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Retraction Map Categories and Their Applications 
to the Construction of Lambda Calculus Models 
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Science Institute, IBM Japan, Ltd. 
5-19, Sanban-cho, Chiyoda-ku, Tokyo 102, Japan 

This paper deals with categorical models of the 2-calculus. We generalize the 
inverse limit method Scott used for his construction of Do., and introduce order- 
enriched ccc's, retraction map categories and e-categories. An order-enriched ccc is 
a cartesian closed category C equipped with a partial order relation ~< on the set of 
the arrows. A retraction map category of C is R = (R, ~<, i, j), where 4 is a partial 
order relation on the set IC[ of all the objects of C, R is the category of the poset 
([C], ~<), and i a n d j  are functors from R to C and from R °v to C that satisfy the 
conditions: (1)j[a, b] oi[a, b] ~>ida and (2) i[a, b] oj[a, b] ~<idb for every arrow 
[a ,b]:a~b in R (i.e., a<~b). The e-category E=E(C,R)  of C w.r.t. R is the 
category whose objects are ideals of (IC], ~<) and whose arrows are ideals of 
(C, E_), where ~< is the partial order relation in R and ~ is the partial order 
relation defined by f E g iff dom(f)~<dom(g), cod(f)~<cod(g) in R and 
f<~j[a, b]ogoi(a, b] in C. We show that every e-category E=E(C,  R) is also an 
order-enriched ccc. Moreover when E and R satisfy a particular condition, E(C, R) 
has a reflexive object. For example, if there is an ideal U of ([C], ~<) satisfying 
the following conditions, then U is isomorphic to U U in E and a 2-algebra is con- 
structed from E and U: (1) for every pair of a, bE U, U contains b a, and (2) for 
every cc U, there are a, bc U such that cob a. We reconstruct P~ and D~ using 
e-categories. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

This  pape r  deals  wi th  ca tegor ica l  mode l s  of  the 2-calculus .  W e  will 

genera l ize  the  c o n s t r u c t i o n  of D ~  by  Scot t  (1972) a n d  p resen t  a qui te  

genera l  m e t h o d  of  c o n s t r u c t i n g  the models .  As examples  we will 

r econs t ruc t  D.o a n d  P ~  us ing  the me t h o d .  
I t  is k n o w n  tha t  the 2-ca lcu lus  is closely re la ted  to ca r tes ian  closed 

categor ies  ( a b b r e v i a t e d  to ccc). See K o y m a n s  (1982, 1984), Ba ren -  
dregt  (1984), L a m b e k  a n d  Scot t  (1982), a n d  L a m b e k  (1974, 1980). The  

def in i t ion  of  ccc will a p p e a r  in  Def in i t i on  2.1. G i v e n  a m o d e l  9J~ of  the 2- 
calculus ,  a ccc P(gJ~) c an  be c o n s t ru c t ed  f rom 9)l, a n d  P ( ~ )  has  a par -  

t i cu la r  ob jec t  u, cal led reflexive object ,  a n d  a pa i r  of  a r rows  ~b: u ~ u" a n d  
7t: u " - ~  u such tha t  ~ o  ~ = i d , u .  Conve r se ly  if a ccc P has  a reflexive 

objec t  u a n d  a pa i r  of  a r rows  q5 a n d  ~u tha t  satisfy the  a b o v e  cond i t i ons ,  
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then a model ~I)I(P) of the 2-calculus is naturally defined. Furthermore, for 
every model 9l of the 2-calculus, ~ (P(91) )  is essentially the same as 91. 
More rigorously ~(P(91) )  and 9l are isomorphic. Therefore a model of the 
~.-calculus is completely characterized by a ccc with a reflexive object. We 
refer the reader to Koymans (1982). 

In order to construct a model of the 2-calculus under the above dis- 
cussion, we must find a ccc with a reflexive object. Indeed Scott (1972) 
chose the category CL whose objects are all continuous lattices and whose 
arrows are all continuous functions, and he was successful in constructing a 
reflexive object D~o by means of the so called inverse limit. As for the graph 
model Po~ (see Scott (1976)), P~o is also another reflexive object in CL. 

We briefly repeat the construction of Do~. First we arbitrarily choose a 
continuous lattice Do and define the sequence {D,} of continuous lattices 
from D O as follows: Dn+ 1 -= [D,--*D,],  where [Dn--+ D,] means the con- 
tinuous lattice that consists of all continuous functions from D,  to D,. 
Next we choose a pair of continuous functions i0 : Do --+ DI and J0: D 1 ~ Do 
that satisfy the conditions: (1)(jooio)(X)=X for every x e D o ,  and (2) 
(io °Jo)(f)<~f for every f e D 1. And we define the sequence {(i,, Jn)} from 

(i0, J0): 

in: Dn---~ Dn+ 1 , 

in + l ( f )  = in o f  oj, 

j n + l ( g ) = j n ° g ° i ,  

j . :  Dn+ 1 --* D.,  

for f ~ D n + l ,  

for  g e D . +  2. 

Then Doo is defined as the inverse limit of the system {j,}. Also Doo is the 
inductive limit of { i, }. 

In this paper, we intend to extend the above mechanism of generating 
Doo. We will introduce an order-enriched ccc corresponding to CL. An 
order enriched-ccc is a ccc equipped with a partial order relation among 
the arrows. The category CL is an instance of order-enriched ccc's. On the 
other hand, for the system {(i , , jn)} we will introduce a retraction map 
category of an order-enriched ccc C. A retraction map category is a 
category R equipped with a partial order relation ~< among the objects. 
The objects of R are just the same as of C. For  each pair of objects a and b, 
when a ~< b, R has a unique arrow (i, j): a ~ b, where i: a - ,  b and j: b ~ a 
are arrows of C that satisfy the conditions: (1)jo i =  ida (In Sect. 2, we will 
take the weaker condition joi>~ida. ) and (2) ioj~<idb. Informally 
speaking, each arrow (i, j): a--* b in R means an embedding of a into b. 
The name "retraction" comes from "retract" in Scott (1972). Similar con- 
cepts to an order-enriched category and a retraction map category appear 
in Wand (1979). But cartesian closedness is not discussed there. 

