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Glioblastomas (GBMs) are considered to be one of the deadliest human cancers, characterized by a high
proliferative rate, aggressive invasiveness and insensitivity to radio- and chemotherapy, as well as a short
patient survival period. Moreover, GBMs are among the most vascularized and invasive cancers in humans.
Angiogenesis in GBMs is correlated with the grade of malignancy and is inversely correlated with patient
survival. One of the first steps in tumor invasions is migration. GBM cells have the ability to infiltrate and
disrupt physical barriers such as basement membranes, extracellular matrix and cell junctions. The invasion
process includes the overexpression of several members of a super-family of zinc-based proteinases, the
Metzincin, in particular a sub-group, metalloproteinases. Another interesting aspect is that, inside the GBM
tissue, there are up to 30% of microglia or macrophages. However, little is known about the immune
performance and interactions of themicroglia with GBMs. These singular properties of GBMswill be described
here. A sub-population of cells with stem-like properties may be the source of tumors since, apparently, GBM
stem cells (GSCs) are highly resistant to current cancer treatments. These cancer therapies, while killing the
majority of tumor cells, ultimately fail in GBM treatment because they do not eliminate GSCs, which survive to
regenerate new tumors. Finally, GBM patient prognostic has shown little improvement in decades. In this
context, we will discuss how the membrane-acting toxins called cytolysins can be a potential new tool for
GBM treatment.
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Introduction

Glioblastoma (GBM) is the most common primary malignant
glioma in adults and is characterized by a high mortality rate.
Clinically, gliomas are divided into four grades and the most
aggressive of these, grade IV astrocytoma or GBM, is also the most
common in humans (Kleihues and Cavanee, 2000).The average
survival of GBM patients from the time of diagnosis is less than a
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year. Standard treatment comprises resection of the majority of the
tumormass, followed by chemotherapy and radiotherapy (Kanu et al.,
2009; McCarthy, 2006; Minniti et al., 2009). However, this kind of
tumor is usually highly invasive, making it extremely difficult to treat
by total surgical resection or radiotherapy, which contributes to
frequent recurrences and a very poor prognosis. Few anticancer drugs
can modify the rapid tumor growth, and none is ultimately efficient.
Therefore, most patients develop tumor recurrences or progressions
after this combination of treatments (Kumar et al., 2008; Yang and
Aghi, 2009). Transforming GBM into a treatable entity will require
new paradigms in cancer biology and the understanding of the
mechanisms underlying GBM invasion, treatment resistance and
recurrence. Like most solid tumors, GBMs consist of heterogeneous
cancer cells (Faria et al., 2006), as well as competent to recruit
vasculature, inflammatory cells and interact with stromal elements
(Hanahan and Weinberg, 2000). In this report, we will approach the
interaction of GBMs with their rich tumor microenvironment. In this
context, we will discuss GBM capability to interact with other cell
types, to grow and invade other brain regions rapidly, as well as the
possibility of using new drugs in GBM treatment and the relevance of
glioblastoma stem cells (GSCs) regarding tumor progression.

Glioblastoma vascularization

The growth of solid tumors is limited to the emergence of new
blood vessels (Folkman, 1972; Greene, 1961). In 1986, Dvorak
classified solid tumors as wounds that do not heal, based on their
requirement of the surrounding stroma to grow beyond a minimal
diameter size, and also, with regard to their capability to induce a
massive and continuous angiogenesis.

