial; specifically, it always equals 0,

1, q, q2 or q3. This is a significant part of a more general theorem (namely, that all decomposition
numbers for weight three blocks of Iwahori–Hecke algebras of type A in characteristic at least 5
are either 0 or 1) which presented great difficulties for several years, until finally proved by the
author [F1]. Using the above results, more than half of the proof in [F1] may be replaced by a short
computer calculation.

4. Combinatorial results

In this section, we examine the combinatorics of dominance and runner removal, and prove some
simple results which will be useful in the rest of the paper.

4.1. Conjugation and the dominance order

First we examine how conjugation of partitions relates to the abacus and the dominance order.
Suppose λ is a partition and r, s are large integers. Let Br(λ) = {β1, . . . , βr} be the r-beta-set for λ,
and let Bs(λ

′) = {γ1, . . . , γs} be the s-beta-set for λ′
1. The following relationship between these beta-

sets is well known and easy to prove.

Lemma 4.1. The set {0, . . . , r + s − 1} is the disjoint union of {β1, . . . , βr} and {r + s − 1 − γ1, . . . , r + s −
1 − γs}.
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To express this result in terms of abacus displays, suppose that r + s ≡ 0 (mod e). Then the s-bead
abacus display for λ′ may be obtained from the r-bead abacus display for λ by truncating the diagram
after position r + s−1, rotating through 180◦ , replacing each bead with an empty space, and replacing
each empty space with a bead. As a consequence, we see that the e-core of λ′ is the conjugate of the
e-core of λ; hence two partitions λ and μ have the same e-core if and only if λ′ and μ′ have the
same e-core.

Example. Suppose e = 3, and λ = (9,7,42,2,13), so that λ′ = (8,5,42,23,12). Abacus displays for λ

and λ′ , with 11 and 13 beads respectively, are as follows, and Lemma 4.1 can easily be checked.

One consequence of Lemma 4.1 is the fact that conjugation reverses the dominance order.

Proposition 4.2. Suppose λ and μ are partitions. Then μ � λ if and only if λ′ � μ′ .

To prove this, we give an alternative characterisation of the dominance order. Given a partition λ

and a large integer r, we define the weight multiset We
r (λ) as follows. We construct the abacus display

for λ with r beads, and slide the beads up their runners to obtain an abacus display for the e-core
of λ. Each time we slide a bead up one space, from position b to position b − e, say, we add a copy
of the integer b to the multiset We

r (λ).
Note that when we slide a bead from position b to position b − e, we remove a copy of b from the

extended beta-set Xe
r (λ). So if we let κ denote the e-core of λ, then we see that

Xe
r (λ) = Xe

r (κ) � We
r (λ).

Example. Suppose e = 2 and λ = (33). Then κ = (1), and taking r = 5 we get the following abacus
displays for λ and κ .

We can compute

X2
5(κ) = {0,0,1,1,1,2,3,3,5},

W2
5(λ) = {4,5,6,7},

X2
5(λ) = {0,0,1,1,1,2,3,3,4,5,5,6,7}.

Now it is easy to see the following.

Lemma 4.3. Suppose λ and μ are partitions with the same e-core, and r is a large integer. Then μ � λ if and
only if We

r (μ) � We
r (λ).
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Notice that the cardinality of We
r (λ) is the e-weight of λ; so Lemma 4.3 implies in particular that

if μ � λ then λ and μ have the same e-weight.

Proof of Proposition 4.2. Assume λ and μ have the same e-core, and choose large integers r, s. Define
â = r + s + e − 1 − a for any integer a. By Lemma 4.3, it suffices to show that if We

r (μ) � We
r (λ) then

We
s (λ

′) � We
s (μ

′). But by Lemma 4.1, we see that moving a bead from position b to position b − e in
the r-bead abacus display for λ corresponds to moving a bead from position b̂ to position b̂ − e in the
s-bead abacus display for λ′ . So if We

r (λ) = {b1, . . . ,bw} and We
r (μ) = {c1, . . . , cw}, then we have

We
s(λ

′) = {b̂1, . . . , b̂w}, We
s(μ

′) = {ĉ1, . . . , ĉw}.

Now if σ ∈ Sw is such that ci � bσ(i) for all i, then b̂i � ĉσ−1(i) for all i. �
4.2. Runner removal and the dominance order

Lemma 4.4. Suppose λ is a k-empty partition. Then the map ξ �→ ξ−k is a bijection from the set

{ξ ∈ P | ξ is k-empty and has the same e-core as λ}

to the set {
π ∈ P

∣∣ π has the same (e − 1)-core as λ−k
}
.

Furthermore, if ξ is a k-empty partition with the same e-core as λ, then we have ξ �e λ if and only if
ξ−k �e−1 λ−k.

Proof. The first statement is obvious from the construction. For the second statement, we use the
characterisation of the dominance order in terms of weight multisets from Section 4.1, and observe
that if We

r (λ) = {b1, . . . ,bw}, then b1, . . . ,bw �≡ d (mod e) and

W
e−1
r−c

(
λ−k) = {

φd(b1), . . . , φd(bw)
}
.

A similar statement applies to W
e−1
r−c (ξ), and the fact that φd is order-preserving gives the result. �

Lemma 4.5. Suppose λ and μ are k-empty partitions satisfying μ � λ. Then Lk(μ) � Lk(λ).

Proof. This is immediate from the definitions. �
Example. We now demonstrate why it is important that we use our coarse version of the dominance
order in this paper. Suppose e = 9, μ = (9,52,24) and λ = (72,33,14). Taking r = 9, we get beta-sets

B9(μ) = {17,12,11,7,6,5,4,1,0},
B9(λ) = {15,14,9,8,7,4,3,2,1},

giving abacus displays as follows.
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We see that λ and μ are 4-empty. The extended beta-sets are

X9
9(μ) = {0,1,2,3,4,5,6,7,8,11,12,17},

X9
9(λ) = {0,1,2,3,4,5,6,7,8,9,14,15},

from which we see that L4(μ) = 1, L4(λ) = 2 and μ � λ. But it is easy to check that μ � λ in the
usual dominance order. So in Lemma 4.5 (and in everything that follows from it) we need to use our
dominance order.

Lemma 4.6. Suppose λ and μ are k-empty partitions satisfying μ � λ and Lk(λ) = Lk(μ). Then any par-
tition ξ such that μ � ξ � λ is k-empty, with Lk(ξ) = Lk(μ). Furthermore, the map ξ �→ ξ−k defines
a bijection between the sets

{ξ ∈ P | μ �e ξ �e λ}

and

{
π ∈ P

∣∣ μ−k �e−1 π �e−1 λ−k}.
Proof. It suffices to prove that ξ is k-empty; the other statements then follow from Lemmata 4.4
and 4.5. So suppose for a contradiction that ξ is not k-empty. The fact that μ � ξ � λ implies that λ,
ξ , μ all have the same e-core. So if we take a large integer r and define c, d as in Section 2.5, then c
is the number of beads on runner d in the abacus display for each of λ, ξ , μ. The fact that ξ is not
k-empty implies that in the abacus display for ξ , there is a bead at position d + te for some t � c. In
particular, this means that the extended beta-set Xe

r (ξ) contains the integer d + ce.
Write

Xe
r (λ) = {l1, . . . , ls},

Xe
r (ξ) = {x1, . . . , xs},

Xe
r (μ) = {m1, . . . ,ms},

choosing the ordering so that li � xi � mi for each i, and x1 = d + ce. Recall that

Lk(λ) = ∣∣{i | li > d + ce}∣∣
and similarly for μ. Now given our choice of numbering, we see that

{i | li > d + ce} ⊂ {i | mi > d + ce};

the inclusion is strict because l1 < d + ce < m1. So Lk(λ) < Lk(μ), which is a contradiction. �
4.3. Runner removal and conjugation

Now we examine the relationship between runner removal and conjugation. We begin with
a lemma which gives an alternative way to compute Lk(λ); the proof of this is an easy exercise.
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Lemma 4.7. Suppose λ is a k-empty partition and r is a large integer. Let c, d be as defined in Section 2.5, and
for any integer β let

β̊ =
{ �β−d−(c−1)e

e � (β � d + (c − 1)e),
0 (β < d + (c − 1)e).

Then

Lk(λ) =
∑

β∈Br(λ)

β̊.

Lemma 4.8. Suppose λ is a partition with e-core κ and e-weight w, and k ∈ {0, . . . , e − 1}. Then λ is k-empty
if and only if λ′ is (e − 1 − k)-empty. If this is the case, then

Lk(λ) + Le−1−k(λ
′) = Lk(κ) + Le−1−k(κ

′) + w.

Proof. We construct abacus displays for λ and λ′ using r beads and s beads respectively, where for
convenience we choose r and s such that e | r + s. Let c, d be as defined in Section 2.5, and set

ď = e − 1 − d, č = r + s

e
− c.

