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SUMMARY

ThermoTRPs, a subset of the Transient Recep-
tor Potential (TRP) family of cation channels,
have been implicated in sensing temperature.
TRPM8 and TRPA1 are both activated by cool-
ing; however, it is unclear whether either ion
channel is required for thermosensation in
vivo. We show that mice lacking TRPM8 have
severe behavioral deficits in response to cold
stimuli. In thermotaxis assays of temperature
gradient and two-temperature choice assays,
TRPM8-deficient mice exhibit strikingly re-
duced avoidance of cold temperatures. TRPM8-
deficient mice also lack behavioral response to
cold-inducing icilin application and display an
attenuated response to acetone, an unpleasant
cold stimulus. However, TRPM8-deficient mice
have normal nociceptive-like responses to sub-
zero centigrade temperatures, suggesting the
presence of at least one additional noxious
cold receptor. Finally, we show that TRPM8 me-
diates the analgesic effect of moderate cooling
after administration of formalin, a painful stimu-
lus. Therefore, depending on context, TRPM8
contributes to sensing unpleasant cold stimuli
or mediating the effects of cold analgesia.

INTRODUCTION

Peripheral neurons of the dorsal root ganglia (DRG) and

trigeminal ganglia sense thermal and mechanical stimuli

within the skin and relay this information to the spinal

cord (Hensel, 1981). These neurons are functionally hetero-

geneous. For example, 7%–15% of cultured DRG neurons

respond to moderate cold temperatures (e.g., McKemy

et al., 2002; Reid and Flonta, 2001b; Story et al., 2003).

The molecular receptors for sensing thermal and me-

chanical stimuli are still largely unknown. Many candidates

have been suggested to play a role in cold sensation in

DRG neurons. For instance, cold-induced closure of a K

channel such as TREK-1 could cause depolarization and

activation of cold-sensitive neurons (Maingret et al.,

2000; Reid and Flonta, 2001a; Viana et al., 2002). Cold-
induced inhibition of a Na+/K+ ATPase and activation of

members of the degenerin (DEG) family of Na channels

have also been suggested to play a role in cold transduc-

tion (Askwith et al., 2001; Pierau et al., 1974). However,

gene ablation studies of TREK-1 and DEG channels in

mice have not yet pointed to required roles in cold sensa-

tion (Alloui et al., 2006; Price et al., 2000, 2001).

Recent evidence suggests that a subset of Transient

Receptor Potential (TRP) cation channels plays an impor-

tant role in thermosensation. Four TRP Vanilloid (TRPV)

and three TRP Melastatin (TRPM) family members are ac-

tivated by heat, and mouse knockout studies have dem-

onstrated roles for three TRPV ion channels in innocuous

and noxious heat sensation (reviewed in Dhaka et al.,

2006). Two TRP channels are activated by cold. TRPM8

is activated by innocuous cooling (<30�C) and is a receptor

for menthol and icilin (mint-derived and synthetic cooling

compounds, respectively) (McKemy et al., 2002; Peier

et al., 2002). TRPA1 (Ankyrin family) is activated by

noxious cold (<17�C), icilin, and a variety of pungent com-

pounds (Bandell et al., 2004; Jordt et al., 2004; Macpher-

son et al., 2005; Story et al., 2003). Antisense knock down

of TRPA1 in rats has shown a requirement for this ion

channel in inflammation-induced and nerve injury-induced

cold allodynia (a nociceptive response to an innocuous

stimulus) (Obata et al., 2005). TRPA1-deficient mice

show reduced sensitivity to cold nociception (Kwan

et al., 2006). However, TRPA1 activation by cold and its re-

quirement for cold sensitivity in mice has been disputed

(Bautista et al., 2006; Jordt et al., 2004).