GBMs are among the most vascularized tumors in humans (Plate
and Risau, 1995; Takano et al., 2010). In this type of tumor, malignity
is often followed by endothelium proliferation (Daumas-Duport et al.,
Fig. 1. Abnormal vascularization in Glioblastomas (GBM). Endothelial cells, that nourish GBM
receptor, VEGFR2, can induce VE-cadherin cytoplasmic domain phosphorylation, which disr
levels of VE-cadherin or even the absence of the cytoplasmic tight junction proteins, claud
involved in mature blood vessel establishment, and, in GBMs, their poor recruitment can e
brain cells, GBM endothelial cells are more proliferative andmigratory, prerequisites for angi
endothelial cells present common features such as: variable diameter, hiperplasia, hyperper
flow and thrombi.
1988) and angiogenesis is correlated with aggressiveness, grade of
malignancy and inversely correlated with patient survival. Indeed, the
high microvessel density can be used as a prognostic postoperative
indicator for patients with GBMs. Analyses from 93 sectioned formalin
fixed paraffin embedded glioma samples specifically immunostained
for von Willebrand factor showed a direct correlation between
patients with shorter survival and higher microvessel counts,
although the typical histopathological heterogeneity in GBMs could
induce incorrect results (Leon et al., 1996). However, these prolifer-
ative GBM vessels exhibit abnormal morphology. Feigin et al. (1958)
observed hyperplastic endothelial cells with neoplastic properties,
forming a sarcomatous tissue intermingledwith the pre-existing GBM
mass. The endothelial cells possessed fairly large, plump, elongated or
ovoid, vesicular, moderately chromatic nuclei, evidencing a high
degree of variability and ultrastructural disorganization of the wall of
small blood vessels (Nystrom, 1959). Morphological and phenotypical
differenceswere observed in these vessels, such as variable diameters,
permeability, tortuosity, heterogeneous distribution and an irregular
basal lamina (Bart et al., 2000; Vajkoczy andMenger, 2004), including
low VE-cadherin expression (Charalambous et al., 2006) and the
absence of the tight junction proteins claudin-1 and -5 (Rascher et al.,
2002). Moreover, endothelial cells from GBM express α-smooth
muscle actin and exhibit a high proliferation and migratory capacity,
and are also more resistant to apoptosis when compared to normal
endothelial cells (Bian et al., 2006; Charalambous et al., 2006). All
these features mentioned above result in sub-functional newly
formed vessels (Bart et al., 2000; Vajkoczy and Menger, 2004) as
summarized in Fig. 1. This abnormal vasculature is associated with
thrombi and, consequently, with adjacent necrotic areas (Pietsch and
Wiestler, 1997).

One possible explanation for this chaotic vascular organization is
the overexpression of the VEGF (vascular endothelial growth factor)
and poor pericyte recruitment (Bergers and Benjamin, 2003). The
s, present morphological andmolecular aberrations. Overexpression of the VEGF and its
upts cell–cell contact, which then contributes to vessel hypermeability. Moreover, low
in-1 and claudin-5, may equally result in the formation of leaky vessels. Pericytes are
xplain the immature blood vessel morphology. When compared to normal endothelial
ogenesis. Finally, the angioarchitecture in GBMs is disorganized and subfunctional. GBM
meability, tortuosity, heterogeneous distribution, irregular basal lamina, low or absent
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VEGF is one of the most studied molecules concerning angiogenesis
and vessel permeability. In GBMs, the VEGF acts mainly as a hypoxia-
inducible angiogenic factor. In situ GBM analyses show that the VEGF
production is specifically induced in a subset of tumoral cells in the
immediate proximity of necrotic/hypoxic areas (Shweiki et al., 1992).
The VEGF recognizes and binds to its receptor, the VEGFR2 (flk-1) on
the endothelial cell surface, leading to subsequent phosphorylation of
the cytoplasmic domain of VE-cadherin. Phosphorylated cadherins
undo their homotypical interactions and then disconnect endothelial
cells from each other. This cell–cell adhesion disruption results in
augmented endothelial cell migration and an increase in vessel
permeability (Esser et al., 1998).

It has been proposed that GBM angiogenesis begins with GBM
vessel cooption. In murine models, the prolonged contact between
tumor and vessels has been shown to lead to the disruption of
normal endothelial layers (Zagzag et al., 2000). This subsequent
hypoxic microenvironment would then be responsible for the
induction of VEGF expression, which in turn would stimulate
angiogenesis.

Since GBMs are mainly vascular tumors, one approach involves
treatments directed to the inhibition of angiogenic mechanisms.
Recently, the vessel normalization treatment, which targets the VEGF
and/or VEGF receptors, has been proposed as an alternative for GBM
treatment. After vessel normalization, the vascular structure and
function is improved, with local hypoxia and vessel permeability
decreasing and benefiting survival (Batchelor et al., 2007; Chae et al.,
2010; Sorensen et al., 2009). However, this anti-angiogenic treatment
seems to have its limitations. Although the reduction of cerebral
edema and intracranial pressure in GBM patients are confirmed, the
tumor apparently continues to grow even after being clinically silent
(Verhoeff et al., 2009).