Next we will realize a work corresponding to the construction of D~o in 
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the above situation. In the case of D o ,  the limit of {Dn} is examined. In 
our method, {Dn} is generalized under R to a directed set of objects of C 
w.r.t, the partial order relation ~ of R. A directed set means a set A that 
satisfies the condition: for every pair of objects a and b in A, there exists c 
in A such that a ~< c and b ~< c in R. We will examine the limit of such A. As 
for D~,  the inverse limit of {j,} exists in CL. In an arbitrary ccc, however, 
this is not generally possible. We intend to expand the original order- 
enriched ccc so that the inverse limit exists. For an order-enriched ccc C 
and a retraction map category R of C, we will define the category 
E = E ( C ,  R) called the e-category of C w.r . t .R.  Roughly speaking, the 
objects of E are sets of objects of C, and the arrows of E are also sets of 
arrows of C. The e-category E means a completion of C and E is a desired 
expansion of C. As a main theorem we will show that the e-category also 
becomes an order-enriched ccc. 

When R has a particular property, the e-category E has a reflexive 
object. For example, we consider the case where R satisfies the condition: 
there exists a directed set U of objects of C w.r.t. ~< of R that is closed 
under ( - )(- ). Namely ( 1 ) for every pair of a, b e U there is c e U such that 
a<~c and b<~c in R; and (2) if a e  U and be  U, then bae U. Then, U 
becomes a reflexive object of E. This is a typical example. We will show 
that D~ and P~ can be reconstructed by means of the e-category method. 

Furthermore we will construct a 2-algebra but not a 2-model (see Baren- 
dregt, 1984) using the e-category method. It is known that the closed-term 
model is such a 2-algebra. It follows from the result by Plotkin (1976): the 
2-calculus is co-incomplete. The closed term model is a syntactical model, 
while our 2-algebra is a mathematical model. Our 2-algebra is constructed 
independently of Plotkin's result. 

In Section 2, we give basic definitions of order-enriched ccc's, retraction 
map categories and e-categories. In Section 3, we prove that every e- 
category is an order-enriched ccc. In Sections 4 and 5, we examine proper- 
ties of e-categories. In Section 6, we show that relationship between e- 
categories and models of the 2-calculus. In Section 7, we examine proper- 
ties of retraction map categories. In Sections 8 and 9, we deal with D~ and 
Po~ as examples of e-categories. 

2. ORDER-ENRICHED CCC'S, RETRACTION MAP 
CATEGORIES AND e-CATEGORIES 

In this section we will give basic definitions of order-enriched ccc's, 
retraction map categories, and e-categories, which are foundations through 
the whole discussions. 
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2.1. DEFINITION. (i) Let C be a category. In general, the set of all the 
objects of C is denoted by [C[, and for each pair of objects a, b ~ [CI the set 
of all the arrows from a to b in C is denoted by C(a, b). W h e n f i s  an arrow 
from a to b in C, we define d o r a ( f ) =  a and c o d ( f ) =  b. For each object a 
the identity arrow on a is denoted by ida. Sometimes C means the set of all 
arrows in C. 

(ii) A cartesian closed category (abbreviated to ccc) is a category 
equipped with an additional structure (1,!(_), ( - ) x ( - ) ,  7r~ ).(-), 
~(2 )'(-), ( ( - ) ,  ( - ) > ,  ( - ) ( - ) ,  ev( - ) ' ( ) ,  A ( - ) )  as follows: 

(a) 1~ JCI (called the terminal). For each a e  ICI, ! ~ C ( a ,  1) and 
!~ o f =  !b for any f E  C(b, a). 

(b) For each pair of a, b E ICI, a x b ~ ICI (called the product of a 
and b), re7 'b ~ C(a × b, a) and 7z~ ,b ~ C(a × b, b). For each pair of 
fEC(c ,a)  and geC(c,b),  ( f , g > e C ( c , a × b )  is defined. 
Moreover the following conditions must be satisfied: 

2rT.bo ( f ,  g = f  and ~.bo ( f ,  g> = g 

for any pair o f f ~ C ( c ,  a) and g~C(c, b), and 

(~7'boh, zE~'boh>=h for any h~C(c, axb).  

For each pair o f f e  C(a, a') and g eC(b, b'), we abbreviate 
( f  o zc7 ,b, g o zc~ 'b > e C(a × b, a' x b') to f × g. 

(c) For each pair of a, bz lCI ,  ba~lCI (called the exponential 
from a to b) and ev ~'~ ¢ C(b ~' × a, b). For each pair of c, a z ICI 
and each f ¢  C(c × a, b), Ac,a(f) z C(c, b a) is defined. Whenever 
no confusion occurs, we omit the subscript c and a of Ac,~(f). 
Moreover the following conditions must be satisfies: 

ev~'bo(A(f)xid~)=f f o rany f zC(c×a ,b )  

A(ev °'b o (h × idc)) = h for any h z C(c, b~). 

(iii) An order-enriched ccc is a ccc C equipped with an additional 
structure ~<, where ~< is a partial order on C(a,b)  for each pair of 
a, b ~ [C[ such that the following conditions are satisfied: 

(1) for f, f '~C(a,b) ,  and g,g'~C(b,c),  if f<<.f' and g<<.g' then 
gof<~g'of';  

(2) for f, f 'EC(c,a) ,  and g,g'~C(c,b),  if f < . f '  and g<~g' then 
( f ,  g> ~< <f ' ,  g'>; and 

(3) for f, f '  ~C(cxa,  b), if f <~f' then A(f)<~A(U'). 
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Note that  the following equations are satisfied in ccc's: 

( f ,  g > o h =  ( f o h ,  goh> and A ( h o ( g x i d ) ) = A ( h ) o g .  

2.2. DEFINITION (Retraction pair). Let C be an order-enriched ccc. For  
each pair of arrows i: a -~ b and j: b ~ a in C, when j o i i> ida and io j ~< idb, 
(i, j)  is called a retraction pair from a to b in C. 

For  each retraction pair (i, j)  from a to b in C, 

(1) (i, j )  is upper-injective i ff jo i = ida, and 

(2) (i, j )  is lower-injective iff i o j =  idb. 

When (i, j )  is a retraction pair from a to b, we write (i, j): a ~ b. 

2.3. LEMMA. Let C be an order-enriched ccc. I f  (ia, ja): a ~ a '  and 
(ib, Jb); b ~ b' are retraction pairs in C, then 

(1) (ia×ib, j a x j b ) : a x b ~ a ' x b '  and 

(2) (A(i b o ev a'b o (idbo x Ja)), A(jb ° evd'b' ° (idb'~' × ia))): b a ~ b 'a' 

are also retraction pairs in C. I f  (i, j): a ~ b and (i', j ' ) :  b ~ c are retraction 
pairs in C, then 

(3) (i'oi, j o j ' ) : a ~ c  

is also a retraction pair in C. We define (ia, Jc~) × (ib, Jb), (ib, jb) (i"'j°) and 
(i', j ' )o (i, j )  as the above retraction pairs (1), (2), and (3), respectively. 