Unlike TRPA1, which is expressed in a subset of puta-

tive nociceptive neurons, TRPM8 is expressed in small-

diameter neurons that do not coexpress known markers

of nociceptive fibers (Story et al., 2003). In vitro studies

with cultured DRG neurons have suggested that under

certain conditions TRPM8 can be coexpressed with the

noxious heat nociceptor TRPV1. These findings have led

some to speculate that in addition to transmitting sensa-

tions associated with innocuous cooling, TRPM8 may

also have a role in transmitting the painful signals associ-

ated with noxious cold temperature (reviewed in Dhaka

et al., 2006). In addition, it is well accepted that cold appli-

cation is an effective method of pain management (Sauls,

1999). Menthol and, more recently, TRPM8 have been

suggested to play an analgesic role (Galeotti et al., 2002;

Proudfoot et al., 2006). Here, we explore the role of

TRPM8 in cold thermosensation in vivo.
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Figure 1. Generation of TRPM8-Deficient Mice

(A) Targeting strategy for the disruption of the TRPM8 gene. In homologous recombinants 27 residues following the start codon in exon 5 were

excised. Exons are shown as black bars on BAC and genomic maps. uah, upstream arm of homology; dah, downstream arm of homology.

(B) Confirmation of homologous recombination. (Top) Southern blot analysis. Genomic ES cell DNA samples were digested with BamHI and hybrid-

ized with a 30 flanking probe. (Bottom) PCR analysis. Genomic tail DNA samples were amplified using a three-primer system, with a common forward

primer upstream of the deletion site, a primer restricted to the deleted region, and a primer specific to EGFP-F. TRPM8 genotypes are indicated above

each lane.

(C) RT-PCR analysis using total RNA derived from DRG of wild-type and mutant mice. After 28 cycles a faint band was detected in one of two mutant

samples using a primer set spanning exon 6 to exon 9. b-actin was used as a positive control.

(D) In situ hybridization analysis of DRG. TRPM8 message (green) was readily detected in wild-type DRG (left). No signal above background was

detected in TRPM8�/� DRG (middle). Wild-type DRG, no probe control (right).

(E) DRG responses to cold, menthol (250 mM), and capsaicin (1 mM). Responses are listed as a percentage of total DRG neurons. Response counts are

indicated in parentheses. A response is defined as an increase in signal of 30% or more above baseline.
RESULTS AND DISCUSSION

Reduced Number of Cold- and Menthol-Responding

Neurons in TRPM8-Deficient Mice

To examine the role of TRPM8 in vivo, we used a targeting

construct to delete amino acid residues 2–29 and knocked

in a farnesylated enhanced green fluorescent protein

(EGFP-F) followed by an SV40polyA tail in frame with

the start condon of TRPM8 (Figures 1A and 1B). The

SV40polyA tail should prevent transcription of the full

TRPM8 transcript and thus create a TRPM8-deficient

mouse. TRPM8-deficient mice were viable and were gen-

erated in the expected Mendelian ratio. DRGs from wild-

type and mutant animals were morphologically identical

(data not shown). RT-PCR of a region spanning exons

6–9 was used to evaluate the expression of TRPM8 in

the mutant mice. A very faint band was sometimes de-
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tected in mutant mice, indicating that a truncated splice

variant of TRPM8 may be expressed at low levels (Fig-

ure 1C). Sequencing verified that this band represents

TRPM8 cDNA (data not shown). However, we also evalu-

ated TRPM8 expression using in situ hybridization and

were unable to detect any signal above background in

TRPM8 mutant mice, whereas robust wild-type message

levels were observed (Figure 1D).

We also tested if we could distinguish the absence of

TRPM8-like DRG neuron responses by Ca imaging. We

compared cold, menthol, and capsaicin (control) re-

sponses of cultured DRG neurons from wild-type and

TRPM8-deficient mice. Fourteen point nine percent of cul-

tured DRG neurons from wild-type and seven point six

percent from TRPM8-deficient mice responded to a cold

stimulus (10�C) (Figure 1E). These results confirm previous

findings that multiple cold populations are present in DRG
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Figure 2. TRPM8-Deficient Mice Show Reduced Avoidance

of Cool Temperatures on a Temperature Gradient Assay

(A–C) Time spent at different temperature zones for wild-type and

TRPM8-deficient mice (n = 19) during a 90 min assay shown as three
neurons (Babes et al., 2004; Story et al., 2003). Four point