Our knowledge regarding the molecular events guiding GBM
sustained angiogenesis has greatly increased in the last 40 years.
However, it is clear that basic research is essential for better clinical
results in GBM patients.

Glioblastoma invasion: molecular mechanisms

One of the first steps in tumor invasion is migration (Egeblad and
Werb, 2002). Tumor cells move by extending their leading edges,
following directed locomotion upon cellular contraction and rear
release (Wolf and Friedl, 2006). GBMs exhibit characteristic migrating
cells from the main tumor mass towards the neighboring normal
tissue. The malignant cells have the ability to infiltrate and degrade
physical barriers, such as basement membranes, extracellular matrix
(ECM), and cell junctions.

The invasion process includes the overexpression of several
members of a super family of zinc-based proteinases, the Metzincin,
of which metalloproteinases (MMPs) are a part of. In particular,
gelatinases MMP-2 and MMP-9 are expressed by glioma cells in
human brain-tissue samples. However, it has been reported that it is
the endothelial cells forming the connective framework for solid
tumors that express MMP-2 and MMP-9, which, in turn, could be
confiscated by malignant cell receptors (Forsyth et al., 1999).
Moreover, active MMP-2 modulates glioma cell migration (Deryugina
et al., 1997). In GBMs, another important subfamily within the
Metzincin are the ADAMs (metalloproteinases with a disintegrin
domain) and the related ADAMTSs, which have additional thrombos-
pondin domains, (Held-Feindt et al., 2006). The tissue inhibitors of
metalloproteinases (TIMP-1, -2, -3, and 4) in contrast, modulate the
MMPs proteolytic activity by forming complexes with these endo-
peptidases. The addition of TIMP-2 and specific antibodies against
MMP-9 has reduced the invasion of glioma cells in vitro (Rao et al.,
1994; VanMeter et al., 2001).

Once secreted into the ECM, the MMPs can be activated even by
other active MMPs or serine proteases, by a process called the
“cysteine switch”, that removes or modifies the propeptide domain
and ruptures the coordination bond formed between a catalytic zinc
ion and a cysteine prodomain, thus changing the enzyme conforma-
tion to an active proteolytic form (Sternlicht and Werb, 2001). These
proteases selectively degrade the ECM components and also establish
and maintain the surrounding microenvironment, facilitating tumor-
cell survival (Rao, 2003). They are involved in shedding activities and
the cleavage of ECM molecules and transmembrane proteins. MMP
activity, therefore, comprises the solubilization of cytokine, growth
factor, receptor and adhesion molecule ectodomains, thus placing
them in pivotal positions in relation to the extracellular regulation of
cellular signaling (Murphy, 2008). In fact, as observed by Kessenbrock
et al. (2010), MMPs can modulate processes that control cell growth,
invasion, metastatic niches, inflammation, cell survival, adipogenesis
or angiogenesis and may even act in a nonproteolytic manner.

Efforts to elucidate the molecular mechanisms responsible for the
invasion of glioma cells have confirmed not onlyMMP activity but also
integrin participation (Goldbrunner et al., 1998; Teodorczyk and
Martin-Villalba, 2010). It has been shown that alphav–beta3 integrin
can directly bind to active MMP-2, thereby concentrating this
protease on the tumor cell surface (Brooks et al., 1996), and that
this interaction may be crucial for cell invasive behavior (Rupp et al.,
2008). As suggested by Uhm et al. (1999), the alphaV–beta3 integrin
serves as a physical link between the tumor cells and the ECM for cell
locomotion, also providing the tumor cells with the ability to
concentrate and regulate protease function, thus modulating the
infiltrative capacity of malignant cells.

Another molecule directly involved with integrins and MMPs in
glioma cell invasiveness is the Transforming Growth Factor-β (TGF-β)
(Platten et al., 2000). Before reaching the membrane receptors and
activating the canonical and noncanonical signaling pathways, the
human inactive forms of the TGF-β1, TGF-β2 and TGF-β3 molecules
are released into the ECM. The TGF-β molecule is composed of a
dimeric active part, a dimeric latency-associated protein (LAP), and a
latent-TGF-β-binding protein (LTBP) bound to the ECM (Annes et al.,
2003). Active TGF-β is derived from the inactive proprotein through
the proteolytic conversion by furin or other proteinases, such asMMP-
9 (Yu and Stamenkovic, 2000). Wick et al. (2001) reported the up-
regulation of MMP-2 in the presence of increasing concentrations of
exogenous TGF-β2 in GBMs. It has been shown that MMP-2 andMMP-
9 expression can be modulated by TGF-β1 and TGF-β2, as well as by
other growth factors, in GBM cell lines (Rooprai et al., 2000). In
conclusion, the process of GBM cell invasion and dispersion can be
modulated by the TGF-β ability to regulate integrins and MMP
expression.

