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A watchman tour in a polygonal domain (for short, polygon) is a closed curve in the
polygon such that every point in the polygon is visible from at least one point of the
tour. We show that the length of a minimum watchman tour in a polygon P with k holes
is O (per(P ) + √

k · diam(P )), where per(P ) and diam(P ) denote the perimeter and the
diameter of P , respectively. Apart from the multiplicative constant, this bound is tight in
the worst case. We then generalize our result to watchman tours in polyhedra with holes
in 3-space. We obtain an upper bound of O (per(P )+√

k · per(P ) · diam(P )+k2/3 ·diam(P )),
which is again tight in the worst case. Our methods are constructive and lead to efficient
algorithms for computing such tours.
We also revisit the NP-hardness proof of the Watchman Tour Problem for polygons with
holes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Visibility and art gallery problems with stationary guards (watchmen) have been studied extensively since the early
1980s [21]. The first question, due to V. Klee was [26]: How many stationary guards are needed to guard the inner walls of
any polygon (“art gallery”) with n vertices? A follow up question was [17,26]: How many stationary guards are needed for
the surveillance of all the inner walls of a given polygonal domain, and where to position them? If however there is only
one guard available, for instance during night time, the guard needs to “tour” the art gallery and make sure that everything
is in place. This leads to the next pair of questions: (i) How short can the watchman tour be? (ii) How to find a shortest
watchman tour for a given polygon? Previous work on mobile guards [9,10,20] focused mostly on the algorithmic aspect,
question (ii) above. In this paper we are concerned with estimating the length of a shortest watchman tour, question (i)
above.

A watchman tour in a polygonal domain (polygon, for short) is a tour (i.e., closed curve) inside the polygon such that
every point in the polygon is visible from some point along the tour. Two points in a polygon are visible to each other if
the line segment between them lies in the polygon. The Watchman Tour Problem asks for a watchman tour of minimum
length [3,19].

✩ An extended abstract of this paper appeared in the Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), Winnipeg,
Manitoba, Canada, August 2010, pp. 113–116.
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The problem has a polynomial time solution for simple polygons with n vertices (and no holes). Dror et al. [13] gave a
O (n4 log n)-time algorithm improving an earlier algorithms by Carlsson et al. [7] and respectively Tan [25]. Other variants of
the problem are studied in [1,2,13,19,20].

In contrast, computing a shortest watchman tour in a polygon with holes is “known” to be NP-hard [8,9]. In Section 4, we
revisit the old NP-hardness proof by Chin and Ntafos [8,9] and make some necessary corrections. Specifically, we show that
the reduction from Euclidean Traveling Salesman Problem (Euclidean TSP) does not stand, and give a correct reduction from
Rectilinear TSP instead. Unfortunately the reference to the incorrect reduction from Euclidean TSP has been perpetuated in
the literature over the years; see e.g. [2, p. 203], [19, p. 684], [26, p. 1006].

Our main result is a tight worst-case upper bound for the minimum length of a watchman tour in a polygon with holes.
Our upper bound depends on three parameters of a polygon P : the number of holes, k = k(P ), the diameter, diam(P ), and
the perimeter, per(P ). The diameter of P is the maximum Euclidean distance between any two points in P . The perimeter
of P is the total length of the boundary of P , including the boundaries of the holes. In Section 2 we prove the following.

Theorem 1. The minimum length of a watchman tour for a polygon P with k holes is O (per(P ) + √
k · diam(P )). This bound cannot

be improved for polygons with per(P ) > c · diam(P ) for any fixed c > 2. A watchman tour of this length can be computed in O (n log n)

time, where n is the total number of vertices of P .

Note that per(P ) > 2 · diam(P ) for every polygon P . If however, per(P ) is very close to 2 · diam(P ), then the polygon is
long and skinny, and the above upper bound is no longer tight up to constant factors.