two percent of wild-type DRGs responded to two hundred

fifty micromolars of menthol, and the majority of these

were within the cold population (Figure 1E). Three-fold

fewer menthol-responsive neurons were present in

TRPM8-deficient DRGs, and only half of these responded

to cold. This suggests that TRPM8 is not the only receptor

for menthol in DRGs. Indeed, previous work has shown

that only a subset of menthol-responsive DRG neurons

expresses detectable TRPM8 and that menthol can

induce Ca release in a TRPM8- independent manner

(Mahieu et al., 2006; Nealen et al., 2003). Alternatively,

a truncated TRPM8 with residual activity in DRG neurons

of TRPM8-deficient mice may explain the remaining men-

thol responses. However, the lack of detectable TRPM8

RNA by in situ hybridizations (Figure 1D) and the absence

of behavioral response to icilin (see below and Figures 4C

and 4D) in TRPM8-deficient mice argue against a hypo-

morphic TRPM8 allele. Interestingly, Kwan et al. (2006) re-

port a similar situation for TRPA1 and its agonist mustard

oil (MO): a partial elimination of MO responses via Ca

imaging and a complete lack of in vivo nociceptive

responses in TRPA1-deficient mice.

TRPM8 Is Required for Cool Thermosensation

We assayed the ability of TRPM8-deficient mice to recog-

nize cold temperatures. We first used an apparatus in

which mice are videotaped as they move freely in individ-

ual compartments (100 cm by 7.6 cm each) along a surface

temperature gradient of 15�C to 53.5�C (Figure 2) (Lee

et al., 2005; Moqrich et al., 2005). This gradient was virtu-

ally divided into 20 adjacent zones with increasing surface

temperature ranges, and the amount of time spent in each

zone was calculated. We focused our analysis on three

consecutive 30 min intervals. During the first 30 min,

wild-type, but not TRPM8-deficient, mice showed some

preference to warm temperatures, spending approxi-

mately twice as much time in the zones near 35�C than

in other zones (Figure 2A). During the next hour, clearer

temperature preference patterns emerged (Figures 2B

and 2C). Wild-type mice showed preference for a relatively

narrow range of warm temperatures (30�C–38�C). In con-

trast, TRPM8-deficient mice showed a wider range of pre-

ferred temperatures, spending significantly more time in

cooler zones (23�C–30�C) and less time in warm zones

(30�C–38�C). This is quantitatively represented by the

lower weighted average of occupied temperature for

TRPM8-deficient mice (Figure 2D) (Lee et al., 2005).

Severe cold (16�C–20�C) and hot (41�C–53.5�C) tempera-

tures are largely avoided by both wild-type and TRPM8-

deficient mice. The most straightforward interpretation

of these studies is that TRPM8-deficient mice have a spe-

cific impairment in sensing cold temperatures, and that

consecutive 30 min periods. (D) Weighted average of occupied tem-

perature for wild-type and TRPM8-deficient mice during each 30 min

period. *p < 0.5, **p < 0.01, ***p < 0.001 for individual or combined

zones. All error bars represent SEM.
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Figure 3. TRPM8-Deficient Mice Show

Severe Deficits in Two-Temperature

Choice Assays in Response to Innocuous

Cool Temperatures

(A–F) Time spent on side I of a two-temperature

choice assay (n = 14 wild-type, n = 16 knock-

out; males). *p < 0.5, **p < 0.01, ***p < 0.001.

All error bars represent SEM.
this is manifested as a reduced avoidance of these tem-

peratures relative to wild-type mice, indicating that in

this context TRPM8 provides an unpleasant signal that

leads mice to seek warmer temperatures. The coldest

zone (15�C) is a preferred zone for both genotypes, most

likely due to the strong preference in mice for corners,

as seen when no temperature gradient is formed over

the compartment (data not shown). While the highest tem-

perature of 53.5�C is noxious enough to deter mice from

this corner, 15�C may not be (we did not use temperatures

lower than 15�C, as these temperatures caused conden-

sation and interfered with recordings).

The gradient assay provides a general indication of the

thermosensory capability of mice. In order to more accu-

rately determine temperature preference or detection of

particular temperature ranges, we performed two-tem-

perature choice assays (Figure 3) (Lee et al., 2005; Moq-

rich et al., 2005). Mice are placed on a platform consisting

of two identical juxtaposed surfaces (25 cm 3 10 cm each)

that can each be set to a unique temperature. We monitor

time spent in each compartment over 30 min, and analyze

the data in two consecutive 15 min bins. When both sides

are set at room temperature (23�C), wild-type and

TRPM8-deficient mice showed no significant preference

for either side, as expected (Figure 3A, time spent on
374 Neuron 54, 371–378, May 3, 2007 ª2007 Elsevier Inc.
side I is at or close to 50%). We then challenged the