Microglia x glioblastoma interaction

In the tumoral microenvironment, the idea that GBMs contain
particularly high levels of infiltrated microglia leads to the hypothesis
that the microglia should present anti-tumoral activity. However,
reports have suggested that the microglia in GBM sites provide an
immunosuppressive environment, contributing to tumor progression
(Daginakatte et al., 2008; Graeber et al., 2002; Kostianovsky et al.,
2008). According to these studies, the accumulation of microglia in
GBMs is the result of the local production of chemo-attractant factors
produced byGBMcells, as themonocyte chemotactic protein-1 -MCP-1
(Platten et al., 2003; Prat et al., 2000). Microglial growth factors
such as colony stimulating factors and the hepatocyte growth factor/
scatter factor (HGF/SF) are also secreted by glioma and stimulate
microglial proliferation at the lesion site (Alterman and Stanley, 1994;
Badie et al., 1999). Furthermore, glioma cells also produce anti-
inflammatory cytokines, such as interleukin-6 (IL-6) and TGF-β2. In
particular, TGF-β2 inhibits the proliferation and secretion of pro-
inflammatory cytokines by microglia (Hao et al., 2002; Parney et al.,
2000). On the other hand, microglia are a source of MMPs. Their release



Fig. 2. Microglial cells migrate, through the corpus callosum, from the contralateral
hemisphere to the ipsilateral hemisphere, where the GBM was xenotransplanted. The
tumor was produced fromGBM cells injected into the caudate putamen ofmouse brains
as previously described (Zhao et al., 2008). In this study, we used the human tumor cell
line GBM95, established in our lab (Faria et al., 2006). After 15 days, the brains were
perfused with fixative 4% paraformaldehyde, cut into slices and the microglial cells
were stained with isolectin B4 (IB4, arrowheads). A: corpus callosum; B: ipsilateral
hemisphere, note strong staining for IB4 in tumor mass. CTX = cortex, CC = corpus
callosum, HIP = hippocampus, G = gliosis, HT = healthy tissue, TV = third ventricle,
and TM = tumor mass. Bar: 100 μm.
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at the lesion site facilitates the proliferation andmigration of tumor cells
and increases the progression and invasion of tumors in the brain
parenchyma (Rao et al., 2003). In this sense, Markovic et al. (2009),
using in vivo and in vitro mouse models, have demonstrated that
Membrane-Type-1 MMP (MT1-MMP) is up-regulated in glioma-
associated microglia, but not in the GBM cells themselves. Glioma-
released factors trigger the expression and activation of MT1-MMP via
microglial toll-like receptors and the p38 mitogen-activated protein
kinase (MAPK) pathway. Consequently, microglial MT1-MMP, in turn,
activates glioma-derived pro-MMP-2 and promotes glioma expansion
(Markovic et al., 2009). Themicroglia also secretes factors that promote
tumor proliferation, including the epidermal growth factor (EGF) and
the VEGF (Lafuente et al., 1999; Tsai et al., 1995). The enzyme
cyclooxygenase (COX)-2 is found abundantly in microglia isolated
fromGBMs, which increases the production of prostaglandin E2 (PGE2)
and contributes to the development of cerebral edema in GBMs (Badie
et al., 2003). In another inflammatory scenario, as infection by parasite
(Rozenfeld et al., 2003) or by bilirubin-induced reactivemicroglia (Silva
et al., 2010), for instance, the microglia response is also COX-2/PGE2
production and this could suggest a general microglia response during
inflammation. Furthermore, a studyusingoncolytic virotherapy showed
that, when macrophages/microglia are depleted in brain slices ex vivo,
the intratumoral oncolytic viral titer increases 10-fold (Fulci et al.,
2007), suggesting that phagocytosis mediated by these infiltrating
macrophages directly affects viral clearance from the tumor. According
to these studies, microglia have a key role both in the progression and
invasion of GBMs.