Theorem 1 generalizes to 3-dimensional polyhedra, possibly with handles and interior holes. (A handle is a hole pen-
etrating the solid, while an interior hole is an internal void of the solid.) A polyhedron in 3-space is a solid bounded by
piecewise linear 2-dimensional manifolds. The 1-skeleton of a polyhedron is the graph consisting of the vertices and edges
of the polyhedron. Define the perimeter per(P ) of a polyhedron P as the total length of the edges of P , including the edges
of the holes. In Section 3 we prove the following.

Theorem 2. The minimum length of a watchman tour for a polyhedron P in 3-space with k holes is at most O (per(P ) +√
k · per(P ) · diam(P ) + k2/3 · diam(P )). This bound cannot be improved for polyhedra with per(P ) > c · diam(P ) for any fixed

c > 3. A watchman tour of this length can be computed by a randomized algorithm in O (k4/5n4/5+δ + n log n log(k + 2)) expected
time for any δ > 0, where n is the total number of vertices, edges, and faces of P .

Recently and independently of us, Czyzowicz et al. [12] designed an exploration algorithm for a robot operating inside a
polygon with holes, which produces a robot path whose length is bounded by the same expression O (per(P )+√

k ·diam(P )),
as in our Theorem 1. The path produced by the exploration algorithm is a watchman path in the polygonal domain, i.e., any
point in the domain is visible from some point on the path. The authors did not offer any 3D generalization. Their planar
result is stronger in the sense that prior knowledge of the three parameters k(P ), diam(P ), and per(P ) is not needed by the
algorithm. On the other hand, our algorithm, which is based on different ideas, generalizes to 3-space.

Our results give a partial answer to a question of Nilsson [20], posed in his PhD thesis: “Is it possible to find approxima-
tive solutions to guarding problems, with good worst case bounds?”

2. The planar case

In this section we prove Theorem 1. By a classical result of Few [14], the (Euclidean) length of a shortest path through
k points in the unit square [0,1]2 is at most

√
2k + 7/4. Few also proved that the length of a minimum spanning tree

of k points in the unit square is at most
√

k + 7/4. Both upper bounds are constructive. The same proofs yield that the
corresponding bounds for a square of side length s (instead of 1) are s

√
2k + 7s/4 and s

√
k + 7s/4, respectively.

Few’s construction of a short spanning path works as follows. Lay out about
√

k equidistant horizontal lines, and then
visit the points layer by layer, with the path alternating directions along the horizontal strips. An upper bound with a
slightly better multiplicative constant for a path has been derived by Karloff [18].

The current best lower bound for the length of such a path is also due to Few: it is ( 4
3 )1/4

√
k − o(

√
k), where (4/3)1/4 =

1.075 . . . . In a related problem, Chung and Graham [11] showed that the length of the shortest Steiner tree through k points
in the unit square is at most 0.995

√
k (they gave details for an improvement to 0.99995

√
k only). In every dimension d � 3,

Few showed that the maximum length of a shortest path through k points in the unit cube is Θ(k1−1/d).

2.1. Algorithm for constructing a watchman tour

Observe that for a simple polygon P without holes, the boundary ∂ P is a watchman tour of length per(P ). Let P be a
polygon with k � 1 holes, H1, . . . , Hk . For convenience, denote by H0 the polygon P without the holes. The boundary of P
consists of k + 1 pairwise disjoint circuits ∂ P = ⋃k

i=0 ∂ Hi . We have per(P ) = ∑k
i=0 |∂ Hi |, where the vertical bars | · | stand

for the Euclidean length.
Our algorithm works as follows. Compute the smallest axis-aligned bounding box B of the polygon P . Then both side

lengths of B are at most diam(P ). We augment the disjoint union of circuits ∂ Hi , i = 0, . . . ,k, with at most 2k line segments
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Fig. 1. Left: a polygon with k = 10 holes (drawn shaded). Right: connecting the circuits ∂Hi , i = 0, . . . ,k, by adding connectors.

and possibly (at most 3k) new vertices to form a connected graph G . The new segments added are called connectors. The
connectors are either vertical or horizontal. We replace each connector by double edges and obtain a connected multi-graph
G ′ where every vertex has even degree. The watchman tour we construct, W , is an arbitrary Eulerian tour in G ′ , which
traverses the entire boundary of P (including the hole boundaries) once, and traverses every connector twice. It is easy to
verify that each point p in the interior of P is seen from some point along the tour W : Take an arbitrary line through p and
consider its first intersection with the boundary ∂ P of P . Since W traverses ∂ P , p is visible from some point on ∂ P ⊂ W .