mice with a variety of 4�C differential choice tests. Wild-

type and TRPM8-deficient mice showed identical prefer-

ence for 36�C over 40�C, suggesting that TRPM8 is not

directly involved in sensing warm temperatures (Fig-

ure 3B). Wild-type mice prefer 30�C over 26�C, 26�C

over 22�C, and 14�C over 10�C (less than 50% time spent

on the cooler side I). TRPM8-deficient mice showed re-

duced avoidance of the cooler side on all three of these

choice assays (Figures 3C–3E). Indeed, the knockouts

do not show any significant preference in the 22�C versus

26�C choice assay (statistically not different from a hypo-

thetical 50% choice, one-sample two-tailed t test, p >

0.05), arguing that TRPM8 is the only receptor required

to discriminate between these two innocuous cold tem-

peratures (Figure 3D). Strikingly, in a 15 min 18�C versus

31�C choice test, TRPM8-deficient mice did not show

any significant zone preference (p > 0.05), whereas wild-

type mice strongly preferred the 31�C zone (Figure 3F).

This indicates that TRPM8 plays a substantial role in

temperature discrimination over a large 13�C temperature

differential encompassing the entire innocuous cool and

perhaps some of the warm temperature ranges.

Warm and noxious cold receptors could play an over-

lapping role with TRPM8 in the 30�C versus 26�C and
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Figure 4. TRPM8-Deficient Mice’s Re-

sponses to Noxious Cold, Formalin, and

Cooling Compounds

(A) Latency of paw withdrawal of wild-type and

TRPM8-deficient mice on a �1�C cold plate.

Hindpaw lifts are measured. No significant

difference in response is observed between

the two genotypes (n = 9 knockout, n = 9

wild-type).

(B) Acetone is applied to the hindpaw of ani-

mals and total time spent licking and lifting

the paw during a 1 min period is counted.

(n = 13 knockout, n = 9 wild-type; males.)

***p < 0.001.

(C) Twenty-four micrograms in ten microliters is

injected into the right hindpaw of wild-type and

TRPM8-deficient mice and the latency of paw

withdrawal was measured before and fifteen,

thirty, and sixty min post injection (n = 10

knockouts, n = 8 wild-type; females.) **p <

0.01, ***p < 0.001.

(D) Fifty milligrams per kilogram of icilin is in-

jected i.p. in wild-type and TRPM8-deficient

mice, and the number of wet-dog-like shakes

within twenty minuntes is counted. (n = 6;

males.) ***p < 0.001.

(E) Time spent licking and lifting hindpaws in-

jected with 0.75% formalin. Wild-type and

TRPM8-deficient mice are placed either on

a 17�C plate or on a room temperature (24�C)

plate (n = 7 knockout, n = 9 wild-type, for

room temperature; n = 8 knockout, n = 9 wild-

type for 17�C; females). *p < 0.5, ***p < 0.001.

All error bars represent SEM.
the 14�C versus 10�C choice tests, respectively (Figures

3C and 3E). Indeed, both the gradient and choice assays

suggest the presence of another sensor for colder temper-

atures. One other candidate for cold thermosensation is

TRPA1 (Story et al., 2003). Further analysis of TRPA1

knockout and TRPM8/TRPA1 double knockout mice in

these choice assays could clarify the role of TRPA1 in ther-

mosensation (Bautista et al., 2006; Kwan et al., 2006).

Similarly, the residual choice of 30�C over 26�C in

TRPM8-deficient mice in the 15 to 30 min portion of the

assay might be due to the involvement of heat-activated

receptors in sensing the warm 30�C plate. The analysis

of mice lacking TRPM8 and TRPV3/4 could address the

overlapping role of heat- and cold-activated ion channels

in innocuous thermosensation (Lee et al., 2005; Moqrich

et al., 2005). Together, the thermotaxis data suggest that

innocuous cold thermosensation is severely disrupted in

TRPM8-deficient mice, but that other temperature sensa-

tion is intact.

A Role for TRPM8 in Cold Nociception?