Furthermore i f  (ia, Ja) and (ib, Jb) are both upper- (lower-) injective, then 
(ia, Ja) x (ib, fb) and (ib, jb) (/°J°) are also upper- (lower-) injective. Similarly 
if  (i, j )  and (i', j ' )  are upper- (lower-) injective, then (i', j ' )  o (i, j )  is so. 

Proof By simple calculation. I 

The following figures illustrate 
(i, j )  = (ib, jb) (ia'ja) in Lemma 2.3: 

the intuitive meanings of 

a' ib° f °Ja  ~ b' a' f '  ~ b' 

a ~b a ~ b 
f j b o f  'o ia 

We will use the notat ions (ia, Ja) x (ib, Jb), (ib, Jb) (ia'ja), and (i', j ' )  o (i, j)  in 
the following discussions, too. 
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2.4. DEFINITION (Retraction map category). Let C be an order- 
enriched ccc. A retraction map category of C is R = (R, 4 ,  i, j )  defined as 
follows: 

(a) ~< is a partial order relation on IC[ that satisfies the conditions: if 
a<.a' and b<~b', then axb<~a'xb '  and ba<~b 'a'. 

(b) R is the category defined by the partially ordered set (ICI, ~<). 
Namely, the objects of R are just the same as of C, and the arrows in R are 
all [a, b]: a ~ b  such that a<~b. 

(c) i is a functor from R to C and j is a functor from R °p to C such 
that i(a)= j(a)= a for a 6 I r l  = I r °P l ,  and (i[a, b], j[a, b])  is a retraction 
pair from a to b in C for every [a, b] in R. Here R °p means the opposite 
category of R. 

(d) Moreover, when a ~< a' and b ~< b' in R, the following equations 
must be satisfied: 

(1) (i[axb, a ' xb ' ] , j [axb ,  a 'xb '])  
= (i[a, a'], j[a, a']) x (i[b, b'], j[b, b']) and 

(2) (i[ba, b'a'],j[ba, b'"']) 
= (i[b, b'], j[b, b ' ] )  (iea'a'l'jEa'a'~). 

When no confusion occurs, we sometimes regard retraction pair 
(i[a,b],j[a,b]) as the unique arrow from a to b in R for each pair of 
a, b e [R] such that a ~< b, 

If ( i[a,b], j[a,b]) is  upper- (lower-) injective for all [a,b] in R, then 
we say that R is upper- (lower-) injective. 

The following are the necessary and sufficient conditions for the above i 
and j to be functors: 

(3) ifa<~b and b<,c in R, then 
(i[a, c], j[a, c ] ) =  (i(b, c] oi[a, b ], j[a, b ] o jib, c])  in C; 

(4) for all a e  IR[, 
(i[a, a],j[a, a ] ) =  (id a, ida). 

Note that, by Lemma 2.3, conditions (d)(1) and (d)(2) in Definition 2.4 
and the above (3) are well defined. And note that we do not claim the con- 
ditions: a ~< a' and b' ~< b' iff a × b ~< a' x b' iff b a ~< b 'a'. In Definition 7.3 we 
will examine retraction map categories that satisfy such stronger con- 
ditions. 

In general, there are many different retraction map categories for each 
order-enriched ccc C. And there always exists at least one retraction map 
category of C. The following retraction may category is an example of such 
ones. 
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2.5. DEFINITION (Trivial retraction map category). Let C be an order- 
enriched ccc. The trivial retraction map category IR(C) of C is defined as 
follows: for each pair of objects a and b of C, a ~< b iff a = b. Therefore 
IR(C) consists of only the identity arrows. 

2.6. LEMMA. Let C and R be an order-enriched ccc and a retraction map 
category of C, respectively. Let a, a', b, b', c, and c' be objects of  C. Suppose 
that a <~ a', b <~ b', and c <~ c' in R. 

(i) For all pairs of  arrows f ' :  c' --+ a' and g': c' ~ b' in C, 

j [a  x b, a' x b'] o ( f ' ,  g ' )  o i[c, c'] 

= ( j [a ,  a'] o f 'o i[c ,  c '] , j[b,  b'] og'oi[c, c '] ) .  

(ii) For all arrows f ' :  c' xa'--+b' in C, 

j i b  a, b'a'] o A ( f ' )  o i[c, c'] 

= A(j[b,  b'] of 'o i[c x a, c' x a']). 

Proof By simple calculation. I 

2.7. DEFINITION. Let C and R be an order-enriched ccc and a retraction 
map category of C, respectively. We define the partial order relation 
among the arrows of C as follows: for each pair of arrows f :  a --, b and 
g:a'--,b'  in C, 

f~_  g iff a,,~a,-< ' b<~b' and f <~j[b,b']ogoi[a,a'] .  

Note that f <~ j[b, b'] o g o i[a, a'] iff i[b, b'] o f oj[a, a'] <~ g. The above 
~ depends on both C and R. It can be easily proved that ~ is really a 
partial order relation. 

The following are basic properties of E.  

2.8. LEMMA. Let C and R be an order-enriched ccc and a retraction map 
category of C, respectively. For objects a, a', b, and b' of  C, i f  a ~ a' and 
b <~ b' in R, then 

(i) ~.b ~__ ~ ' ,b '  ~ , b  ~__ ~a',b'2 , and 

(ii) e v  a'b ~ e v  a''b'. 

Proof Clear. | 

2.9. LEMMA. Let C and R be an order-enriched ccc and a retraction map 
category of C, respectively. Let a, b, c, a', b', c'~ [C[. Suppose that a <~a', 
b<~b', and c<~c' in R, 
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(i) For f eC(a ,b ) ,  geC(b,e) ,  f ' eC(a ' ,b ' ) ,  and g'eC(b',c'),  if 
f E f '  and g E g', then g o f ~  g' o f '  

(ii) For f eC(c ,a ) ,  geC(c,b),  f '~C(c ' ,a ' ) ,  and g'eC(c',b'),  if 
f ~_ f '  and g E g ', then < f , g > ~_ < f ' ,  g ' >. 

(iii) For f e C ( e × a , b )  and f '~C(c ' xa ' , b ' ) ,  if f E _ f ' ,  then 
A( f )  E A(f ') .  

Proof. (i) I f f  ~_f '  and g E g', then 

g o f  <~j[c, c']o g'oi[b, b'] oj[b, b'] of'oi[a, a'] 

<,j[c, c ']og'of 'oi[a,a'].  