It remains to construct the connectors and to bound their total length. As in Few’s method, subdivide the bounding
box B into horizontal strips by a raster of at most

√
k equidistant horizontal lines such that consecutive raster lines are at

diam(P )/
√

k distance apart. We construct the connectors in two phases (refer to Fig. 1). Let wi be a lowest point of Hi ,
i = 1, . . . ,k. In the first phase, for each i � 1, drop a vertical ray �i from wi downward until it hits the outer boundary, the
boundary of another hole, or a horizontal raster line. Let vi denote this vertical segment, and let pi be its lower endpoint.
If point pi is in the interior of P , then it lies on one of the raster lines. In the second phase, from every point pi lying in
the interior of P , draw a horizontal ray leftwards until it hits the outer boundary, the boundary of another hole, or another
point p j , j �= i. Let hi denote this horizontal segment. If pi is already on the boundary of another hole or on ∂ H0, then hi
is a segment of zero length (i.e., not needed).

It is clear that by adding at most 2k (horizontal and vertical) connectors hi ∪ vi , we obtain a connected graph G contain-
ing all the circuits ∂ Hi , i = 0, . . . ,k. Indeed, assume without loss of generality that H0, H1, . . . , Hk are listed in increasing
order of the y-coordinates of their lowest points. Then each hole Hi , i � 1, will be connected to some H j , with j < i.

2.2. Upper bound

The total length of the horizontal raster lines (inside B) is at most diam(P ) · √
k, so the total length of the (at most

k) horizontal connectors does not exceed this bound. There are k vertical connectors, each of length at most diam(P )/
√

k.
Hence their total length is bounded by k · diam(P )/

√
k = diam(P ) · √k. Consequently, the total length of W is

|W | = |∂ H0| +
k∑

i=1

(|∂ Hi| + 2|vi| + 2|hi|
) = O

(
per(P ) + √

k · diam(P )
)
. (1)

2.3. Algorithm description and analysis

Let n denote the total number of vertices of P . The bounding box B and the raster lines can be computed in O (n) time.
(We do not compute the full arrangement of the raster lines and P , which may have up to Θ(n

√
k ) vertices.) The set of

connectors, henceforth the graph G can be computed by a standard line-sweep algorithm [4,6] in O (n log n) time. Sweep a
horizontal line � top-down. For every position of �, we maintain in sorted order its points of intersection with the vertices
and edges of P and with the vertical connectors vi . This order changes only if � passes through a vertex of P or a point pi ,
or if � coincides with a raster line. So there are at most n + k + √

k � 3n events overall. When the sweep line � coincides
with one of the raster lines, we can find the closest intersection point in � ∩ ∂ P to the left of each pi ∈ � in O (log n) time.

Observe that the graph G , as well as the multi-graph G ′ have O (n) edges each. Once G ′ is constructed, computing an
Eulerian tour of G ′ takes O (n) time. Hence the total time taken by the algorithm is O (n log n) + O (n) = O (n log n).

2.4. Connectors for arbitrary points in a polygon

Our algorithm for constructing connectors from the points wi , i = 1, . . . ,k, can be applied to an arbitrary set of k points
in P . Each point will be connected to some point on the boundary of P , but the holes of P are not necessarily connected to
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Fig. 2. Lower bound constructions for the cases per(P ) > 2
√

2 · diam(P ) and 2 · diam(P ) < per(P ) � 2
√

2 · diam(P ).

the outer boundary of P . Our bound for the total length of the connectors, however, carries over with the same proof. We
thus obtain Lemma 1 below, which is needed later in Section 3.