The thermotaxis assays suggest a crucial role for TRPM8

in avoiding cold temperatures. Avoidance could be due to

innocuous or noxious stimuli. Hot plates are routinely used

as an assay for heat nociception, as plate temperatures

above 45�C cause mice to lick or flick their hindlimbs or

to jump. Similarly, cold plates have also been used to as-
say cold nociception (Bautista et al., 2005; Kwan et al.,

2006). To test if TRPM8 is involved in sensing noxious

cold, we placed wild-type and TRPM8-deficient mice on

a�1�C cold plate. Both genotypes showed identical noci-

ceptive behaviors with similar latencies (Figure 4A). Be-

cause these cold temperatures could potentially cause

tissue damage to the skin, the cold plate behavioral re-

sponses may not be solely due to temperature sensation.

However, no paw edema was observed after testing on

a �1�C cold plate (data not shown). Temperatures above

0�C did not elicit any nociceptive response in wild-type or

TRPM8-deficient mice (data not shown).

We then tested the role of TRPM8 in response to cooling

chemicals. Acetone is thought to cause rapid evaporative

cooling when applied on the skin, though one cannot rule

out non-temperature-mediated chemical effects of ace-

tone. Mice respond to acetone application to the surface

of the paw by shakes, lifts, and licks (Bautista et al.,

2006; Kwan et al., 2006). TRPM8-deficient mice show

a significantly reduced response to acetone application

(Figure 4B). Injection of icilin, a synthetic compound that

activates TRPM8 and, to a much lesser extent, TRPA1,

into the hindpaw of wild-type mice causes the rapid induc-

tion of hindpaw withdrawal when the mice are placed on

a 1�C cold plate (McKemy et al., 2002; Story et al., 2003;

Wei and Seid, 1983). This behavior is completely ablated

in TRPM8-deficient mice, suggesting that TRPM8
Neuron 54, 371–378, May 3, 2007 ª2007 Elsevier Inc. 375
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activation can elicit a nociceptive-like response (Fig-

ure 4C). Taken together, the data indicate that TRPM8 is

involved in sensing unpleasant or noxious cold. The re-

maining response observed in TRPM8-deficient mice to

acetone as well as the lack of behavioral differences to

the �1�C cold plate suggest that other cold receptors

are also involved in noxious cold sensation (Kwan et al.,

2006).

Intraperitoneal (i.p.) injections of icilin in rodents cause

vigorous shaking movements reminiscent of cold-induced

wet-dog shakes. Indeed, it has been suggested that these

wet-dog shakes are due to the cooling effect of icilin (Tse

and Wei, 1986). Strikingly, the robust behavior of icilin-

induced wet-dog shakes was essentially eliminated in

TRPM8-deficient mice (Figure 4D). This data confirms

that it is intense activation of TRPM8 by icilin that causes

shivering-like body shakes. Menthol also activates

TRPM8 and is widely used in over-the-counter products

for its cooling effect. We explored behavioral assays in re-

sponse to menthol. However, up to 15 mM of intradermal

injection or 50 mg/kg of i.p. injection of menthol did not

elicit any consistent responses in wild-type mice. Because

higher concentrations of i.p. injections of menthol induced

ataxia and were avoided, we were likely unable to reach

the significant levels of specific TRPM8 activation ob-

served with icilin.

TRPM8 Can Account for the Analgesic Effect of Cold

in the Formalin Test

Next we tested if cold can be analgesic in response to

a formalin injection in the paw, and if this analgesia was

mediated by TRPM8. After a 2% injection of formalin,

wild-type mice on a room temperature (24�C) plate

showed the characteristic two-phase nociceptive re-

sponse: first 10 min is thought to account for an acute re-

sponse; 10–30 min, an inflammatory response (Figure 4E).

Wild-type mice on a 17�C cold plate displayed a reduced

nociceptive response during both the acute and inflam-

matory phases, asserting that cold is analgesic to the

formalin injection. Formalin responses in TRPM8-deficient

mice at room temperature were similar to that of wild-type

mice (Figure 4E). On the 17�C cold plate, TRPM8-

deficient mice did not show the cold-induced analgesia

observed in wild-type mice during the first 10 min (Fig-

ure 4E). Therefore, in the context of a painful stimulus

such as formalin, TRPM8 activity can reduce the inten-

sity of pain. Both wild-type and TRPM8-deficient mice

showed similar reduced responses during the inflamma-

tory phase (p < 0.01) (Figure 4E).

In sum, our results point to an essential role for TRPM8

in cold sensation. TRPM8-deficient mice have severe def-

icits in avoiding cold temperatures and in paw withdrawal

responses to acetone and icilin, suggesting that TRPM8

activation sends an unpleasant signal to the brain.