Then ď = (s+(e−1−k)) Mod e, and by Lemma 4.1 there are č beads on runner ď of the abacus display
for λ′ . λ′ is (e − 1 − k)-empty if and only if these beads are in positions ď, ď + e, . . . , ď + (č − 1)e. By
Lemma 4.1, this is equivalent to the condition that the beads on runner d of the abacus display for λ

are in positions d,d + e, . . . ,d + (c − 1)e, i.e. λ is k-empty.
Now suppose λ is k-empty. Assuming w > 0, we may slide a bead one space up its runner, to

obtain a new partition ξ . ξ has e-core κ and e-weight w − 1 and is k-empty, so by induction on w it
suffices to show that Lk(λ) + Le−1−k(λ

′) = Lk(ξ) + Le−1−k(ξ
′) + 1.

Suppose that to obtain ξ from λ we move a bead from position b to position b − e. Then we have
Xe

r (ξ) = Xe
r (λ) \ {b}, and therefore

Lk(ξ) =
{

Lk(λ) (b < d + ce),
Lk(λ) − 1 (b > d + ce).

By Lemma 4.1, an abacus display for ξ ′ is obtained from an abacus display for λ′ by moving a bead
from position r + s − 1 − b + e to position r + s − 1 − b, so

Xe
s(ξ

′) = Xe
s(λ

′) \ {r + s − 1 − b + e}.

By definition Le−1−k(λ
′) is the number of elements of Xe

s (λ
′) greater than ď + če, so

Le−1−k(ξ
′) =

{
Le−1−k(λ

′) (r + s − 1 − b + e < ď + če),
Le−1−k(λ

′) − 1 (r + s − 1 − b + e > ď + če).

Retracing the definitions gives r + s − 1 − b + e < ď + če if and only if b > d + ce, and the result
follows. �
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Now the following is immediate.

Corollary 4.9. Suppose λ and μ are k-empty partitions with the same e-core and the same e-weight. Then

Lk(λ) + Le−1−k(λ
′) = Lk(μ) + Le−1−k(μ

′).

In particular, Lk(λ) = Lk(μ) if and only if Le−1−k(λ
′) = Le−1−k(μ

′).

Remark. We can now show that Theorem 3.4 is a generalisation of Theorems 3.1 and 3.2. To see this,
it suffices to show that if λ and μ satisfy the conditions of one of these theorems then Lk(λ) = Lk(μ).
For Theorem 3.2 this is easy, since by Lemma 4.7 the condition in that theorem implies that Lk(λ) =
0 = Lk(μ). For Theorem 3.1, we note that if λ and μ satisfy the given conditions, then (by Lemma 4.1)
the partitions λ′ and μ′ satisfy the hypotheses of Theorem 3.2 (with k replaced by e − 1 − k). Hence
Le−1−k(λ

′) = 0 = Le−1−k(μ
′), and so by Corollary 4.9 we have Lk(λ) = Lk(μ).

4.4. An alternative characterisation

The next result in this section gives an alternative characterisation of the relation Lk(λ) = Lk(μ),
for two partitions λ and μ. Given a large integer r, define c, d as in Section 2.5, and set

nr,k(λ) = ∣∣{a,b ∈ Br(λ)
∣∣ a < b, a ≡ d �≡ b (mod e)

}∣∣.
Lemma 4.10. Suppose λ is a k-empty partition, with e-weight w and e-core κ . If r is a large integer, then

Lk(λ) + nr,k(λ) = Lk(κ) + nr,k(κ) + w.

Proof. If λ = κ then there is nothing to prove, so we assume otherwise. Then in the abacus display
for λ with r beads, we may slide a bead up its runner, from position b to position b − e, say, to obtain
a new partition ξ with e-weight w − 1. By induction on w , it suffices to prove that

Lk(λ) + nr,k(λ) = Lk(ξ) + nr,k(ξ) + 1.

The r-beta-set Br(λ) consists of the integers d,d + e, . . . ,d + (c − 1)e, together with r − c integers not
congruent to d modulo e; the same statement applies to Br(ξ). Write

Nr,k(λ) = {
a,b ∈ Br(λ)

∣∣ a < b, a ≡ d �≡ b (mod e)
}
,

Nr,k(ξ) = {
a,b ∈ Br(ξ)

∣∣ a < b, a ≡ d �≡ b (mod e)
}
.

Suppose first that b > d + ce. Then we have Lk(λ) − Lk(ξ) = 1 by Lemma 4.7. On the other hand,
both b and b − e are greater than all of d,d + e, . . . ,d + (c − 1)e, so we have

Nr,k(ξ) = Nr,k(λ) ∪ {
(d,b − e), (d + e,b − e), . . . ,

(
d + (c − 1)e,b − e

)}
\ {

(d,b), (d + e,b), . . . ,
(
d + (c − 1)e,b

)}
and nr,k(λ) = nr,k(ξ).

Alternatively, suppose b < d + ce. Then Lk(λ) = Lk(ξ) by Lemma 4.7. Let a be the largest integer
congruent to d modulo e which is less than b; that is, a = b − ((b − d) Mod e). Since b < d + ce, we
have a ∈ Br(λ) and a ∈ Br(ξ), so

Nr,k(ξ) = Nr,k(λ) ∪ {
(d,b − e), (d + e,b − e), . . . , (a − e,b − e)

} \ {
(d,b), (d + e,b), . . . , (a,b)

}
and nr,k(λ) = nr,k(ξ) + 1. �



M. Fayers / Journal of Algebra 322 (2009) 4331–4367 4347
This implies the following.

Corollary 4.11. Suppose λ and μ are k-empty partitions with the same e-core and the same e-weight. Then
Lk(λ) = Lk(μ) if and only if nr,k(λ) = nr,k(μ).

5. Canonical bases and q-decomposition numbers

In this section, we prove Theorem 3.4. In order to do this, we must give a detailed description of
how to compute the q-decomposition numbers. The method we use here is via a direct computation
of the bar involution.

Our set-up is largely based on [LT], where the Fock space is realised as the space of semi-infinite
wedges (of a fixed charge) modulo ordering relations; this realisation is due to Kashiwara, Miwa and
Stern [KMS]. Our treatment actually uses finite wedges; for each r, we define the truncated Fock
space F e

r to be the span of wedges of length r modulo the ordering relations, and we define a bar
involution on F e

r . Given a partition μ, there is a corresponding basis element |μ〉 in F e
r for any

r � μ′
1; moreover, the image of |μ〉 under the bar involution, when written as a linear combination of

basis elements |λ〉, is independent of r, provided r is sufficiently large (in fact, r � |μ| is sufficient; this
stability result is implicit in the description in [LT] of the bar involution). So for a given partition μ
we can define |μ〉 in the Fock space F by taking a value of r which is large relative to μ. This
defines the bar involution on the whole of the Fock space, and hence the canonical basis and the
q-decomposition numbers.

5.1. The truncated Fock space and the bar involution

Fix a positive integer r, and define an r-wedge to be a symbol of the form

i1 ∧ i2 ∧ · · · ∧ ir ,

where i1, . . . , ir are non-negative integers. The r-wedge space is the Q(q)-vector space with the set of

all r-wedges as a basis. We say that the r-wedge i1 ∧ · · · ∧ ir is ordered if i1 > · · · > ir . Given e � 2,

we impose commutation relations on the r-wedge space, depending on our fixed integer e � 2, as
follows. First suppose that r = 2 and l,m are non-negative integers with l � m. If l ≡ m (mod e), then
we set

l ∧ m = − m ∧ l .

If l �≡ m (mod e), then we define i = (m − l) Mod e, and set

l ∧ m = −q−1 m ∧ l + (
q−2 − 1

)(
m − i ∧ l + i − q−1 m − e ∧ l + e

+ q−2 m − e − i ∧ l + e + i − q−3 m − 2e ∧ l + 2e + · · ·),
where the summation on the right continues as long as the terms are ordered. For r > 2, we impose
the above commutation relations in every adjacent pair of positions. The truncated Fock space F e

r is
defined to be the r-wedge space modulo the commutation relations.

Now suppose μ is a partition, and r � μ′
1. Write Br(μ) = {β1, . . . , βr} with β1 > · · · > βr , and

define

|μ〉 = β1 ∧ · · · ∧ βr .



4348 M. Fayers / Journal of Algebra 322 (2009) 4331–4367
Clearly, any ordered r-wedge has the form |λ〉 for some partition λ with λ′
1 � r. Any unordered

r-wedge can be uniquely written as a linear combination of ordered r-wedges, so the elements |λ〉
with λ′

1 � r form a basis for F e
r , which we call the standard basis.