Lemma 1. Let P be a polygon (with possible holes), and let S be a set of k points in P . Then there is a forest of total length O (
√

k ·
diam(P )) that contains a path from every point in S to some point on the boundary of P . A forest of this length can be computed in
O ((n + k) log(n + k)) time, where n is the number of vertices of P .

2.5. Lower bound

We now show that our upper bound for the tour length in (1) is tight in the worst case for every k � 0 and per(P ) >

c · diam(P ), where c > 2 is a fixed constant. We may assume without loss of generality that diam(P ) = 1. We construct a
polygon lying in a disk D of unit diameter. If per(P ) > 2

√
2, then let the outer boundary H0 of P be a square inscribed

in D extended with a long and narrow zig-zag “snake” of very small width 0 < ε 
 1 and total edge length per(P ) − 2
√

2
(Fig. 2). The snake lies in D such that the diameter of H0 is 1. If c < per(P ) � 2

√
2, then let H0 be a rhombus of diameter

1 and side length (per(P ) − ε)/4 for a small 0 < ε 
 c − 2. In both cases, we have per(H0) = per(P ) − ε, and H0 contains
a square of side length Ω(1). Arrange k small holes in a grid-like pattern in a maximal square inscribed in H0. Each hole
has O (1) vertices, ε/k perimeter, and a small hidden “cave” that can be seen only by entering it; see e.g. Fig. 4 (right) of
Section 4.

Since the distance between any two holes is Ω(1/
√

k ), it follows that the length of the shortest watchman tour that
visits the caves in all holes is Ω(k/

√
k ) = Ω(

√
k ). If per(P ) > 2

√
2, the length of any walk from the bottom of the zig-zag

snake to one of the furthest caves is Ω(per(P )). We conclude that in both cases the length of the shortest watchman tour
for P is

Ω
(
per(P ) + √

k
) = Ω

(
per(P ) + √

k · diam(P )
)
,

as required. This completes the proof of Theorem 1.

Remark. The bound in Theorem 1 depends on c only if c is close to 2. If c = 2 + λ, and 0 < λ� 1, say, then the two axes of
the rhombus in the lower bound construction are diam(P ) and Θ(

√
λ · diam(P )). By taking all lattice points of a fine grid

instead of a square section of the lattice inside the rhombus, the resulting lower bound is Ω(per(P ) + λ1/4k1/2 · diam(P )),
which becomes Ω(per(P )) when λ tends to zero.

3. Generalization to 3 dimensions

In this section we prove Theorem 2. Observe that every point p in the interior of P sees at least one point on some edge
of P . Indeed, consider a plane h containing p that is not incident to any vertex of P . The intersection P ∩ h is a planar map
made up from disjoint polygonal cycles; from any two adjacent regions of the map, one is exterior and the other is interior
to P . Refer to Fig. 3 for an example. The point p lies in an interior region of the map. In a triangulation of this region, p lies
in a triangle, and hence it sees the three vertices of the triangle. All three vertices are intersection points of h with some
edges of P . It follows that a tour that traverses every edge of P is a watchman tour: i.e., every interior point of P is seen
from some point of the tour.
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Fig. 3. The intersection of the polyhedron P with a plane π forms a planar map. The interior holes of P and the exterior regions enclosed by the intersection
π ∩ ∂ P are shaded.

3.1. Algorithm, its analysis and upper bound

Our algorithm for computing a watchman tour for P is analogous to the planar case. First augment the 1-skeleton of P
to obtain a connected graph G . Then double some of the edges of G to make all vertex degrees even. The watchman tour
we generate is an arbitrary Eulerian tour in this multi-graph.