Hence g o f ~ g' o f ' .  

(ii) I f f ~ f '  and g ~ g', then 

<f, g> <, (j[a, a'] o f 'oi[c,  c'], j[b, b'] o g'oi[c, c'] > 

=j[a×b,  a ' x  b'] o <f', g'>oi[c, c'] (by Lemma 2.6(i)). 

Hence <f, g> ~_ <f ' ,  g'>. 

(iii) I f f  ~ f ' ,  then 

A ( f ) =  A(j[b, b'] o f 'o i [c  × a, c' x a']) 

= j ib  ~, b 'd] oA(f')o i[c, c'] (by Lemma 2.6(ii)). 

Hence A( f )  ~ A(f ') .  | 

2.10. DEFINITION. Let (X, ~<) be a partially ordered set: 

(i) For each subset Y of X we define 

YJ,=- { xEXl (~ye  Y)(x<~ y)}. 

(ii) A nonempty subset Y c  X is directed iff for every pair of x, y e Y 
there exists z e Y such that x ~< z and y ~< z. 

(iii) A nonempty subset Y c X i s  an ideal of (X, ~<) iff Y= Y+ and Y 
is directed. 

2.11. DEFINITION (e-category). Let C and R be an order-enriched ccc 
and a retraction map category of C, respectively. The e-category 
E = E(C, R) of C with respect to R is the category defined as follows: 
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(a) The objects of E are all ideals A of ([CI, ~ ), where ~< is the par- 
tial order relation in R. Namely, 

(1) if a e A  and beA,  then there exists c e A  such that a e c  and 
b~<c in R; and 

(2) i f a e A ,  b~lCI and b<~ain R, then beA. 

(b) The arrows in E are all ideals F o f  (C, E_ ), where E_ is the partial 
order relation defined in Definition 2.7. Namely, 

(1) i f f e F a n d  geF, then there is h e F s u c h  t h a t f E_ h  and gEh;  
and 

(2) i f f e F a n d  gE_f then  g e F .  

The domain and the codomain of F are defined by 

dora(F) = {dom(f) l f EF} 

cod(F) = {cod ( f ) [ f eF} .  

(Note that dom(F) and cod(F) are ideals of (ICI, ~ )  from the definition of 
~_. 

(c) For each pair of arrows F:A ~ B and g: B ~  C in E, the com- 
posite arrow G o F: A --+ C is defined by 

GoF= { g o f I f E F ,  geG, and cod(f )=dom(g)} ,~ ,  

where + is the operation defined in Definition 2.7 with respect to E_. 

(d) For each object A of E, the identity arrow IDA on A is defined 
by IDA = {id~ l a e A }J,. (In e-categories we use the notation IDA instead of 
idA.) 

3. CARTESIAN CLOSEDNESS OF e-CATEGORIES 

Let C be an order-enriched ccc and let R be a retraction map category of 
C. We will prove that the e-category E = E(C, R) is an order-enriched ccc if 
we define a suitable structure (1,!( I, ( - ) × ( - ) ,  ~ ) ' () ,  ~- ) ' (  ) 
( ( - ) ,  ( - ) > ,  ( - ) ( - ) ,  ev (-)'(-), A ( - ) )  for ccc, and a partial order relation 
~< i n k  

In this section C, R, and E always mean an order-enriched ccc, a retrac- 
tion map category of C and the e-category E(C, R), respectively. 

3.1. LEMMA. Let A, B e  IEI and let F be a subset of { f I f  is an arrow of 
C, dom(f )  e A, and cod(f )  e B}. I f  A, B, and F satisfy the following con- 
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ditions (called the arrow conditions), then F$ (w.r.t. ~_) is an arrow from A 
to B in E: 

(1) for every pair of  a e A  and b 6 B ,  there is f ~ F such that 
a ~< dora(f )  and b <~ cod(f) ;  and 

(2) for every pair o f f ,  g e F ,  there is h e F  such that f ~ h and g E h .  

Proof From the arrow condition (1) and the definition of F+, 
d o m ( F ) = A  and cod(F)=B.  The condition (2) of (b) in Definition 2.11 
follows from the definition of F+. If f ' e F +  and g ' eF$ ,  then from the 
definition of F$ there are f e F and g e F such that f '  E f and g' E_ g. By the 
arrow condition (2) there is h E F such t h a t f  E h and g E_ h. Thus the con- 
dition (1) of (b) in Definition 2.11 is satisfied. | 

3.2. LEMMA. Let F: A ~ B be an arrow of E. For a, a' e A, b, b' e B, and 
f :  a ~ b e F, if  a <<, a' and b <~ b', then there exists f ' :  a' ~ b' e F such that 

f E _ f ' .  

Proof. Because F is an arrow of E, there exist k : a ' ~ b ' e F  and 
h: a" ~ b" e F such that f ~ h and k E_ h. So 

f <~j[b ,b"]ohoi[a ,a"]  

=j[b ,  b'] o j ib ' ,  b"] oh° i[a', a"]o i[a, a']. 

Here note that a<~a'<~a" and b<~b'<~b". Thus f ~_j[b', b"]ohoi[a ' ,  a"], 
and j[b ' ,  b"] ohoi[a', a"] ~ F  since j[b ' ,  b"] ohoi[a', a"] ~_h~F. | 

3.3. LEMMA. Every e-category E & really a category. That is, the follow- 
ing are satisfied: 

(i) I f  F:A ~ B and G: B ~ C are arrows of  E, then Go F: A ~ C is 
also an arrow of  E. 

(ii) For every object A of  E, I D A : A  ~ A is an arrow of E. 

(iii) For every triple of  arrows F: A ~ B, G: B -* C, and H: C --+ D in 
E, H o ( G o F ) = ( H o G ) o F .  

(iv) For every arrow F: A ~ B of  E, Fo ID A = F, and ID B , F =  F. 

Proof. (i) From Lemma3.1 it is enough to show that { g o f l f ~ F ,  
g E G, and c o d ( f ) =  dom(g)} satisfies the arrow conditions. It is clear that 
the arrow condition (1) is satisfied. We will show that the arrow condition 
(2) is satisfied. Suppose that f l ,  f2 ~ F, gl ,  g2 e G, cod(f1) = dora(g1), and 
cod(f2) = dom(g2). Because F and G are directed, there are f e F and g E G 
such that f i e f ,  f zE - f ,  g ~ g ,  and g2~-g. There is b e B  such that 
cod(f )  <~ b and dom(g) ~< b. From Lemma 3.2 there are f '  e F and g' e G 
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such that c o d ( f ' ) =  d o m ( g ' ) =  b, f E f ' ,  and g E_ g'. From Lemma 2.9(i), 
glofl  ~_ g 'of '  and g2of2E_ g'of ' .  Hence the arrow condition (2) is 
satisfied. 