Now we can define the bar involution. Given a partition μ with μ′
1 � r, let |μ〉 = β1 ∧ · · · ∧ βr

as above, and let |̂μ〉 be the reversed wedge βr ∧ · · · ∧ β1 . Write |̂μ〉 as a linear combination of

ordered wedges using the commutation relations:

|̂μ〉 =
∑
λ

bλμ(q)|λ〉.

The coefficient bμμ(q) is easy to compute (an expression is given in [LT, §3]) and in particular is
non-zero. So we can normalise by defining aλμ(q) = bλμ(q)/bμμ(q) for all λ, μ, and setting

|μ〉 =
∑
λ

ae
λμ(q)|λ〉.

Example. Take e = 3, r = 4 and μ = (4). Then |̂μ〉 = 0 ∧ 1 ∧ 2 ∧ 7 , and applying the commutation

relations we find that this equals

q−5 7 ∧ 2 ∧ 1 ∧ 0 + (
q−4 − q−6) 5 ∧ 4 ∧ 1 ∧ 0 + (

q−7 + q−5) 4 ∧ 3 ∧ 2 ∧ 1 .

Multiplying by q5, we obtain

∣∣(4)
〉 = ∣∣(4)

〉 + (
q − q−1)∣∣(22)〉 + (

q−2 − 1
)∣∣(14)〉.

As mentioned above, the coefficients ae
λμ(q) are independent of the choice of r, provided r is

sufficiently large. So we may define the bar involution on the full Fock space F : for each partition μ
we define |μ〉 by computing the coefficients aλμ(q) in F e

r for sufficiently large r; then we extend
semi-linearly to the whole of F , i.e. given coefficients cμ(q) ∈ Q(q) we set

∑
μ

cμ(q)|μ〉 =
∑
μ

cμ

(
q−1)|μ〉.

As mentioned in Section 2.3 (and as we shall shortly prove), the coefficient ae
λμ(q) is zero unless

μ � λ, and by construction the coefficient ae
μμ(q) equals 1. So the canonical basis of F and the

q-decomposition numbers de
λμ(q) may be defined as in Theorem 2.1, and there is a straightforward

algorithm to compute them. From this construction of the canonical basis, it follows that de
λμ(q) = 0

unless μ � λ, and that de
λμ(q) depends only on the coefficients ae

ρξ (q) for μ � ξ � ρ � λ; the proof
of Theorem 3.4 essentially rests on these statements.

Now we prove the promised results concerning the dominance order. Recall from Section 2.6 the
partial order � and the definition of the e-extension of a multiset.

Lemma 5.1. Suppose i1 ∧ · · · ∧ ir is any r-wedge, and write it as a linear combination of ordered wedges:

i1 ∧ · · · ∧ ir =
∑

j1>···> jr

c j1... jr (q) j1 ∧ · · · ∧ jr .

Then for any j1 > · · · > jr with c j1... jr �= 0, the following statements hold.
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1. j1 � max{i1, . . . , ir} and jr � min{i1, . . . , ir}.
2. The multisets

{i1 Mod e, . . . , ir Mod e}, { j1 Mod e, . . . , jr Mod e}
are equal.

3. Xe(i1, . . . , ir) � Xe( j1, . . . , jr).

Proof. Define A(i1, . . . , ir) = ∑
1�k<l�r(ik − il −1)2, and proceed by induction on A(i1, . . . , ir). If i1 ∧

· · · ∧ ir is ordered then the lemma is trivial, so suppose otherwise and choose k such that ik � ik+1.

If ik = ik+1, then i1 ∧ · · · ∧ ir = 0 and again there is nothing to prove; so we can assume ik < ik+1.

Applying the commutation relations in positions k, k + 1, we can write i1 ∧ · · · ∧ ir as a linear

combination of wedges of the form

i1 ∧ · · · ∧ ik−1 ∧ jk ∧ jk+1 ∧ ik+2 ∧ · · · ∧ ir

with jk > jk+1. To prove the lemma, it suffices to show that for any such jk, jk+1 we have:

(0) A(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir) < A(i1, . . . , ir);
(1) max{i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir} � max{i1, . . . , ir} and min{i1, . . . , ik−1, jk, jk+1, ik+2, . . . ,

ir} � min{i1, . . . , ir};
(2) jk , jk+1 are congruent to ik , ik+1 in some order, modulo e;
(3) Xe(i1, . . . , ir) � Xe(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir).

(0) is a simple exercise in inequalities, using the facts

ik + ik+1 = jk + jk+1 and ik+1 � jk > jk+1 � ik (†)

which are immediate from the commutation relations. (1) also follows from (†), and (2) is inherent in
the commutation relations. So we are left with (3). We suppose jk ≡ ik (mod e); the case jk ≡ ik+1 is
similar. (†) and (2) imply that the multiset Xe(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir) may be obtained from
Xe(i1, . . . , ir) by adding a copy of each of the integers ik + e, ik + 2e, . . . , jk , and removing a copy of
each of jk+1 + e, jk+1 + 2e, . . . , ik+1. We have

ik + e � jk+1 + e,

ik + 2e � jk+1 + 2e,
...

jk � ik+1,

and (3) follows. �
Given our definition of the dominance order, part (3) of Lemma 5.1 immediately gives the follow-

ing.

Corollary 5.2. Suppose λ and μ are partitions. Then the coefficient ae
λμ(q) equals 0 unless μ � λ.

Now the following result is deduced in exactly the same way as for the standard dominance or-
der [LT, §4].
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Proposition 5.3. Suppose λ and μ are partitions. Then the q-decomposition number de
λμ(q) equals 0 unless

μ � λ.

5.2. Runner removal and the bar involution

The proof of Theorem 3.4 will reduce to the following, which is the corresponding statement for
the coefficients ae

λμ(q).

Proposition 5.4. Suppose e � 3, λ and μ are partitions and k ∈ {0, . . . , e − 1}. If λ and μ are k-empty and
Lk(λ) = Lk(μ), then ae

λμ(q) = ae−1
λ−kμ−k (q).

The proof of Proposition 5.4 amounts to comparing the computations of ae
λμ(q) and ae−1

λ−kμ−k (q) us-

ing the commutation relations. We begin by proving all the intermediate results we need concerning
the commutation relations.

Lemma 5.5. Suppose l < m − 2e, and put i = m − l Mod e. If i �= 0, then:

1. m ∧ l − m − e ∧ l + e = −q l ∧ m + q−1 l + e ∧ m − e + (q−1 − q) m − i ∧ l + i ;

2. l ∧ m − l + e ∧ m − e = −q−1 m ∧ l + q m − e ∧ l + e + (q − q−1) l + i ∧ m − i .

Proof. Both statements are straightforward consequences of the commutation relations. �
Lemma 5.6. Suppose l < m and put i = m − l Mod e. If i �= 0, then:

1. m ∧ l = −q l ∧ m + (q−1 − q)( l + e ∧ m − e + l + 2e ∧ m − 2e + · · · + m − i ∧ l + i );

2. l ∧ m = −q−1 m ∧ l + (q − q−1)( m − e ∧ l + e + m − 2e ∧ l + 2e + · · · + l + i ∧ m − i ).

Proof. Both statements are easily proved by induction on m − l; the cases m − l = i and m − l = e + i
follow easily from the commutation relations, and the inductive step from Lemma 5.5. �

Now we fix d ∈ {0, . . . , e − 1}.

Lemma 5.7. Suppose h1, . . . ,hs, i ∈ N0 , with h1, . . . ,hs �≡ d ≡ i (mod e). Then the wedge h1 ∧· · ·∧ hs ∧ i

can be expressed as a linear combination of wedges j ∧ k1 ∧ · · · ∧ ks in which j ≡ d �≡ k1, . . . ,ks (mod e),

and j,k1, . . . ,ks � max{h1, . . . ,hs, i}.
Furthermore, if max{h1, . . . ,hs, i} = i, then we may construct such a linear combination in such a way that

the only wedge of the form i ∧ k1 ∧ · · · ∧ ks occurring with non-zero coefficient is i ∧ h1 ∧ · · · ∧ hs .

Proof. We proceed by induction on s. The case s = 0 is trivial, so assume s � 1. Using Lemma 5.6,

we may express hs ∧ i as a linear combination of wedges i′ ∧ k , with i′ ≡ d �≡ k (mod e); we

use part (1) of that lemma if hs > i, or part (2) if hs < i. Either way, we see that for every such

wedge we have i′,k � max{hs, i}; moreover, if hs < i, then the wedge i ∧ hs occurs with non-zero

coefficient (and no other wedge of the form i ∧ k occurs). Now for each such pair (i′,k), we apply

the inductive hypothesis to the s-wedge h1 ∧ · · · ∧ hs−1 ∧ i′ . �
Corollary 5.8. Suppose we are given h1, . . . ,hs, i1, . . . , ic ∈ N0 and 0 � m1 � · · · � mc � s such that:
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• i1, . . . , ic ≡ d (mod e) and i1 < · · · < ic ;
• h1, . . . ,hs �≡ d (mod e);
• ix > h1, . . . ,hmx for each x ∈ {1, . . . , c}.