Microglia may rapidly recruit, invade and infect GBM sites to
participate in the destiny of glioblastomas as well as illustrated in
Fig. 2. This Figure shows microglial cells crossing the corpus callosum
from a contralateral hemisphere to invade a glioblastoma in an
ipsilateral hemisphere. At first, infiltrated microglia acts by defending
the brain parenchyma from the tumor (Galarneau et al., 2007;
Synowitz et al., 2006); however the consequences of microglial
recruitment depend not only on the microglia but also on the
interaction of these cells with themicroenvironment, where other cell
components, including glioma cells, have an important role. Accord-
ing to Ghosh and Chaudhuri (2010), microglial pro-glioma action
might just be a passivemode of assistance used by neoplastic cells into
the central nervous system (CNS). Microglia, the CNS defense cells,
when activated by gliomas, secrete a range of factors, such as MMPs,
to degrade the ECM and arrive faster at the lesion site. However,
glioma cells utilize this strategy in their own favor, to invade and
expand into the brain parenchyma. Thus, microglia intend to fight
against glioma, but lose control of the situation, favoring tumor
progression (Ghosh and Chaudhuri, 2010). A better understanding
regarding the activities of these CNS defense cells is essential in order
to establish effective strategies to combat malignant gliomas (Ghosh
and Chaudhuri, 2010; Kostianovsky et al., 2008; Yang et al., 2010).

Pore-forming proteins: a potential new class of chemotherapeutic drugs
for GBM treatment

Despite the progress in cancer treatment and the consequent
improvement in survival rates, only modest advancements in the
treatment of GBMs have occurred in the last decades. To overcome
this picture, new therapeutic strategies against the highly prolifer-
ative activity of GBM cells have been studied and new molecules
acting against tumoral proliferation have been researched. Despite
the use of flavonoids and other natural toxins, an unexpected
molecule, the Stress-inducible protein 1 (STI1), also referred as hop
(Hsp70/Hsp90 organizing protein) plays a role in the glioblastoma
proliferation. It is a 66 kDa protein first identified in yeast and
originally described as a cochaperone that binds to both Hsp70 and
Hsp90, and regulates their activities (Chen and Smith, 1998; Nicolet
and Craig, 1989; Song and Masison, 2005). We demonstrated that
STI1 is produced and delivered by normal astrocytes (Lima et al.,
2007) and glioblastoma cells. In the culture medium this molecule is
competent to induce the proliferation of human glioblastoma, but not
efficient to proliferate normal astrocytes and human breast cancer
cells and this effect is mediated by the MAPK and PI3K signaling
pathways (Erlich et al., 2007).

We have also tried a flavonoid against glioblastoma proliferation.
Isoquercitrin, a flavonoid isolated from the aerial parts of Hyptis
fasciculata, decreased GBM proliferation up to 90% without inducing
apoptosis of the tumoral cells in culture, modulating the control of the
cell cycle. The β-catenin-mediated signaling may be involved on this
antiproliferative activity of Isoquercitrin (Amado et al., 2009). Similar
results were obtained using curcumin, a curcuminoid derived from
the rhizome of Curcuma longa (Senft et al., 2010). Another class of
natural compounds, the cytolysins, do not need to be internalized to
produce its cytotoxic effects (Parker and Feil, 2005). These proteins,
produced by a large number of organisms, form pores in biological

image of Fig.�2


Table 1
Equinatoxin-II (EqTx-II) increases chemotherapeutic drugs-induced cytotoxicity
against U87 GBM cell line.

Chemotherapeutic drug IC30 (μmol/l) +EqTx-II

IC30 Ratio

– – 8.5 μg/ml –

Cytosine arabinoside 8.4 0.5 μmol/l 17
Doxorubicin 7.7 0.8 μmol/l 9.6
Vincristine 0.3 0.001 μmol/l 300

IC30 values were determined by linear regression from individual experiments using
GraphPad software (GraphPad software Inc., San Diego, California, USA).
Ratio= IC30 from the chemotherapeutic drug/IC30 from the combination of
chemotherapeutic drug+EqTx-II.
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membranes, resulting in cell death (Parker and Feil, 2005). Despite
being cytotoxic against many types of cancer cells per se, cytolysins
could also be conjugated to other drugs to selectively kill cancer cells
or improve the local delivery of chemotherapeutics.