The input is a polyhedron P with k � 1 holes H1, . . . , Hk . Denote by H0 the outer boundary of P . Let wi be a lowest
point of Hi , i = 1, . . . ,k. Assume without loss of generality that H1, . . . , Hk are listed in increasing order of the z-coordinates
of their lowest points. Compute an axis-aligned bounding box B of the polyhedron P of side length at most diam(P ).
Subdivide B into horizontal strips by a raster of at most k1/3 equidistant horizontal planes such that consecutive raster
planes are at diam(P )/k1/3 distance apart. Subdivide every strip by additional horizontal planes, if necessary, such that there
are at most k2/3 points wi between consecutive horizontal planes. We have used at most 2k1/3 horizontal planes. From each
wi , drop a vertical ray �i downward until it hits the outer boundary, the boundary of another hole, or a horizontal plane.
Let pi be the lower endpoint of this vertical segment.

If point pi is in the interior of P , then it lies on some horizontal plane. In each horizontal plane, we invoke a modified
version of our planar algorithm with k′ = k2/3, for constructing connectors from every point pi to the outer boundary or
the boundary of another hole. While the planar algorithm was designed to work on a polygon with holes, it can be adapted
to work on the planar map in the corresponding horizontal plane. The total length of the vertical and horizontal connectors
in the O (k1/3) planes is bounded by

O
(
k · (diam(P )/k1/3) + k1/3 · (√k2/3 · diam(P )

)) = O
(
k2/3 · diam(P )

)
. (2)

For each hole Hi , i � 1, we have computed a connector from a lowest vertex wi to some point on the boundary of H j ,
for some j < i. However, the endpoint of a connector may lie in the interior of a face of P . For every face f of P , let k f
denote the number of connector endpoints in the interior of f , with

∑
f k f � k. In each face f , with k f � 1, we apply

Lemma 1 to construct a forest that connects these k f points to points on the boundary of f . The length of each forest is
O (

√
k f · diam( f )).

Observe the following inequalities, where f is any face of P :

max
f

diam( f )� diam(P ) and diam( f ) � 1

2
per( f ).

Since every edge is adjacent to exactly two faces, we also have

∑
f

diam( f )�
∑

f

1

2
per( f ) � per(P ).

Applying the Cauchy–Schwarz inequality yields that the total length of these spanning trees is bounded from above as
follows:

O

(∑
f

√
k f · diam( f )

)
= O

(√∑
f

k f

√∑
f

diam2( f )

)

= O

(√
k
√

diam(P )

√∑
f

diam( f )

)
= O

(√
k · diam(P ) · per(P )

)
. (3)

By adding the term per(P ) to the lengths in (2) and (3) the upper bound on the length of the tour in Theorem 2 follows.
Since the total number of vertices, edges and faces of P is n, the faces of P can be triangulated into O (n) trian-

gles in O (n) time [6]. All vertical connectors can be computed by a (randomized) batched ray shooting algorithm due to
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Pellegrini [23, Theorem 4]. Given O (n) interior-disjoint triangles in 3-space, k batched vertical ray shooting queries take
O (k4/5n4/5+δ +n log n log(k + 2)) expected time for any δ > 0, where the constant of proportionality depends on δ. Similarly,
all horizontal connectors can be computed in O (k4/5n4/5+δ + n log n log(k + 2)) expected time. All connector forests for the
O (k) connector endpoints in the faces of P can be computed in

∑
f O ((n f +k f ) log(n f +k f )) = O (n log n) time by Lemma 1.

If P has no holes (k = 0), neither triangulation nor ray shooting is necessary, hence the algorithm is deterministic and runs
in O (n) time.

Alternatively, using the data structure of de Berg [5,24] for online ray shooting in a fixed direction, the O (k) connectors
can be computed deterministically in O (kn2/3+δ + n1+δ) time for any δ > 0, where the constant of proportionality depends
on δ.