Then the (s + c)-wedge

( h1 ∧ · · · ∧ hm1 ) ∧ i1 ∧ ( hm1+1 ∧ · · · ∧ hm2 ) ∧ i2 ∧ · · · ∧ ic ∧ ( hmc+1 ∧ · · · ∧ hs )

may be written as a linear combination of wedges of the form

j1 ∧ · · · ∧ jc ∧ k1 ∧ · · · ∧ ks ,

where

• j1, . . . , jc ≡ d (mod e);
• k1, . . . ,ks �≡ d (mod e);
• jx � ix for each x ∈ {1, . . . , c}.

Furthermore, this may be done in such a way that the only wedge of the form i1 ∧ · · · ∧ ic ∧ k1 ∧ · · · ∧ ks

occurring with non-zero coefficient is

i1 ∧ · · · ∧ ic ∧ h1 ∧ · · · ∧ hs .

Proof. We use induction on c, with the case c = 0 being trivial. Assuming c � 1, we apply Lemma 5.7

to the (m1 + 1)-wedge h1 ∧ · · · ∧ hm1 ∧ i1 . This yields a linear combination of wedges of the form

j1 ∧ k1 ∧ · · ·∧ km1 , with j1,k1, . . . ,km1 � i1 and j1 ≡ d (mod e); furthermore, the only such wedge

occurring with non-zero coefficient in which j1 = i1 is the wedge i1 ∧ h1 ∧ · · · ∧ hm1 .

Given a wedge j1 ∧ k1 ∧ · · · ∧ km1 occurring in this linear combination, we have k1, . . . ,km1 �
i1 < i2, so we can apply the inductive hypothesis to the (s + c − 1)-wedge

( k1 ∧ · · · ∧ km1 ∧ hm1+1 ∧ · · · ∧ hm2 ) ∧ i2 ∧ · · · ∧ ic ∧ ( hmc+1 ∧ · · · ∧ hs ),

which gives the result. �
Corollary 5.9. Suppose we are given h1, . . . ,hs ∈ N0 and 0 � m1 � · · · � mc � s such that:

• h1, . . . ,hs �≡ d (mod e);
• h1, . . . ,hmx < d + (x − 1)e for each x ∈ {1, . . . , c}.

Let w be the (s + c)-wedge

( h1 ∧ · · · ∧ hm1 ) ∧ d ∧ ( hm1+1 ∧ · · · ∧ hm2 )

∧ d + e ∧ · · · ∧ d + (c − 1)e ∧ ( hmc+1 ∧ · · · ∧ hs ).

Then w equals a non-zero multiple of the wedge

(
d ∧ d + e ∧ · · · ∧ d + (c − 1)e

) ∧ ( h1 ∧ · · · ∧ hs ).
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Proof. Apply Corollary 5.8 to w , and suppose j1 ∧ · · · ∧ jc ∧ k1 ∧ · · · ∧ ks is one of the resulting

wedges. Since j1, . . . , jc are all congruent modulo e, we may re-write j1 ∧ · · · ∧ jc as ± jπ(1) ∧
· · · ∧ jπ(c) , where π ∈ Sc is such that jπ(1) � · · · � jπ(c) . If any two of j1, . . . , jc are equal, then

the latter wedge will equal zero. So we may discard any terms in which j1, . . . , jc are not pairwise
distinct. But recall that we have j1, . . . , jc ≡ d (mod e), and jx � d + (x − 1)e for each x. The only way
such j1, . . . , jc can be pairwise distinct is if jx = d + (x − 1)e for each x. Now the last statement of
Corollary 5.8 gives the result. �
Example. Suppose e = 3 and μ = (7,3,1). Taking r = 6, we get Br(μ) = {12,7,4,2,1,0}, so that

|̂μ〉 = 0 ∧ 1 ∧ 2 ∧ 4 ∧ 7 ∧ 12 .

Taking d = 1 and applying Lemma 5.6 repeatedly to move terms congruent to 1 modulo 3 to the left,
we find that

|̂μ〉 = −q−5 1 ∧ 4 ∧ 7 ∧ 0 ∧ 2 ∧ 12

+q−4
(
q − q−1

)
1 ∧ 4 ∧ 4 ∧ 3 ∧ 2 ∧ 12

+q−4
(
q − q−1

)
1 ∧ 4 ∧ 1 ∧ 6 ∧ 2 ∧ 12

+q−4
(
q − q−1

)
1 ∧ 1 ∧ 7 ∧ 3 ∧ 2 ∧ 12

−q−3
(
q − q−1

)2 1 ∧ 1 ∧ 4 ∧ 6 ∧ 2 ∧ 12

+q−4
(
q − q−1

)
1 ∧ 4 ∧ 4 ∧ 0 ∧ 5 ∧ 12

−q−3
(
q − q−1

)2 1 ∧ 4 ∧ 1 ∧ 3 ∧ 5 ∧ 12

−q−3
(
q − q−1

)2 1 ∧ 1 ∧ 4 ∧ 3 ∧ 5 ∧ 12 .

When we apply the commutation relations in the first three positions, all terms apart from the first

vanish, so that |̂μ〉 equals a non-zero multiple of 1 ∧ 4 ∧ 7 ∧ 0 ∧ 2 ∧ 12 .

Now we need to compare the Fock spaces F e
s and F e−1

s . To avoid ambiguity, we write a wedge in
the latter Fock space as

i1 � · · · � is ;

so wedges written in this way are subject to the commutation relations modulo e − 1, while wedges
written using the symbol ∧ are subject to the commutation relations modulo e. Now, recalling the
function φd from Section 3.1, we have the following.

Lemma 5.10. Suppose we have ikl ∈ N0 for 1 � k � t and 1 � l � s, with ikl �≡ d (mod e), and suppose
b1(q), . . . ,bt(q) ∈ Q(q) are such that

t∑
k=1

bk(q)( ik1 ∧ · · · ∧ iks ) = 0.

Then

t∑
bk(q)

(
φd(ik1) � · · · � φd(iks)

) = 0.
k=1
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Proof. This comes directly from a comparison of the commutation relations for l ∧ m and for

φd(l) � φd(m) when l � m. We leave this for the reader to check. �
Example. Suppose e = 3. Then the commutation relations give

0 ∧ 2 ∧ 12 = −q−2 12 ∧ 2 ∧ 0 + (
q−3 − q−1) 11 ∧ 3 ∧ 0

+ (
q−2 − q−4) 9 ∧ 5 ∧ 0 + (

q−5 − q−3) 8 ∧ 6 ∧ 0 ,

while the commutation relations modulo 2 give

0 � 1 � 8 = −q−2 8 � 1 � 0 + (
q−3 − q−1) 7 � 2 � 0

+ (
q−2 − q−4) 6 � 3 � 0 + (

q−5 − q−3) 5 � 4 � 0 .

We need one more ingredient before we prove our main result; this needs some preparation.

Lemma 5.11. Suppose j ∈ N0 and w = i1 ∧ · · · ∧ iu is a u-wedge having the following property: there is

a unique x ∈ {1, . . . , u} such that ix ≡ d (mod e), and for this value of x we have i1, . . . , ix > j. Then, when we
write w as a linear combination of ordered wedges using the commutation relations, every ordered wedge that

occurs with non-zero coefficient contains exactly one term i with i ≡ d (mod e), and this value of i satisfies

i > j.

Proof. If i1 � · · · � iu then there is nothing to prove, so we suppose i y < i y+1 for some y,

and apply the commutation relations in positions y, y + 1. This gives an expression for i1 ∧
· · · ∧ iu as a linear combination of wedges of the form i1 ∧ · · · ∧ i y−1 ∧ l y ∧ l y+1 ∧
i y+2 ∧ · · · ∧ iu . Defining A(i1, . . . , iu) as in the proof of Lemma 5.1, it suffices to show that

A(i1, . . . , i y−1, l y, l y+1, i y+2, . . . , iu) < A(i1, . . . , iu) and that the hypotheses of the lemma hold with
i1, . . . , iu replaced by i1, . . . , i y−1, l y, l y+1, i y+2, . . . , iu . The first fact is a simple exercise as before, and
the second fact is easy to check from the commutation relations. �
Lemma 5.12. Suppose j,k1, . . . ,ks ∈ N0 with j ≡ d �≡ k1, . . . ,ks (mod e) and k1 > · · · > ks > j. Then, when

the (s + 1)-wedge w = j ∧ k1 ∧ · · · ∧ ks is expressed as a linear combination of ordered wedges using the

commutation relations, each wedge that occurs contains exactly one term i with i ≡ d (mod e), and this term

satisfies i � j. Moreover, the only wedge occurring that includes the term j is the wedge

k1 ∧ · · · ∧ ks ∧ j ,

occurring with coefficient (−q)−s .