(ii) From Lemma 3.1 it is enough to show that { ida[aeA} satisfies 
the arrow conditions. It is clear that the arrow condition (1) is satisfied. If 
al ,az~A,  then there is a eA such that al<~a and a2<~a. Because 
ida1 <~j[a~, a] o ida ° i[at, a], ida, c id a. Similarly ida2 E id a. Hence the 
arrow condition (2) is satisfied. 

(iii) Let ke  (HoG)oF. Then there exist k ' e H o G  a n d f ~ F s u c h  that 
d o m ( k ' ) = c o d ( f )  and k ~ k ' o f  There are hEH and g~G such that 
dora(h) = c o d ( g )  and k'E_ hog. From Lemma 3.2 there is f ' e F  such that 
c o d ( f ' ) = d o m ( h o g )  and f ~ _ f ' .  From Lemm a2.9(i), k c k ' o f ~  
hogof 'eHo(GoF) .  Hence kEHo(GoF). Conversely, by a similar 
argument it can be proved that k e Ho (G o F) implies k ~ (Ho G)o F. Hence 
(Ho G) o F =  H o (Go F). 

(iv) Let h~FoID A. Then there exist f e F  and k~ID A such that 
dora( f )  =cod(k)  and h E_ f ok. There is a eA such that k E_ida. From 
Lemma 3.2 there is f ' s F  such that d o m ( f ' ) = a  and f E_f', because 
d o m ( f )  ~ a. Since h E_fok E_ f ' o ida=f '~F  by Lemma 2.9(i), h~F.  Con- 
versely if f e F ,  then f = f o i d a e F o l D A ,  where a = d o m ( f ) .  Hence 
Fo IDa = F. Similarly ID e o F = F. II 

3.4. DEErNmON (Terminal in e-categories). We define 

(1) 1 '=  {1}1, where 1 is the terminal object of C, and 

(2) for each object A of E, !~ = {!a[a~A}l .  

3.5. LEMMA. In E, 1' is a terminal object and ! A is the unique arrow from 
A to 1' for every object A. 

Proof Clear. | 

When we mention e-categories, we use 1 instead of 1'. 

3.6. DEFINITION (Product in e-categories). We define 

(1) A x B = { a x b [ a ~ A  a n d b ~ B } l ,  

(2) HIA'e= {~'b[aeA and beB}~,, 

(3) H I ' B =  {rc~'b]aeA and beB}.L, and 

(4) (F,  G ) =  { ( f ,  g ) ] f s F ,  geG, and d o m ( f ) = d o m ( g ) } ~ ,  where 
A, B, and C are objects of E, and F: C ~ A and G: C ~ B are arrows of E. 
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3.7. LZMMA. (i) If  A and B are objects of E, then A x B is an object 
orE. 

(ii) I f  A and B are objects of E, then I1~ ,~ is an arrow from A x B to 
A in E and Fl~ "t~ is an arrow from A x B to B in E. 

(iii) I f  F : C - o A  and G : C ~ B  are arrows of E, then ( F , G )  is an 
arrow from C to A x B in E. 

(iv) For every pair of arrows F: C ~ A  and G: C-oB in E, 
H~'~o (F, G) = F and//~,~ o (F,  G )  = G. 

(v) For every arrow H: C ~ A × B in E, ( H  A,B o H, / /~ ,~ o H> = H. 

Proof (i) Let d 1, d 2 G A x B. Then there are a l e  A, a 2 E A, bl e B, and 
b2 e B such that d~ ~< al x bl and d 2 ~< a2 x b2. Because A and B satisfy the 
condition (1) of (a) in Definition 2.11, there are a s A  and b e B  such that 
a~ <~a, a2 <<,a, b~ ~b, b2 <~b, and a x b e  A x B. Since d~ <~ al Xbl <~axb and 
dz<~a2xb2<~axb, A x B  satisfies the condition (1) of (a) in 
Definition2.11. And A x B clearly satisfies the condition (2) of (a) in 
Definition 2.11. 

(ii) It is enough to show that {g~'blaeA and b e B }  satisfies the 
arrow conditions. If d e  A x B and a ' e  A, then there are a e A and b 6 B 
such that d ~< a x b and a'~< a. So the arrow condition (1) is satisfied. 

Next let a ~ A ,  azeA  , b~eB, and b2eB. Then there are a e A  and b e B  
such that al <~ a, a2 ~< a, bl ~< b, and b2 ~< b. By Lemma 2.8(i), 1r71'~1 ~ r~7 'b 
and 7r72,b2 ~ rr7 ,b. Thus the arrow condition (2) is satisfied. 

In the case of / / ( ,B,  it is similar. 

(iii) It is enough to show that { ( f , g )  l f E F ,  geG,  and 
d o m ( f )  = dom(g)}  satisfies the arrow conditions. It is clear that the arrow 
condition (1) is satisfied. We will show the arrow condition (2). Suppose 
f i e F ,  f2eF,  g leG,  g2eG, d o m ( f l ) = d o m ( g l )  and dom(f2 )=dom(g2) .  
Then there are f e  F and g e G such that f l  E_ f,  f2 ~- f,  gl ~- g, and g2 E_ g. 
Because there is c e C  upper than both do ra ( f )  and dom(g),  from 
Lemma 3.2 there exist f '  e F and g' e G such that d o m ( f ' )  -~ dom(g ' )  = c, 
f E _ f ' ,  and gE_g'. By Lemma2.9(ii), ( f l ,  g l>E_( f ' ,g '>  and 
( f2 ,  g2> E_ ( f ' ,  g'>. Hence the arrow condition (2) is satisfied. 