Whether these responses can be classified as nociceptive

is difficult to assert. However, in the context of a more

noxious stimulus such as formalin, TRPM8 activity is anal-

gesic, perhaps as a distracting signal.
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EXPERIMENTAL PROCEDURES

TRPM8 Gene Disruption

To target the TRPM8 locus, we employed a modified version of

VELOCIGENE, a BAC-based targeting approach used to generate

homologous recombination in embryonic stem (ES, CJ7/129S1) cells

(Valenzuela et al., 2003). In this approach a modified BAC targeting

construct (pl452) is used to generate homologous recombinants in

BACs containing the gene of interest. The recombined BAC is then lin-

earized with an appropriate restriction enzyme and then used to target

ES cells. Using this approach we deleted amino acid residues 2–29 of

TRPM8. Briefly, EGFP-F-SV40polyA (Clontech) was fused in frame to

a 156 bp arm upstream of the TRPM8 start codon (upstream arm of

homology; uah), and PCR amplified from BAC clone RP23-180P9

containing the TRPM8 gene from the C57Bl/6 strain using the fol-

lowing primers: 50-AAAAACGCGTTATAGATGCAGGGTACAATG-30

and 50-CTCGCCCTTGCTCACCATCTTGCCTGCGAG-30. uah-EGFP-

F-SV40polyA was then cloned into the BAC targeting vector (pl452)

downstream of an EM7-PGK-Neo selection cassette. A 132 bp frag-

ment of TRPM8 located 85 bp downstream of the uah was amplified

using these primers: 50-AAAAGACGTCGGAGCACAGACGTGTCCT

AC-30 and 50-AAAAGTCGACTCGCAAAACAAATACTACCC-30. It was

then cloned immediately downstream of the selection cassette. This

BAC targeting construct was then used to generate homologous re-

combination in RP23-180P9. The recombined BAC was then excised

using NotI, creating a 131 kb arm of homology 50 to the start codon

and a 9.4 kb arm of homology 30 to the selection cassette. The target-

ing construct was then subcloned into the pBACe6 vector. This final

construct was then linearized with NotI and electroporated into ES

cells. G418-resistant clones were screened for homologous recombi-

nation by southern blot, using 30 flanking and neomycin probes. Tar-

geted ES clones were confirmed for normal karyotype and injected

into C57Bl/6 blastocysts. Chimeric males were mated to C57Bl/6

females. F1 heterozygous offspring were intercrossed to generate F2

littermates used in all studies. Germline transmission of the mutated

allele was verified by PCR analysis using the following primers: M8F,

50-GGGATGTCATAGTGCTGAAAGGCAGA-30, M8delR, 50-CCGGGT

GCTGCCCATAGTACCATTTC-30, EGFPFR, 50GGTGCAGATGAACTT

CAGGGTCAGCT-30. Preliminary investigations showed no GFP

fluorescence in DRGs of mice carrying a single allele of the TRPM8

transgene.

All experiments described below were performed blind with respect

to genotype and were conducted with the approval of the The Scripps

Research Insitute Animal Research Committee.

Expression Analysis

TRPM8 in situ hybridization analysis was performed as described

(Peier et al., 2002). For RT-PCR, total RNA was isolated from DRG of

wild-type and TRPM8-deficient mice. Point five micrograms was

used to generate first-strand cDNA (Superscript II, Invitrogen). Four mi-

crograms of cDNA from each sample was used in each PCR amplifica-

tion with the following primers: M8 160F, 50-GTGTCTTCTTTACCAGA

GACTCCAAGGCCA-30, M8 640R, 50-TGC CAA TGG CCA CGA TGT

TCT CTT CTG AGT-30, ActinF, 50-GTTTGAGACCTTCAACACCCC-30,

ActinR 50-GTGGCCATCTCCTGCTCGAAGTC-30.

Calcium Imaging

Dissociation and culturing of mouse DRG neurons was performed as

described with the following modifications (Story et al., 2003). Dis-

sected DRGs were dissociated by incubation for 1 hr at 37�C in a solu-

tion of culture medium (Ham’s F12/DMEM with 10% Horse Serum, 1%

penicillin-streptomycin) containing 0.125% collagenase (Worthington

Biochemicals) followed by a 30 min incubation in 10 ml of culture me-

dia plus 1.25 units papain. Ca imaging was performed essentially as

described (Story et al., 2003). Growth media was supplemented with

100 ng/ml nerve growth factor. Experiments were performed 24 hr
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after plating and the threshold for activation was defined at 30% above

baseline.