Proof. We use induction on s, with the case s = 0 being trivial. Assuming s � 1, we apply the com-
mutation relations in positions 1 and 2. This yields an expression

w = −q−1 w1 +
∑

bv(q)v,
v∈V
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where w1 = k1 ∧ j ∧ k2 ∧· · ·∧ ks , and V is a set of wedges each of which satisfies the hypotheses

of Lemma 5.11. Applying Lemma 5.11 to any v ∈ V , we get a linear combination of ordered wedges in

which there is one term i with i ≡ d, and this i satisfies i > j. So we can neglect all wedges v ∈ V ,

and it suffices to show that the present lemma holds with w1 in place of w and (−q)1−s in place
of (−q)−s .

By induction, when we write

j ∧ k2 ∧ · · · ∧ ks =
∑

j1>···> js

c j1... js (q) j1 ∧ · · · ∧ js

we have that:

• if c j1... js (q) �= 0, then there is exactly one x such that jx ≡ d (mod e), and this jx is greater than
or equal to j;

• if c j1... js (q) �= 0 and jx = j for some x, then ( j1, . . . , js) = (k2, . . . ,ks, j) and c j1... js (q) = (−q)1−s .

Also, by Lemma 5.1(1), each ( j1, . . . , js) with c j1... js (q) �= 0 satisfies j1 � k2 < k1. So we see that

w1 =
∑

j1,..., js

c j1... js (q) k1 ∧ j1 ∧ · · · ∧ js

is an expression for w1 as a linear combination of ordered wedges, and the result follows. �
Lemma 5.13. Suppose j,k1, . . . ,ks ∈ N0 with j ≡ d (mod e) and k1 > · · · > ks. Suppose also that for some

z ∈ {1, . . . , s} we have kz ≡ d (mod e) and kz � j. Let w denote the (s + 1)-wedge j ∧ k1 ∧ · · · ∧ ks .

When w is written as a linear combination of ordered wedges using the commutation relations, every wedge

that occurs with non-zero coefficient contains a term l with l ≡ d (mod e) and l � j + e.

Proof. Let y be maximal such that ky � j, and let w ′ be the (y + 1)-wedge j ∧ k1 ∧ · · · ∧ ky .

Write w ′ as a linear combination of ordered wedges:

w ′ =
∑

l1,...,l y+1

bl1...l y+1(q) l1 ∧ · · · ∧ l y+1 .

If bl1...ly+1 (q) �= 0, then by Lemma 5.1(1) we have l y+1 � min{ j,k1, . . . ,ky} = j, and by Lemma 5.1(2)
at least two of l1, . . . , l y+1 are congruent to d modulo e. Hence for some x � y we have lx ≡ d (mod e)
and lx � j + e. The fact that l y+1 � j > ky+1 implies that the (s + 1)-wedge

l1 ∧ · · · ∧ l y+1 ∧ ky+1 ∧ · · · ∧ ks

is ordered. So we see that

w =
∑

l1,...,l y+1

bl1...l y+1(q) l1 ∧ · · · ∧ l y+1 ∧ ky+1 ∧ · · · ∧ ks

is an expression for w as a linear combination of ordered wedges with the required properties. �
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Corollary 5.14. Suppose k1, . . . ,ks ∈ N0 , with k1, . . . ,ks �≡ d (mod e) and k1 > · · · > ks, and let 0 � n1 �
· · · � nc � s be such that knx > d + (c − x)e > knx+1 for all x. Then, when the (s + c)-wedge

(
d + (c − 1)e ∧ d + (c − 2)e ∧ · · · ∧ d

) ∧ ( k1 ∧ · · · ∧ ks )

is expressed as a linear combination of ordered wedges, the only ordered wedge occurring that includes all the

terms d + (c − 1)e , d + (c − 2)e , . . . , d is the wedge

( k1 ∧ · · · ∧ kn1 ) ∧ d + (c − 1)e ∧ ( kn1+1 ∧ · · · ∧ kn2 )

∧ d + (c − 2)e ∧ · · · ∧ d ∧ ( knc+1 ∧ · · · ∧ ks ),

occurring with coefficient (−q)−(n1+···+ns) .

Proof. We use induction on c, with the case c = 0 being trivial. Assuming c � 1, apply the inductive
hypothesis to write

(
d + (c − 2)e ∧ d + (c − 3)e ∧ · · · ∧ d

) ∧ ( k1 ∧ · · · ∧ ks ) =
∑

u

bu(q)u,

where:

• each u is an ordered wedge;
• if we set

w ′ = ( k1 ∧ · · · ∧ kn2 ) ∧ d + (c − 2)e ∧ ( kn2+1 ∧ · · · ∧ kn3 )

∧ d + (c − 3)e ∧ · · · ∧ d ∧ ( knc+1 ∧ · · · ∧ ks ),

then bw ′ (q) = (−q)−(n2+···+ns);

• if u �= w ′ and bu(q) �= 0, then u does not contain all of the terms d + (c − 2)e , d + (c − 3)e ,

. . . , d .

Now by Lemma 5.1(2), every wedge u with bu(q) �= 0 contains exactly c −1 terms of the form d + ze

with z ∈ N0; if u �= w ′ then these terms are not d + (c − 2)e , . . . , d , so u contains a term d + ze

with z � c −1. So by Lemma 5.13, when we write d + (c − 1)e ∧u as a linear combination of ordered

wedges, each wedge that occurs contains a term d + ze with z � c, and therefore does not contain

all the terms d + (c − 1)e , d + (c − 2)e , . . . , d . So we may ignore all terms d + (c − 1)e ∧ u with

u �= w ′ , and we concentrate on the wedge d + (c − 1)e ∧ w ′ .
Write

w1 = d + (c − 1)e ∧ k1 ∧ · · · ∧ kn1 ,

and express w1 as a linear combination of ordered wedges:

w1 =
∑

cv(q)v.
v
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By Lemma 5.12, any wedge v with cv(q) �= 0 contains a term d + ze with z � c − 1, and if v contains

the term d + (c − 1)e then v = k1 ∧ · · · ∧ kn1 ∧ d + (c − 1)e and cv(q) = (−q)−n1 . Moreover, if

v = v1 ∧ · · · ∧ vn1+1 and cv(q) �= 0, then by Lemma 5.1(1) we have vn1+1 � d + (c − 1)e > kn1+1, so

the wedge

v ∧ ( kn1+1 ∧ · · · ∧ kn2 ) ∧ d + (c − 2)e ∧ · · · ∧ d ∧ ( knc+1 ∧ · · · ∧ ks )

is ordered. So an expression for d + (c − 1)e ∧ w ′ as a linear combination of ordered wedges is

d + (c − 1)e ∧ w ′ =
∑

v

cv(q)
(

v ∧ ( kn1+1 ∧ · · · ∧ kn2 )

∧ d + (c − 2)e ∧ · · · ∧ d ∧ ( knc+1 ∧ · · · ∧ ks )
)
,

and the result follows. �
Example. Taking e = 3, r = 6, d = 1, we have

7 ∧ 4 ∧ 1 ∧ 12 ∧ 2 ∧ 0 = q−4 12 ∧ 7 ∧ 4 ∧ 2 ∧ 1 ∧ 0

+q−4
(
q − q−1

)
10 ∧ 9 ∧ 4 ∧ 2 ∧ 1 ∧ 0

+q−3
(
q − q−1

)
10 ∧ 7 ∧ 6 ∧ 2 ∧ 1 ∧ 0

−q−1
(
q − q−1

)
10 ∧ 7 ∧ 4 ∧ 3 ∧ 2 ∧ 0

and also

7 ∧ 4 ∧ 1 ∧ 11 ∧ 3 ∧ 0 = q−4 11 ∧ 7 ∧ 4 ∧ 3 ∧ 1 ∧ 0

+q−4
(
q − q−1

)
10 ∧ 8 ∧ 4 ∧ 3 ∧ 1 ∧ 0

+q−3
(
q − q−1

)
10 ∧ 7 ∧ 5 ∧ 3 ∧ 1 ∧ 0

+q−2
(
q − q−1

)
10 ∧ 7 ∧ 4 ∧ 3 ∧ 2 ∧ 0 .

Now we can prove Proposition 5.4; the reader should combine the last three examples in this
section to follow the proof for the case e = 3, μ = (7,3,1), λ = (6,3,12).