(iv) First we will show that HIA,Bo(F ,G>cF .  Suppose 
keHA.Bo(F,G>. Then there are h~eH A,B and h2e(F,G> such that 
dom(hl)  =cod(h2) and k ~_ h~oh2. There are a~A, beB,  f eF, and g e G  
such that hi ~_z~7 ,b, d o r a ( f  ) = d o r a ( g ) ,  and h 2 ~  ( f ,  g>. There are a 'eA  
and b' e B such that a ~< a', cod ( f )  ~< a', b ~< b', and cod(g)  <~ b'. By Lem- 
ma 2.8(i), h t ~_ rr7 ,~ r- r~7', ~'. By Lemma 3.2 there exist f '  e F  and g ' e  G such 
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r-- ' g ' .  that d o m ( f ' )  = d o m ( g ' ) ,  c o d ( f ' ) = a ' ,  c o d ( g ' ) = b ' , f _ f ,  and g E By 
Lemma 2.9(ii), h: ~ ( f ,  g )  E ( f ' ,  g ' ) ,  and by Lemma 2.9(i), 

k E h 1 o h2 ~ lZ~',b' o ( f ' ,  g ' )  = f '  EF. 

So k ~ F, N a m e l y / / a , s  o ( F, G )  c F. 
Conversely, let f :  c --+ a e F be given. Because dom(G) = C ~ c, there exists 

at least one arrow g: c --+ b e G. So f =  re7 ,b o ( f  g )  e / /~ , s  o (F,  G) .  Namely 
Fc//1A'B o <F, G>. 

Hence HA,So (F,  G )  = F  and similarly HI,Bo (F,  G )  = G. 

(v) First we will show that (H'~'BoH, H~ ,BoH)cH.  Let 
ke(H~,BoH,  H~,BoH) be given. Step by step we decompose the 
expression (H~  ,B o H, H~ ,B o H )  by the definition. 

There are kl e H~ '~ o H and k2 e H A'B o H such that 

dom(kl)  = dora(k2) and k ~ (ka,  k2). 

There are 11 e H~ '~, 12 e H~ '~, h I e H, and hE e H such that 

dora(/1) = cod(ha), dora(/2) = cod(h2), 

kaGlaoha and k2Gl2oh> 

There is h e H such that 

h i  E h and h 2 ~ h. 

There are a e A and b ~ B such that 

cod(h) ~< a x b. 

There are aaeA, a2eA, baeB, and b2eB such that 

l 1 E_ g~ l'bl and l 2 E ~ 2'b2. 

There are a ' e  A and b ' e  B such that 

a, at, az <~ a ' and b, bl, b2 ~ b'. 

By Lemma 3.2 there exists h'e H such that cod(h ' )=  a ' x  b' and h E_ h'. By 
Lemma 2.8(i), r~7 ''bl ~- re7 ''b' and rC~2,b~ ~-- rc~', b'. By Lemma 2.9(i) and (ii), 

k ~_ (ka, k2) E (ll °ha, 12°h2) 

~_ (rc~"b' o h ', rc~"b'oh ' ) =h 'eH.  

Hence k e H. Because k is arbitrary, ( / / i  ~,s o H , / / 2  ~,s o H )  c H. 
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Conversely we will show that H c  (HAm oH, H(,BoH). Let h e H. Then 
there are a~ A and b ~ B such that cod(h)~< a x b. By Lemma 3.2 there is 
h 'EH such that cod(h ' )=axb  and h~_h'. Since h~_h'=(n7',b'oh ', 
n~"b'oh')~(H~moH, H~moH), he (H~,BoH, H~moH). Hence we con- 
clude that (HA,~oH, H ( , ~ o H ) = H .  | 

3.8. DEFINITION (Exponentiation in e-categories). We define 

(1) B A= {bala6A and b6B}$, 

(2) EV ~m= {ev"'bla~A and b~B}~, 

(3) Ac.A(F)= {Ac,a(f) l f  eF, c~C, aeA,  and dom( f )=cxa}J , ,  

where A, B, and C are objects of E, and F: C x A ~ B is an arrow of E. 

3.9. LEMMA. 

(ii) 
B i n E .  

(iii) 
BA in E. 

(iv) 
(v) 

(i) If  A and B are objects of E, then B A is an object of E. 

I f  A and B are object of E, then EV Am is an arrow from B A × A to 

If  F: C × A ~ B is an arrow of E, then A(F) is an arrow from C to 

For every arrow F: C×A--* B in E, EVAmo(A(F)×ID,~)=F. 

For every arrow H: C---+ B A in ]~, A(EVAmo(HxIDA))=H.  

Proof It is similar to the proof of Lemma 3.7. | 

3.10. LEMMA. (i) For arrows F, F': A--+ B and G, G': B--* C in E, /f 
F c F '  and GcG' ,  then GoFcG'oF' .  

(ii) For arrows F, U : C ~ A  and G, G ' : C ~ B  in E, if F c F '  and 
G c G '  then (F, G ) ~  (U, G'). 

(iii) For arrows F, F': C x A ~ B ,  if F c F '  then A(F)~A(F') .  

Proof Clear from the definitions. | 

3.11. THEOREM. Let C be an order-enriched ccc and let R be a retraction 
map category of C. Then the e-category E(C, R) equipped with the structure 
(I,!(_), ( - ) x ( - ) ,  HI-)'(-), //(2 )'(-), ( ( - ) , ( - - ) ) ,  (--)(-), EV() ' ( - ) ,  
A ( -  )) and the set inclusion ~ as the partial order relation among the 
arrows is an order-enriched ccc. 

Proof It follows from Lemmas 3.3., 3.5, 3.7, 3.9, and 3.10. II 
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4. COMPLETE ORDER-ENRICHED CCCS AND e*-CATEGORIES 

Let C and R be an order-enriched ccc and a retraction map category of 
C, respectively. Arrows of C are ordered and objects of C are also ordered 
by R. The construction of the e-category E(C, R) carries out completion of 
both arrows and objects. We consider the case that the partially ordered set 
of arrows is already complete, that is, for every pair of a, b e ICI and for 
every directed subset X of C(a, b), there exists the least upper bound of X 
in C(a, b). Such a ccc is called a complete order-enriched ccc. We intend to 
carry out completion w.r.t, objects starting from a complete order-enriched 
ccc, and we define e*-categories based on e-categories. 

4.1. DEFINITION (Complete order-enriched ccc). Let C be an order- 
enriched ccc. Then C is complete iff the following conditions are satisfied: 

(1) for every pair of objects a, be  ICI and for every directed subset 
F c C ( a ,  b), there exists the least upper bound I IF of F contained in 
C(a, b); and 

(2) if F is a directed subset of C(a, b) and G is a directed subset of 
C(b, c), then U G o I [ F =  U{gof] fEF and g~G},  where a, b, ce  ]CI. 

Note that an order-enriched ccc C is complete if C(a, b) is finite for any 
pair of a, b E I Ct. 