3.2. Lower bound

The lower bound constructions are similar to the planar case. We construct a polyhedron P with k holes and per(P ) >

c ·diam(P ) for a fixed c > 3. Note that per(P ) > 3 ·diam(P ) for every polyhedron, since the 1-skeleton of the outer boundary
of P is a 3-connected graph, hence it contains at least three edge-disjoint paths between any two vertices. In particular,
there are at least three edge-disjoint paths between two vertices at diam(P ) distance apart, and at most one of these paths
may have length exactly diam(P ). Hence per(P ) > 3 · diam(P ).

We may assume without loss of generality that diam(P ) = Θ(1). We present three lower bound constructions, one for
each term in the upper bound O (per(P ) + √

k · per(P ) + k2/3).

Case 1. c < per(P ) � k1/3. In this case, max(per(P ),
√

k · per(P ),k2/3) = k2/3. Let H0 be a double pyramid obtained by gluing
together two congruent pyramids, each with 1/2 height, and with a (small) triangular base. Arrange the holes in a grid-like
pattern in a maximal inscribed cube of side length Ω(1) in H0, each with a tiny hidden “cave.” By Few’s result [14], a
watchman tour that visits every cave has length Ω(k2/3).

Case 2. k1/3 < per(P )� k. In this case, max(per(P ),
√

k · per(P ),k2/3) = √
k · per(P ). Let H0 be composed of about Θ(per(P ))

homothetic copies of a flat box of size 1 × 1 × ε, for some small ε > 0, connected by a narrow corridor. Arrange about
Θ(k/per(P )) holes, each with a hidden “cave,” in a planar grid-like pattern in each flat box. As in the planar case, the
length of the watchman tour within each flat box is Ω(

√
k/per(P ) ), and so the total length is Ω(

√
k · per(P ) ).

Case 3. k < per(P ). In this case, max(per(P ),
√

k · per(P ),k2/3) = per(P ). Let H0 be a narrow zig-zag “snake” of diameter 1,
built of a sequence of triangular prisms (and arbitrary holes of very small perimeter). A tour that visits both ends of the
snake must have Ω(per(P )) length.

In all three cases, we have shown that there is a polyhedron P with k holes, per(P ) perimeter and Θ(1) diameter such
that the length of every watchman tour is Ω(max(per(P ),

√
k · per(P ),k2/3)) = Ω(per(P ) + √

k · per(P ) + k2/3), as required.
This completes the proof of Theorem 2.

Remark. Similar to the planar case, the bound in Theorem 2 depends on c only if c is close to 3. If c = 3 +λ, and 0 < λ� 3,
say, by taking all lattice points of a fine grid instead of a cubic section of the lattice inside a double pyramid of diameter
diam(P ), the resulting lower bound is Ω(per(P ) + λ1/3k2/3 · diam(P )), which becomes Ω(per(P )) when λ tends to zero.

4. NP-hardness proof revisited

In this section we revisit the old NP-hardness proof of the Watchman Tour Problem by Chin and Ntafos [8,9]. We show
that the reduction from Euclidean TSP (ETSP) used in [8,9] does not stand, and give a correct reduction from Rectilinear TSP
(RTSP) instead.

Recall that the Euclidean (or L2) distance between two points (x1, y1) and (x2, y2) is√
(x1 − x2)2 + (y1 − y2)2,

while the rectilinear (Manhattan, or L1) distance between these points is |x1 − x2| + |y1 − y2|. It is known [15,22] that
both ETSP and RTSP are NP-hard. The Watchman Tour Problem (WTP) and the two geometric variants of TSP (ETSP and
RTSP) [16,22] can be formulated as decision problems as follows:

WTP: Given a polygon P with k polygonal holes, and a positive integer m, does there exist a watchman tour of total
Euclidean length at most m?

ETSP: Given a set of n points in the plane, and a positive integer m, does there exist a tour of total Euclidean length at
most m that visits all the points?
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Fig. 4. Left: point set S . Middle: polygon P with holes. Right: a small hole for each point in S .

RTSP: Given a set of n points in the plane, and a positive integer m, does there exist a tour of total rectilinear length at
most m that visits all the points?