Proof of Proposition 5.4. Choose a large r, and let c and d be as defined in Section 2.5. For any
k-empty partition ξ with the same e-core and e-weight as μ, we know that the r-beta-set Br(ξ)

contains the integers d,d + e, . . . ,d + (c − 1)e, together with r − c integers not congruent to d
modulo e, which we write as h1(ξ) > · · · > hr−c(ξ). Then the (r − c)-beta-set Br−c(ξ

−k) equals
{φd(h1(ξ)), . . . , φd(hr−c(ξ))}.

In the particular case ξ = μ, we have

|̂μ〉 = (
hr−c(μ) ∧ · · · ∧ hmc+1(μ)

) ∧ d ∧ (
hmc (μ) ∧ · · · ∧ hmc−1+1(μ)

)
∧ d + e ∧ (

hmc−1(μ) ∧ · · · ∧ hmc−2+1(μ)
)

...

∧ d + (c − 1)e ∧ (
hm1(μ) ∧ · · · ∧ h1(μ)

)
,
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for appropriate 1 � m1 � · · · � mc � r. By Corollary 5.9, this equals a non-zero multiple of the wedge

(
d ∧ d + e ∧ · · · ∧ d + (c − 1)e

) ∧ (
hr−c(μ) ∧ · · · ∧ h1(μ)

)
.

Now we examine μ−k . Using (r − c)-wedges, we have

∣̂∣μ−k
〉 = φd

(
hr−c(μ)

)
� · · · � φd

(
h1(μ)

)
,

so (from the definition of the constants ae−1
πμ−k (q))

φd
(
hr−c(μ)

)
� · · · � φd

(
h1(μ)

) = C
∑
π

ae−1
πμ−k (q)|π〉

in the Fock space F e−1
r−c , for some non-zero C . Each π occurring has the same (e −1)-core and (e −1)-

weight as μ−k , and so can be written as ξ−k for some k-empty partition ξ with the same e-core and
e-weight as μ. So by Lemma 5.10, we get

hr−c(μ) ∧ · · · ∧ h1(μ) = C
∑
ξ

ae−1
ξ−kμ−k (q). h1(ξ) ∧ · · · ∧ hr−c(ξ)

in the Fock space F e
r−c . Combining this with the expression for |̂μ〉 above and the fact that

d ∧ · · · ∧ d + (c − 1)e = (−1)(
c
2) d + (c − 1)e ∧ · · · ∧ d ,

we find that |̂μ〉 equals a non-zero multiple of

∑
ξ

ae−1
ξ−kμ−k (q).

(
d + (c − 1)e ∧ · · · ∧ d

) ∧ (
h1(ξ) ∧ · · · ∧ hr−c(ξ)

)
,

summing over all k-empty partitions ξ with the same e-core and e-weight as μ. Choose such a
partition ξ , let wξ denote the wedge

(
d + (c − 1)e ∧ · · · ∧ d

) ∧ (
h1(ξ) ∧ · · · ∧ hr−c(ξ)

)
,

and let 0 � n1 � · · · � nc � r − c be such that hnx (ξ) > d + (c − x)e > hnx+1(ξ) for each x. Note that
n1 + · · · + nc is the integer nr,k(ξ) defined in Section 4.4. By Corollary 5.14, wξ equals (−q)−(n1+···+nc)

times

(
h1(ξ) ∧ · · · ∧ hn1(ξ)

) ∧ d + (c − 1)e ∧ (
hn1+1(ξ) ∧ · · · ∧ hn2(ξ)

)
∧ d + (c − 2)e ∧ (

hn2+1(ξ) ∧ · · · ∧ hn3(ξ)
)

...

∧ d ∧ (
hnc+1(ξ) ∧ · · · ∧ hr−c(ξ)

)
= |ξ〉
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plus a linear combination of other wedges, none of which includes all the terms d + (c − 1)e , . . . , d .

Summing over ξ , we see that

|̂μ〉 = D

( ∑
ξ∈N

ae−1
ξ−kμ−k (q)(−q)−nr,k(ξ)|ξ〉

)
+

∑
ρ∈P\N

fρ(q)|ρ〉

where D is a non-zero constant, N is the set of k-empty partitions with the same e-core and e-weight
as μ, and fρ(q) ∈ Q(q) for ρ ∈ P \ N . Normalising, we see that

ae
λμ(q) =

Dae−1
λ−kμ−k (q)(−q)−nr,k(λ)

Dae−1
μ−kμ−k (q)(−q)−nr,k(μ)

= (−q)nr,k(μ)−nr,k(λ)ae−1
λ−kμ−k (q).

But by Corollary 4.11, Lk(λ) = Lk(μ) implies that nr,k(λ) = nr,k(μ), and the proposition is proved. �
5.3. Proof of Theorem 3.4

Now we can complete the proof of Theorem 3.4. We fix μ, and proceed by induction on λ with
respect to the dominance order. If λ = μ then the result is immediate, so assume λ �= μ. Comparing
coefficients of |λ〉 in the expression G(μ) = G(μ), we find that

de
λμ(q) − de

λμ

(
q−1) =

∑
ξ �=λ

de
ξμ

(
q−1)ae

λξ (q).

Similarly, we have

de−1
λ−kμ−k (q) − de−1

λ−kμ−k

(
q−1) =

∑
π �=λ−k

de−1
πμ−k

(
q−1)ae−1

λ−kπ
(q).

Now de
ξμ(q−1) = 0 unless μ �e ξ , while ae

λξ (q) = 0 unless ξ �e λ, so we may restrict the range of
summation in the first equation above to those ξ such that μ �e ξ �e λ. Similarly, we may restrict
the range of summation in the second equation to μ−k �e−1 π �e−1 λ−k . Now since Lk(λ) = Lk(μ),
the set of π with μ−k �e−1 π �e−1 λ−k is precisely the set of ξ−k for ξ ∈ P with μ �e ξ �e λ

(Lemma 4.6). Moreover, we know that for any such ξ we have Lk(ξ) = Lk(μ), so we have

ae
λξ (q) = ae−1

λ−kξ−k (q)

by Proposition 5.4, and

de
ξμ

(
q−1) = de−1

ξ−kμ−k

(
q−1)

by induction. We deduce that

de
λμ(q) − de

λμ

(
q−1) = de−1

λ−kμ−k (q) − de−1
λ−kμ−k

(
q−1),

and since de
λμ(q), de−1

λ−kμ−k (q) are polynomials divisible by q, the result follows.

6. The Mullineux map

In this section, we examine the Mullineux map in detail and prove Theorem 3.5.
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6.1. Definition of the Mullineux map

The description of the Mullineux map that we use is based on the abacus, and largely taken
from [FM].

Definition 6.1. Suppose μ is an e-regular partition, and take an abacus display for μ with r beads,
for some r � μ′

1. Let β , γ be the positions of the last bead and the first empty space on the abacus,
respectively; so β is the beta-number β1 = μ1 + r − 1, while γ equals r − μ′

1.
Assuming μ �= ∅, there is a unique sequence b1 > c1 > · · · > bt > ct of non-negative integers satis-

fying the following conditions.

1. For each 1 � i � t , position bi is occupied and position ci is empty.
2. b1 = β .
3. For 1 � i < t , we have

• bi ≡ ci (mod e), and all the positions bi − e,bi − 2e, . . . , ci + e are occupied;
• all the positions ci − 1, ci − 2, . . . ,bi+1 + 1 are empty.

4. Either:
(a) bt ≡ ct (mod e), all the positions bt − e, . . . , ct + e are occupied, and all the positions ct − 1,

ct − 2, . . . , γ are empty; or
(b) all the positions bt − e,bt − 2e, . . . are occupied and ct = γ .

We define μ� to be the partition whose abacus display is obtained by moving the beads at posi-
tions b1, . . . ,bt to positions c1, . . . , ct , and we define the e-rim length of μ to be rim(μ) = |μ|−|μ�| =∑t

i=1(bi − ci). It is straightforward to see that neither μ� nor rim(μ) depends on the choice of r.

Example. Suppose e = 3, and μ = (12,112,7,6,5,32,2). The abacus display for μ with r = 15 is as
follows.

We see that β = 26 and γ = 6. We find that t = 3 and

(b1, c1,b2, c2,b3, c3) = (26,20,18,15,14,6).

So rim(μ) = 17, and

μ� = = (
102,8,52,22,1

)
.
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Now we can describe the Mullineux map. We define m(μ) recursively in |μ|, setting m(∅) = ∅. If
μ �= ∅, then we compute rim(μ) and μ� as in Definition 6.1. Obviously |μ�| < |μ|, and we assume
m(μ�) is defined. Now set

l =
{

rim(μ) − μ′
1 (e | rim(μ)),

rim(μ) − μ′
1 + 1 (e � rim(μ)),

and define m(μ) to be the unique e-regular partition such that (m(μ))′1 = l, rim(m(μ)) = rim(μ) and
(m(μ))� = m(μ�). That this procedure always works (i.e. there is always a unique e-regular m(μ)

with the required properties) is proved by Mullineux in [M].