We have studied the anti-proliferative action of two sea anemone
cytolysins, toxin Bc2 (isolated from the Brazilian sea anemone
Bunodosoma caissarum) and equinatoxin-II (EqTx-II a gift from
Anderluh, G.; isolated from Actinia equina) against GBM cell lines in
culture. Toxin Bc2 and EqTx-II decreased cell viability and increased
lactate dehydrogenase (LDH) release in a concentration-dependent
manner (Soletti et al., 2008, 2010a). The pre-treatment with mitogen-
activated/extracellular regulated kinase (MEK1), protein kinase C
(PKC) or Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitors
blocked the toxic effects of toxin Bc2 and EqTx-II (Soletti et al., 2010a).
Swollen, dead or dying cells were negative for TUNEL-staining,
suggesting that sea anemona cytolysins induced necrotic-like cell
death by activating those intracellular signaling pathways (Soletti
et al., 2010a). These results are comparable to those obtained using
gomesin, a pore-forming peptide from hemocytes of the spider
Acanthoscurria gomesiana, that induced cytotoxicity in human
neuroblastoma cells through MAPK/ERK, phosphoinositide 3-kinase
(PI3K) and PKC signaling pathways (Soletti et al., 2010b).

Since cancer cells show changes in membrane lipid composition
(Lavie and Liscovitch, 2000) and pore-forming cytolysins require high
levels of sphingomyelin or cholesterol for membrane binding and
permeabilization (Alegre-Cebollada et al., 2006), toxin Bc2 (1 µg/ml)
and EqTx-II (10 µg/ml) were significantly more toxic to GBM cells,
when compared to astrocytes in culture (Soletti et al., 2008).

Moreover, non-cytotoxic concentrations of EqTx-II (0.3 mg/ml)
were able to enhance the cytotoxicity induced by the classic
anticancer agents cytosine arabinoside, doxorubicin, and vincristine
on glioblastoma cell lines, as summarized in Table 1. Vincristine, a
microtubule disturbing agent, showed a high potential in killing GBM
cells (up to 300-fold) with increased number of apoptotic and
disturbed mitotic-like figures, which is a characteristic of vincristine
Fig. 3. GBM stem cells (GSCs) express βIII-tubulin and SOX2. Immunocytochemistry analysi
stem cell line derived from primary cultures of adult human glioblastoma. Images were ob
10 μm.
treated cultures. Since sea anemone cytolysins form oligomeric
transmembrane pores with 1–2 nm of diameter (Anderluh et al.,
2003), it is possible to increase cell permeability to small molecules up
to vincristine size (Soletti et al., 2008).

Therefore, both in high concentrations and in non-cytotoxic
concentrations, as well as in combination with classic chemothera-
peutic drugs, pore-forming proteins are a potential new drug class for
treating GBMs.

Glioblastomas and their heterogeneity

In the late nineteenth century, scientists suggested that an
exceptional population of cells with stem-like properties might be
the source of tumors (Cohnheim, 1867, 1875; Durante, 1874).
Although frequently present in small numbers, cancer stem cells
(CSC) have the ability to originate tumors when xenotransplanted
into animals, whereas the remaining non-CSC tumor mass most often
cannot (Jordan et al., 2006; Wicha et al., 2006). Moreover, it has been
found that GSCs have a high tumorigenic potential and a low
proliferation rate and present some phenotypical similarities
with normal stem cells, such as the CD133 gene expression and
other genes commonly expressed in neural stem cells (Tirino et al.,
2008). Furthermore, it has been reported that multidrug resistance-
associated proteins, as well as P-glycoprotein, conferring multidrug
resistance proteins (MDR) are currently associated with glioblastoma
malignance. In fact, multidrug resistance in gliomas is the major
challenge in clinical settings. We investigated the expression of P-
glycoprotein (Pgp) and multidrug resistance-related protein 1
(MRP1) in 50 gliomas using immunohistochemistry (de Faria et al.,
2008). Compared to Pgp, MRP1 positivity was observed in highest
percentage of glioblastoma than other lower grade of gliomas. In the
other hand, gliomas grade II exhibited a more important expression of
Pgp if compared to grades III and IV (glioblastoma). These results
suggest that the difference between the histological grade gliomas
regarding MRP1 and Pgp expression must have implications in the
choice of chemotherapeutic protocols (de Faria et al., 2008). However,
looking to cancer stem-like cells obtained from human glioblastoma,
defined as tumorospheres, was reported higher expression of these
proteins when compared with primary adherent cells derived from
the same tumor (Shervington and Lu, 2008).