From Theorem 3.11 every e-category is an order-enriched ccc. Moreover 
every e-category is complete. In e-categories, the partial order relation 
among arrows is the set inclusion c and the least upper bound operation 
is the set union U- Let E be an e-category and let P be a directed set of 
arrows from A to B in E. Then the least upper bound of P is 

U P= {fl (3FeP)(UeF)}, 

and UP is clearly an arrow from A to B in E. Namely E satisfies condition 
(1) in Definition 4.1. Moreover, if Q is a directed set of arrows from B to C 
in E, then 

U QoU P=U {GoFIFePandGeQ}. 

Namely E satisfies condition (2) in Definition 4.1. 

4.2. LEMMA. Let C be a complete order-enriched ccc. Let a, b, and c be 
objects of C: 

(i) For every pair of directed subsets Fc  C(c, a) and G c C(c, b), 

{UF,  I IG}=I I { { f , g } ' f e F a n d g ~ G } .  

643/71/1-2-4 
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(ii) 

Proof 

(ii) 

H I R O F U M I  Y O K O U C H I  

For every directed subset F c C(c × a, b), 

A ( U F ) = [  [ { A ( f ) ' f ~ F } .  

(i) 

[ [ { ( f , g ) ] f 6 F a n d g ~ G }  

= In~,bo~ [ { ( f ,  g ) [ f ~ F a n d  g~G} ,  

n~ 'b° U {( f ,  g ) [ f ~ F a n d  g ~ G } )  

[ [ { A ( f )  l f 6 F }  

o 07~ 1 , n  2 ) [ f e f  

(using (i) of this lemma) 

4.3. LEMMA. Let C and R be an order-enriched ccc and a retraction map 
category of  C, respectively. For every arrow F: A ~ B and for every pair of 
a E A and b ~ B, { f [ f  ~ F, dora( f )  = a, and cod( f )  = b } is directed. 

Proof I f f : a ~ b E F a n d g : a ~ b ~ F ,  then there is h : a ' ~ b ' ~ F s u c h  
that f G h and g ~_ h. If we take k = j ib ,  b'] o h o i[a, a']: a --+ b then f ~< k, 
g<<.k, and k~F .  | 

4.4. DEFINITION. Let C and R be a complete order-enriched ccc and a 
retraction map category of C, respectively. Let E = E(C, R): 

(i) For each arrow F:A--*B in E and for each pair o f a e A  and 
b~B,  

F(a, b) = { f ~  FI d o m ( f )  = a and cod( f )  = b}. 
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(ii) For each pair of arrows F, G: A ~ B in E, F~< G iff mF(a, b) <~ 
[~ G(a, b) for all pairs of a e A  and b~B,  and F~- G iff F < G  and G £ F .  

(iii) For each arrow F: A ~ B in E, 

IF]  = {GeE(A,  B) IF~- G}. 

Note that F(a,b) and G(a,b) in (ii) above are both directed by 
Lemma 4.3. And note that < is a preorder. 

4.5. LEMMA. Let C and 
category of C, respectively. 

(i) Let F: A --* B be 
and b <~ b' then 

(ii) 
c~C,  

R be an order-enriched ccc and a retraction map 
Let E = E(C, R): 

an arrow of E. For a, a' e A, b, b' e B, i f  a <~ a' 

F(a, b)= {j[b, b'] o f ' o i [a ,  a'] [ f '  6 F(a', b')}J,. 

Let F: A ~ B and G: B--* C be arrows of E. For any a e A and 

(GoF)(a, e ) =  {go f [  ( 3 b e B ) ( f e F ( a ,  b) and gEG(b, c))}+. 

(iii) 
and c ~ C, 

(iv) 
c e C ,  

Let F: C ~ A and G: C ~ B be arrows of E. For any a ~ A, b ~ B, 

(F, G}(c, a x b)= { ( f  g}  [ f e  F(c, a) and g e G(c, b)}. 

Let F: C x A ~ B  be an arrow of E. For any a e A, b e B, and 

A(F)(c, b a) = {A(f)  [ f e  F(e x a, b)). 

Proof (i) Let f e F ( a ,  b) be given. Then by Lemma3.2 there exists 
f i e F ( d , b ' )  such that f ~ _ f ' .  So f<~j[b, b ' ]o f ' o i [a ,a ' ] .  Conversely 
let f ' ~ F ( a ' , b ' )  be given. Then j [ b , b ' ] o f ' o i [ a , a ' ] e F  because 
j ib ,  b'] o f ' o i [a ,  a'] ~ f ' .  So f '  6 F(a, b). 

(ii) It is clear that 

(Go F)(a, c) ~ { g ° f l  (3b e B ) ( f  e F(a, b) and g e G(b, c))}~. 

Conversely let h~(GoF)(a,  e) be given. Then there exist a '~A,  c'6 C, 
b e B, f '  e F(a', b), and g' E G(b, c') such that a ~< a', c ~< c', and h ~_ g' of ' .  
So h <~ jEc, c ' ] o g ' o f ' o i [ a , a ' ] .  Because f ' o i [ a , a ' ]  e F(a,b) and 
j[c, c'] o g' ~ G(b, c), 

he  { g ° f [  ( 3 b ~ B ) ( f  ~F(a, b) and g~G(b,  c))}$. 
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(iii) It is clear that 

(F, G)(c, a x b) ~ { ( f ,  g )  [ f 6 F(c, a) and g ~ G(c, b)}. 

Conversely let h ~ (F, G)(c, a × b) be given. Then there exist a' cA,  b 'e  B, 
c' ~C, f '  ~F(c', a'), and g' EG(c', b') such that a x b < ~ a ' x b ' ,  c<~c', and 
h E_ ( f ' ,  g' ). There are a" ~ A and b" ~ B such that a <~ a", a' <~ a", b <~ b", 
and b'<~b". So by Lemma 3.2 there exist f " ~ F ( c ' ,  a") and g"EG(c ' ,b")  
such that f '  ~_f"  and g'~_ g". By Lemma 2.9(ii), h ~_ ( f ' ,  g ' )  ~ ( f " ,  g") .  
Therefore 

h<~j[a×b, a" x b"] o ( f " ,  g" )o i [c ,  c'] 

= ( j [a ,  a"] o f"o  i~c, c'], j~b, b"]o g"o i[c, c'] ) 

by Lemma 2.6(i). Because 

n~'b oh <~ j[a, a"] o f " o  i[c, c'] 

and 

ng'b oh <~ j[b,  b"] o g" oi[c, c'], 

~7.b o h ~ F( c, a) and 7z~ ,b o h ~ G( c, b ). Hence 

h = (zcT'bo h, n~'bo h ) ~ { ( f ,  g )  I f  ~ F(c, a) and g ~ G(c, b) }. 