6.2. The Mullineux map and conjugation

Given the statement of Theorem 3.5, it will be helpful for us to study the map μ �→ m(μ)′ rather
than m itself. To this end, we give a ‘conjugate’ definition to Definition 6.1.

Definition 6.2. Suppose ν is an e-restricted partition, and take an abacus display for ν with r beads.
Let δ, ε be the position of the last bead and the first empty space on the abacus, respectively. Assum-
ing ν �= ∅, there is a unique sequence f1 > g1 > · · · > fu > gu of non-negative integers satisfying the
following conditions.

1. For each 1 � i � u, position f i is occupied and position gi is empty.
2. gu = ε .
3. For 1 < i � u, we have

• f i ≡ gi (mod e), and all the positions f i − e, f i − 2e, . . . , gi + e are empty;
• all the positions f i + 1, f i + 2, . . . , gi−1 − 1 are occupied.

4. Either:
(a) f1 ≡ g1 (mod e), all the positions f1 − e, . . . , g1 + e are empty, and all the positions δ, δ − 1,

. . . , f1 + 1 are occupied; or
(b) all the positions g1 + e, g1 + 2e, . . . are empty and f1 = δ.

We define ν� to be the partition whose abacus display is obtained by moving the beads at po-
sitions f1, . . . , fu to positions g1, . . . , gu , and we define the conjugate e-rim length of ν to be
rim′(ν) = ∑t

i=1( f i − gi). It is straightforward to see that neither ν� nor rim′(ν) depends on the
choice of r.

Definition 6.2 is the result of applying Definition 6.1 to the e-regular partition ν ′ , and then ex-
ploiting Lemma 4.1. This yields

rim′(ν) = rim(ν ′)

and

ν� = (
(ν ′)�

)′
.

Hence we can describe the map μ �→ m(μ)′ , as follows.

Lemma 6.3. Suppose μ is an e-regular partition. If μ = ∅, then m(μ)′ = ∅. Otherwise, set

l =
{

rim(μ) − μ′
1 (e | rim(μ)),

rim(μ) − μ′ + 1 (e � rim(μ)).
1
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Then m(μ)′ is the unique e-restricted partition such that (m(μ)′)1 = l, rim′(m(μ)′) = rim(μ) and
(m(μ)′)� = m(μ�)′ .

We use Lemma 6.3 as our definition of the map μ �→ m(μ)′ .

Examples. Suppose e = 3, and take r = 6.

1. Suppose μ = (3) and ν = (2,1). These partitions have the following abacus displays.

Applying Definition 6.1 to μ, we see that β = 8 and γ = 5. We have t = 1, with b1 = 8 and c1 = 5.
So μ� = ∅, rim(μ) = 3 and l = 2.
Applying Definition 6.2 to ν , we have u = 1, with f1 = δ = 7, g1 = ε = 4. So ν� = ∅, rim′(ν) = 3
and ν1 = 2, and we see that m(μ)′ = ν .

2. Now suppose μ = (6,3,1) and ν = (5,3,2).

Applying Definition 6.1 to μ, we have β = 11, γ = 3, t = 2, and (b1, c1,b2, c2) = (11,8,7,3). So
μ� = (3), rim(μ) = 7, and l = 5.
Applying Definition 6.2 to ν , we have δ = 10, ε = 3, u = 1, and ( f1, g1) = (10,3). So ν� = (2,1)

and rim′(ν) = 7. By (1) above we have m(μ�)′ = ν� , and since ν1 = 5 we have m(μ)′ = ν .

6.3. Proof of Theorem 3.5

Now we proceed with the proof of Theorem 3.5; we begin with the following lemma.

Lemma 6.4. Suppose μ is an e-regular partition. Then μ � m(μ)′ .

Proof. This is immediate from Propositions 2.3 and 5.3. �
Now we fix some notation which will be in force for the remainder of Section 6. We fix an

e-regular partition μ �= ∅ and set ν = m(μ)′ . We fix a large integer r, and let β,γ ,b1, c1, . . . ,bt , ct be
as in Definition 6.1, and δ, ε, f1, g1, . . . , fu, gu as in Definition 6.2. Let y denote rim(μ) (= rim′(ν)).
Fix k such that μ and ν are both k-empty, and let c, d be as defined in Section 2.5. Let x = d+ (c −1)e
be the position of the last bead on runner d of the abacus display for μ; since μ and ν have the same
e-core (which is implicit in Lemma 6.4), x is also the position of the last bead on runner d of the aba-
cus display for ν .

Lemma 6.5.

1. We have

y =
{

δ − γ + 1 (e | y),

δ − γ (e � y).
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2. None of b1, c1, . . . ,bt−1, ct−1 or f2, g2, . . . , fu, gu is congruent to d modulo e.
3. bt − ct is divisible by e if and only if f1 − g1 is. If neither is divisible by e, then

γ = ct ≡ g1 (mod e) and δ = f1 ≡ bt (mod e).

Proof. 1. This follows from the statements γ = μ′
1 − r, δ = ν1 + r − 1 and

ν1 = l =
{

y − μ′
1 (e | y),

y − μ′
1 + 1 (e � y).

2. Suppose 1 � i < t . Then bi ≡ ci (mod e) and bi > ci . But there is no bead on runner d of the
abacus display for μ with an empty space above it, so we cannot have bi ≡ d (mod e). Similarly
f i, gi �≡ d if 1 < i � u.

3. Since y = ∑
i(bi − ci) and bi − ci is divisible by e for i < t , we have bt − ct ≡ y (mod e). Similarly

f1 − g1 ≡ y (mod e). Now suppose neither bt − ct nor f1 − g1 is divisible by e. Then in condition (4)
of Definition 6.1 we must be in case (b), and in condition (4) of Definition 6.2 we must in be case (b).
So ct = γ and f1 = δ. Let h, i, h′ , i′ be the residues of bt , ct , f1, g1 modulo e. Since μ and ν have
the same e-core, there must be the same numbers of beads on corresponding runners of the abacus
displays for μ and ν . Similarly, there are the same numbers of beads on corresponding runners of the
abacus displays for μ� and ν� . To get from the abacus display of μ to the abacus display for μ� ,
we move some beads up their runners, and then move a bead from runner h to runner i. Similarly,
to get from ν to ν� , we move some beads up their runners and then move a bead from runner h′ to
runner i′ . Combining these statements, we see that h = h′ and i = i′ . �

The proof of Theorem 3.5 is by induction on |μ|; the inductive step is to assume that the theorem
holds with μ replaced by μ� , and to compare Lk(μ) with Lk(μ

�) and Lk(ν) with Lk(ν
�). The

calculation required for this inductive step is broken into several parts.

Lemma 6.6. Suppose neither f1 nor g1 is congruent to d modulo e. Then ν� is k-empty, and

Lk(ν) = Lk
(
ν�) +

⌊
δ − x

e

⌋
.

Proof. We obtain an abacus display for ν� by moving a bead from position f i to position gi for
each i. Since none of f1, g1, . . . , fu, gu is congruent to d modulo e, this has no effect on runner d of
the abacus display, and so ν� is k-empty. Now we compute Lk(ν) − Lk(ν

�).
Suppose first that δ < x + e; then we must show that Lk(ν) − Lk(ν

�) = 0. For each i we have
f i � δ < x + e, so that (by Lemma 4.7) moving a bead from position f i to position gi does not alter
the value of Lk , and we are done.

So we assume that δ > x + e. gu = ε is the first empty position on the abacus display for ν , and
there is an empty space at position x + e, so we have gu � x + e; but gu �≡ d (mod e) by assumption,
so gu < x + e. Let l be minimal such that gl < x + e, and for i = 1, . . . , l write

gi = d + aie + ji

with 0 < ji < e. Also write

δ = d + a0e + j0

with 0 < j0 < e.
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Claim. For 1 � i � l we have

d + ai−1e < f i < d + (ai−1 + 1)e.

Proof. Suppose first that i � 2. Recall that every position between f i and gi−1 in the abacus display
for ν is occupied. Since gi−1 > x + e, position d + ai−1e is unoccupied, so d + ai−1e does not lie
between f i and gi−1. Hence

d + ai−1e < f i < gi−1 < d + (ai−1 + 1)e,

as required.
Now consider i = 1. Either f1 = δ (in which case the result is immediate) or f1 < δ and every

position between f1 and δ in the abacus display for ν is occupied. Assuming the latter and arguing
as above, we get

d + a0e < f1 < δ < d + (a0 + 1)e. �
The claim, together with Lemma 4.7, implies that if 1 � i < l then moving a bead from position f i

to position gi reduces the value of Lk by ai−1 − ai . Since gl < x + e, moving the bead from position fl
to position gl reduces the value of Lk by al−1 − (c − 1). For l < i � t , we have f i < gl < x + e, so
moving a bead from position f i to position gi does not affect the value of Lk . Summing, we get

Lk(ν) − Lk
(
ν�) =

l−1∑
i=1

(ai−1 − ai) + (al − c + 1)

= a0 − c + 1.