The NP-hardness proof for WTP in [8] and similarly that in [9] use an incorrect reduction from the Euclidean TSP to
the Watchman Tour Problem via a claim that relates the length of a solution for ETSP to the length of a solution for WTP:
[8, Theorem 1, p. 25] and [9, Theorem 2.1, p. 40]. The claimed relation of the form OPT(WTP) = OPT(ETSP) + 
 is incorrect,
as no such equality holds in their construction for a fixed 
. Corollary 1 in [8] and Corollary 2.2 in [9] add even more
to the confusion by mentioning RTSP in regard to a side issue of rectilinear polygons. Here we give a correct NP-hardness
reduction from the Rectilinear TSP to the Watchman Tour Problem.

Given a set S of n lattice points, assume without loss of generality that the smallest axis-aligned rectangle containing S
is R = [0,a] × [0,b], for some positive integers b � a; see Fig. 4. Construct a polygon P with ab + n holes as follows. The
outer boundary of P is obtained a slightly enlarging R around its boundary. We have ab large holes formed by the cells of
the grid, but only slightly smaller so that they are disjoint. We also have n small holes corresponding to the points in S ,
each containing a “cave” that can only be seen by entering it. The midpoint of the top wall of the cave is the corresponding
point in S; we call it the reference point of the hole.

To be precise, the width of the narrow corridors in P left by the big holes is set to w = 1/(6an). The small holes are
small enough so that they fit in the narrow corridors left by the big grid cell holes: the perimeter of each small hole is
set to p = w

2 = 1/(12an). The outer boundary of P is H0 = [−w/2,a + w/2] × [− w
2 ,b + w

2 ], while the ab large holes are
[i + w

2 , i + 1 − w
2 ] × [ j + w

2 , j + 1 − w
2 ] for 0 � i � a − 1 and 0 � j � b − 1. Between any two adjacent large holes, there is a

narrow rectangular corridor of side lengths 1 − w and w . There are also narrow corridors of the same dimensions between
the outer boundary and the adjacent large holes.

The reduction, hence the NP-hardness, follows via the following claim.

Claim. For a positive integer m, there exists a tour of S of rectilinear length m if and only if there exists a watchman tour
of P of Euclidean length m + δ, with −1/3 � δ � 1/3.

To verify the claim observe first that the rectilinear distance between any two (lattice) points in S is an integer. Hence
the rectilinear length of the shortest tour of the points in S is an integer, say m. Observe also that any tour of the points can
be converted into a tour of the polygon, and vice versa, by visiting the points in S (or the caves in the small holes) in the
same order. Moreover, as we show below, the lengths of the two tours are very close to each other. Indeed, on one hand,
by making only small detours from any given TSP tour for S yields a WTP tour of P . On the other hand, a WTP tour for P
can be converted into a TSP tour for S whose length is very close to the original one. Note the following two properties of
sub-paths connecting points in two consecutive caves in a WTP tour:

1. If the L1-distance between two points in S is an integer d, 1 � d � a+b, then any path in P between two interior points
in two corresponding caves has length at least d(1 − w), since any path has to traverse at least d narrow corridors.

2. If the L1-distance between two points in S is an integer d, then there is a path in P of length at most d + (d + 1)p
between any two interior points in the corresponding caves, since it takes a detour no longer than 2p = w to go into
the cave and around a small hole along the way. Note however that when converting an optimal RTSP tour for S into a
WTP tour for P , at most n such small detours are needed, and each adds at most w to the total length.

It follows that the rectilinear length of the shortest tour of the n points in S can differ from the (Euclidean) length of the
shortest watchman tour of P by at most n(a + b)w = n(a + b)/(6an) � 1/3, as required.

Observe that the integrality requirement for m is crucial. Moreover, no such claim holds if the length of the tour of the
points in S is measured in the L2 metric, or equivalently, Euclidean TSP is used in the reduction.
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