Behavior

All behavior analysis was conducted on littermate mice 6–16 weeks

old. Unless otherwise noted, males and females were combined if

they behaved similarly. For other experiments males or females were

used based on availability. Animals were acclimated for at least

20 min to their testing environment prior to all experiments. Students’

t test was used for all statistical calculations.

Thermal Gradient Test

Seven mice were individually tracked for 90 min in seven different

arenas separated by opaque plexiglass walls at the same time. Each

arena measures 100 cm long, 7.6 cm wide, and 10 cm high. A well-

controlled and stable temperature gradient of 15�C�53.5�C is main-

tained using two Peltier heating/cooling devices positioned at each

end of the aluminum floor (constructed by The Genomic Institute of

the Novartis Research Foundation). Each arena is virtually divided

into 20 zones of equal size (5 cm) with a distinct and stable temperature

using EthoVision tracking system (Noldus Information Technology).

One day prior to testing on the thermal gradient, the mice were accli-

mated on the gradient apparatus wherein the whole floor was at room

temperature for 90 min.

Two-Temperature Choice Assay

To construct the two-temperature choice assay testing apparatus, we

joined two cold/hot plate analgesia meters (Columbus Instruments)

with a 1 inch metal plate separated at the midway point with a thin plas-

tic spacer to thermally isolate each plate. An opaque plexiglass rectan-

gular box divided lengthwise was used to create two lanes measuring

9.5 cm in width across the two plates with walls at a height of 20 cm.

The choice test apparatus was illuminated with low, diffuse white light.

Mice were placed in each lane simultaneously and tracked for 30 min

using the EthoVision tracking system. For the 18�C versus 31�C choice

test, mice were tracked for 15 min.

Acetone

Mice were acclimated for 30 min in a Von Frey Apparatus chamber with

a mesh floor (Ugo Basile). Point fifteen milliliters of acetone was

sprayed onto the hindpaw using a one-milliliter syringe, and the dura-

tion of withdrawal, flicking, biting, and licking behavior was measured

for one minutes (Kwan et al., 2006). Acetone was applied indepen-

dently to each hindpaw and the duration of behavior was calculated

from the average of the two responses.

Cold Plate

For the�1�C cold plate assay, ceramic plates were cooled in a�20�C

freezer. Plates were placed on a on a bed of ice and allowed to warm

to�1�C as measured by two independent temperature probes. At this

temperature the plates were able to hold this temperature for approx-

imately 2 min. A clear plexiglass cylinder with a diameter of 7 cm and

height of 12 cm was placed on the plate and the mice were placed on

the plate as well. The onset of brisk hindpaw lifts and/or flicking/licking

of the hindpaw was assessed. Prior to both assays mice acclimated in

an equivalent chamber at room temperature for 20 min.

Icilin Injections

Mice were acclimated for 20 min. For testing at +1�C, mice were

placed on a cold plate (TECA) and the onset of brisk hindpaw lifts

and/or flicking/licking of the hindpaw was recorded. Two independent

temperature probes were used to confirm the surface temperature of

the plate. Two point four milligrams per milliliter icilin was dissolved

in eighty percent DMSO/twenty percent PBS, ten microliters was in-

jected into the right hindpaw, and the onset of response on the cold

plate was measured at fifteen, thirty, and sixty minutes after injection.
i.p. icilin injections were performed essentially as described (Wer-

kheiser et al., 2006). Briefly, 12.5 mg/ml icilin was suspended in 1%

Tween-80/distilled water and then sonicated. Icilin was administered

at a concentration of 50 mg/kg. Wet-dog shakes were counted for

20 min.

Formalin Injections

Formalin injections were performed essentially as described (Karim

et al., 2006). Mice were acclimated for 20 min in a transparent plexi-

glass box at room temperature. Ten microliters of two percent formalin

solution was injected subcutaneously into the right hindpaw. The total

time spent licking, flicking, or lifting the injected paw on a 17�C cold/

hot plate analgesia meter (Columbus Instruments) or at room temper-

ature (approx 24�C) was recorded for 30 min.
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