On the other hand,

⌊
δ − x

e

⌋
=

⌊
d + a0e + j0 − d − (c − 1)e

e

⌋
= a0 − c + 1

(since 0 < j0 < e), and we are done. �
Lemma 6.7. Suppose ct > x + e. Then y is divisible by e, μ� and ν� are both k-empty, and we have

Lk(μ) − Lk
(
μ�) = y

e
, Lk(ν) − Lk

(
ν�)

� y

e
.

Proof. Since there is an empty space at position x + e on the abacus display for μ, we must have
γ � x + e < ct . So in Definition 6.2(4) we must be in case (a), and hence e | y. Since bi ≡ ci and
f i ≡ gi (mod e) for each i and since it not possible to slide a bead up runner d in the abacus display
for either μ or ν , we have bi, ci, f i, gi �≡ d (mod e) for all i, so μ� and ν� are k-empty.

Now we examine μ. Since for each i we have x < ci ≡ bi (mod e), Lemma 4.7 implies that moving
the bead at position bi to position ci reduces the value of Lk by (bi − ci)/e. So

Lk(μ) − Lk
(
μ�) = (b1 − c1) + · · · + (bt − ct)

e
= y

e

as required.
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Next we examine ν . First we note that γ > x. Indeed, Definition 6.1 tells us that every position
between ct and γ in the abacus for μ is empty; but position x is occupied, so does not lie in this
range. Since ct > x, we therefore have γ > x.

Now we have

Lk(ν) − Lk
(
ν�) =

⌊
δ − x

e

⌋
by Lemma 6.6

=
⌊

y + γ − x + 1

e

⌋
by Lemma 6.5(1)

�
⌊

y

e

⌋

= y

e

as required. �
Lemma 6.8. Suppose ct < x + e, and bt , ct �≡ d (mod e). Then μ� and ν� are k-empty, and we have

Lk(μ) − Lk
(
μ�) = Lk(ν) − Lk

(
ν�)

.

Proof. By Lemma 6.6, we must show that

Lk(μ) − Lk
(
μ�) =

⌊
δ − x

e

⌋
.

We use a calculation very similar to that used in the proof of Lemma 6.6. Let l be maximal such that
bl > x; note that there is such an l, since b1 = β � x and b1 �≡ x (mod e). For l � i � t , write

bi = d + aie + ji,

where 0 < ji < e.

Claim. cl < x + e.

Proof. If l = t then this is true by assumption, so suppose l < t . There is no bead on the abacus
display for μ in any position between cl and bl+1. But there is a bead at position x, so x does not lie
between cl and bl+1. Since bl+1 < x, we have cl < x < x + e. �

The claim implies that moving a bead from position bl to position cl reduces the value of Lk by
al − (c − 1). For 1 � i < l, we have ci > bl > x, so moving a bead from position bi to position ci
reduces the value of Lk by (bi − ci)/e. For l < i � t , we have bi < x, so moving a bead from position bi
to position ci does not affect the value of Lk . So we have

Lk(μ) − Lk
(
μ�) = 1

e

l−1∑
i=1

(bi − ci) + al − (c − 1)

= y

e
− 1

e

t∑
i=l

(bi − ci) + al − (c − 1).
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Claim. If l � i < t, then ci = d + ai+1e + ji .

Proof. There are no beads in the abacus display for μ in any position between ci and bi+1; since
bi+1 < x, there is a bead at position d + (ai+1 + 1)e, and therefore d + (ai+1 + 1)e does not lie between
ci and bi+1. So we have

d + ai+1e + ji+1 = bi+1 < ci < d + (ai+1 + 1)e;

since we know that ci ≡ bi (mod e), this implies that ji > ji+1 and ci = d + ai+1e + ji . �
Combining the claim with the expression above, we get

Lk(μ) − Lk
(
μ�) = y

e
−

t−1∑
i=l

(ai − ai+1) − 1

e
(d + ate + jt − ct) + al − (c − 1)

= y

e
− (c − 1) − 1

e
(d + jt − ct).

Now we consider two cases, according to whether or not e divides y.

e � y Here we have ct = γ and y = δ − γ , by Lemma 6.5. So

Lk(μ) − Lk
(
μ�) = δ − γ − e(c − 1) − d − jt + γ

e

= δ − x − jt

e

=
⌊

δ − x

e

⌋
,

since 0 < jt < e.
e | y In this case, we write

γ = d + a∗e + j∗, ct = d + a∗e + j∗

with 0 < j∗, j∗ < e. Since none of the positions γ ,γ + 1, . . . , ct is occupied but position d +a∗e
is occupied, we must have a∗ = a∗ , so that ct = d + a∗e + jt . Now the fact that y = δ − γ + 1
gives

Lk(μ) − Lk
(
μ�) = δ − γ + 1 − e(c − 1) + a∗e

e

= δ − j∗ + 1 − d − e(c − 1)

e

= δ − x − ( j∗ − 1)

e

=
⌊

δ − x

e

⌋
,

since 0 < j∗ < e. �
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Lemma 6.9. Suppose bt ≡ d (mod e). Then Lk(μ) = 0.

Proof. First we note that, since it is impossible to move a bead up runner d, ct �≡ d (mod e), and this
implies that e � y. So by Lemma 6.5(1) we have y = δ − γ . But δ = f1 is congruent to d modulo e
(by Lemma 6.5(3)) and is the last occupied position on the abacus for ν , and so must equal x. So
y = x − γ .

By Lemma 4.7, the conclusion Lk(μ) = 0 is the same as saying that β < x + e, so we prove the
latter statement. If bi < x for all i, then certainly β = b1 < x + e, so we assume otherwise, and let l be
maximal such that bl � x.

For l � i � t we write

bi = d + aie + ji,

with 0 � ji < e. Since bl, . . . ,bt−1 �≡ d ≡ bt (mod e), we actually have jt = 0 and 0 < ji < e for l �
i < t . Arguing as in the proof of Lemma 6.8, we have ji > ji+1 and ci = d + ai+1e + ji for l � i < t . So

y =
t∑

i=1

(bi − ci)

=
l−1∑
i=1

(bi − ci) +
t−1∑
i=l

(ai − ai+1)e + d + ate − γ

=
l−1∑
i=1

(bi − ci) + ale + d − γ .

Combining this with the equality y = x − γ from above, we get

x =
l−1∑
i=1

(bi − ci) + ale + d,

or

l−1∑
i=1

(bi − ci) + bl = x + jl.

Now by assumption bl � x, and so
∑l−1

i=1(bi − ci) � jl < e, which forces l = 1. And now we have

b1 = x + j1 < x + e,

as required. �
Proof of Theorem 3.5. Proceed by induction on |μ|. We consider several cases.

1. First suppose ct > x + e. Then by Lemma 6.7 μ� and ν� are k-empty, and

Lk(μ) − Lk
(
μ�) = y

e
, Lk(ν) − Lk

(
ν�)

� y

e
.

By induction we have Lk(μ
�) = Lk(ν

�), and so we get Lk(μ) � Lk(ν). By Lemmata 6.4 and 4.5
we have Lk(μ) � Lk(ν), and the result follows.
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2. Next suppose that ct < x + e, and that neither bt nor ct is congruent to d modulo e. Then by
Lemma 6.8 μ� and ν� are k-empty, and

Lk(μ) − Lk
(
μ�) = Lk(ν) − Lk

(
ν�)

,

and the result follows by induction.
3. Next, suppose that bt ≡ f1 ≡ d (mod e). Then by Lemma 6.9 we have Lk(μ) = 0. Since μ � ν we

have Lk(μ) � Lk(ν), so Lk(ν) = 0 too.
4. Finally, consider the case where ct ≡ g1 ≡ d (mod e). Here, we replace the pair (μ,ν) with

(ν ′,μ′). If we choose a large integer s and let b̃1, c̃1, . . . , b̃t̃ , c̃t̃ be the integers given by Defi-
nition 6.1 with ν ′ in place of μ and s in place of r, then by Lemma 4.1 we have t̃ = u and

b̃i = r + s − 1 − gu+1−i, c̃i = r + s − 1 − fu+1−i

for each i. If we set d̃ = (s + (e − 1 − k)) Mod e, then we can compute b̃t̃ ≡ d̃ (mod e); hence by
case 3 above, we have Le−1−k(ν

′) = Le−1−k(μ
′). Now Corollary 4.9 gives the result. �
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