Particularly, the higher expression of multidrug resistance-
associated proteins 1 and 3 was observed when compared with
primary adherent cells derived from the same tumor (Salmaggi et al.,
2006). Taken these data together it seems possible to hypothesize that
MDR proteins family with complementary studies would improve our
prospects for developing effective glioma treatments.

The malignant glioma resistance to radiation and chemotherapy,
evokes the aggressive study of the molecular mechanisms underlying
cancer cell survival and expansion (Dean et al., 2005; Diehn et al.,
2009; Eyler and Rich, 2008). The importance of targeting CSC derives
s of βIII-tubulin (neuronal marker) and SOX2 (stem cell marker) expression in a cancer
served in an Axioplan 2 epifluorescence microscope (Zeiss, Göttingen, Germany). Bar:

image of Fig.�3
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from several observations showing that CSC, in addition to having
increased tumor-seeding potential, are resistant to a variety of
chemotherapy drugs and radiation treatment. This suggests that, as
chemo- and radiation therapies fail to completely eradicate the
disease, the residual cancer cells will be highly enriched for cells that
persist in a CSC state. Therefore, these considerations indicate that,
to be effective in the long-term, cancer therapies should include
agents that target CSC to prevent the regrowth of neoplastic cell
populations.

The development of cancer therapeutic strategies is restricted by
the fact that most potential treatments perturb organ function by
themselves, exhibiting negative side effects, which currently preclude
its clinical application. So far, no effective pharmacological approach
to selectively eliminate gCSC has been developed for practical use in
clinical settings.

Although the origin of GSCs has not yet been unveiled, these cells
have been described by several groups (Galli et al., 2004; Singh et al.,
2004; Patru et al., 2010). GSCs are functionally defined by their self-
renewal potential that can be confirmed by serial neurosphere (Fig. 3)
formation assay and tumor propagation by intracranial xenotrans-
plantation. Besides, GSCs have been shown to differentiate into
astrocytes, oligodendrocytes and neurons (Galli et al., 2004; Singh et
al., 2004;), as well as modulating immune responses (Wei et al.,
2010), dispersing into new locations (Hoelzinger et al., 2007; Inoue et
al., 2010) and supporting tumor neovasculature through angiogenesis
promotion (Bao et al., 2006; Weller, 2010). We have differentiated
stem cells from a human glioblastoma, isolated by neurosurgery from
patients, into astrocytes, oligodendrocytes and neuron using onco-
spheres and soluble factors added to the cultures. Interestingly, some
of these GSC show double staining, to GFAP and Neurofilament which
could suggest a profil of a described malignant glioneuronal tumor
(MGNT). This tumoral entity might arise from mutated neural stem
cells in combination with aberrant environmental signals (Varlet
et al., 2004; Patru et al., 2010).

All data above show that tumoral stem cells (TSC) are point-
out as a new necessary target to anti-cancer therapy and the
elucidation of TSC properties needs of more research to walk against
the tumor.

Conclusions and the future

GBMs are the most malignant tumors with an astrocytic lineage.
Despite a substantial increase in cancer research, which has led to the
development of treatments for some solid human cancers, no
therapies have been effective in treating these tumors. The potential
of cytolisins as new chemotherapeutic drugs discussed in the present
paper may be a way to fight GBMs. Our intention was to bring into
debate some relevant properties of this kind of tumor, such as the
presence of GSCs and their possible involvement in tumor growth. The
resistance to chemotherapy and the processes of angiogenesis and
invasiveness developed by the tumors may be due to these GSCs, as
well as the GBM ability to induce microglia cooperation in tumor
progression. Deregulation of signal transduction, which accounts for
aberrant responses to distinct soluble factors, is also a common
feature of these tumors, and modulation of signaling pathways has
become an option for targeted therapies (Sebolt-Leopold and Herrera,
2004). There is an urgent need to research treatments that could
control the growth and invasion of GBMs in the cerebral parenchyma.
A better understanding about the properties of GBMs and the
interactions of this type of tumor with its microenvironment is
essential to establish effective strategies in the combat of malignant
gliomas.
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