(iv) It is similar to (iii). | 

Note that ~ is needed in (i) and (ii), but $ is not needed in (iii) or (iv). 
Indeed the following equations are satisfied: 

and 

{( f ,  g ) l f ~ F ( c ,  a) and g~ G(c, b)} 

= { ( f ,  g )  ] f ~  F(c, a) and g e G(c, b)}~ 

{A(f)  I f 6  F(c × a, b)} 

= { A ( f ) I f ~ F ( c x a ,  b)}$. 

It is due to the fact that all arrows in C(c, a × b) are completely determined 
by arrows in C(c, a) and C(c, b). So properties on F and G are preserved in 
{ ( f ,  g ) [ f E  F(e, a) and g ~ G(c, b)}. Similarly all arrows in C(c, b a) are 
determined by arrows in C(e × a, b). In composition, however, it is not the 
case. There may be objects a, b, c, and an arrow k: a ~ c such that k ¢ g o f  
for any pair o f f :  a ~ b and g: b --+ c. 
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4.6. COROLLARY. Let C and R be a complete order-enriched ccc and a 
retraction map category of  C, respectively. Let E = E(C, R): 

(i) Let F : A ~ B  be an arrow of E. For a, a '~A  andb,  b 'eB,  if  
a <~ a' and b <~ b', then 

(ii) 
ceC,  

( i l l )  
and c ~ C, 

(iv) 
c~ C, 

F(a, b)= U {j[b, b'] o f 'o i[a ,  a'] I f 'EF(a ' ,  b')}. 

Let F: A --* B and G: B ~ C be arrows of  E. For any a e A and 

~J (GoF)(a, c)= U { ~  G(b, c)o[ [ F(a ,b ) lb~B} .  

Let F: C ~ A and G: C -~ B be arrows of  E. For any a ~ A, b ~ B, 

U {F, G}(c, axb)={t j F(c,a), U G(c,b)}.  

Let F: C × A ~ B  be an arrow of E. For any a ~ A, b~ B, and 

Proof (i) 
(ii) 

Clear from Lemma 4.5(i). 

U (Go F)(a, c)= LJ { g of I (3b e B ) ( f e  F(a, b)and g ~ G(b, c))} 

(by Lemma 4.5(ii)) 

=~ { ~  {goflf ~F(a,b)and g~G(b,c)}  l b e B }  

(iii) 

(iv) 

U (F, G}(c, a x b ) =  [_J { ( f  g} I f~F(c ,  a)and g~G(c, b)} 

(by Lemma 4.5(iii)) 

= l ~ J F ( c , a ) , U G ( c , b ) }  (by Lemma 4.2(i)). 

Similar to (iii). | 
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4.7. LEMMA. Let C and R be a complete order-enriched ccc and a retrac- 
tion map category of C, respectively. Let E = E(C, R): 

(i) For arrows F, F ' : A ~ B  and G, G ' : B ~ C  in E, if F~F'  and 
G<G' then GoF~G'oF'. 

(ii) For arrows F, F ' : C ~ A  and G, G ' : C ~ B  in E, if F<~F' and 
G <~G' then (F, G} ~ {F', G'}. 

(iii) For arrows F, F': C x A  -~ B in E, if F< F' then A(F)<~A(F'). 

Proof (i) For every pair of a e A and c E C, if F< F' then 

F)(a, c)-- ~J {11G(a, b)o LJ F(b, c).] b e  B} U(Go 

(by Corollary 4.6(ii) 

<, LJ {[~ G'(a, b)° hJ F'(b, c) l bE B} 

= ~ (a' oF')(a, c). 

(ii) Let c e C and d e A x B. Then there are a ~ A and b e B such that 
d ~< a x b. If F < F' and G < G' then 

U (F,G)(c,d)=L] {j[d, axb]oh lhe (F ,G) (c ,  axb)} 

(by Corollary 4.6(i)) 

=j[d, axb]o U (F,G)(c, axb) 

=j[d, a x b ] o / ~  j F(c,a), ~J G(c,b)) 

(by Corollary 4.6(iii)) 

~<j[d, a x b ] o / U  r'(c, a), hJ G'(c, b)) 

= ~ (F', a')(c, d). 

4.8. DEFINITION (c*-category). Let C and R be a complete order- 
enriched ccc and a retraction map category of C, respectively. Let 
E = E ( C , R ) .  Using E, we define the category E * = E * ( C , R )  called the 
e*-category of C with respect to R as follows: 

(iii) Similar to (ii). | 
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(a) The objects of E* are just the same as of E. 

(b) For each pair of objects A and B of E*, the arrows from A to B 
in E* are all [F],  where Fs  are arrows from A to B in E. 

(c) For arrows [ F ] : A ~ B  and [ G ] : B ~ C  in E*, the composite 
arrow [G] o IF]: A ~ C is defined by [G] o [F]  = [GoF]. 

(d) For each objects of E*, the identity arrow on A in E* is defined 
as [IDA], where IDA is the identity arrow on A in E. 

Here note that Lemma 4.7(i) guarantees that the definition (c) of com- 
position in the above is well defined. 

4.9. THEOREM. Let C and R be a complete order-enriched ccc and a 
retraction map category of C, respectively. Let E * =  E*(C, R). We define 
< [ - ] ,  [ - ] > ,  A ( [ - 1 ] ) ,  and 4 on E*: 

(1) For each pair of  arrows [ F ] : C ~ A  and [ G ] : C ~ B  in E*, 
<[F],  [G]>  = [<F, g>]. 

(2) For each arrow [F]: Cx A ~ B in E*, A ( [ F ] ) =  [A(F)]. 

(3) For each pair of arrows FF], [G]:A ~ B  in E*, IF] ~< [G] tff 
F<G. 

Then E* with the structures (1,[!(_)],  ( - ) x ( - ) ,  [HI -),( )], 
[/-/~ ),(-/], ( [ _ ] ,  [ _ ] > ,  (_ ) ( - ) ,  [EV~-),( )], A ( [ - ] ) ) ,  and <<. is a 
complete order-enriched ccc, where 1, ! ( ) ,  ( - ) x  ( - ) ,  /-/]- ).(- ), H~ -),/-), 
( - ) (  ), and EV (-)x-~ are the same as of the e-category E(C, R). 

Proof By Theorem 3.11 and Lemma 4.7, E* is an order-enriched ccc. 
Note that ( [ - ] ,  [ - ] >  and A ( [ - ] )  are well defined by Lemma4.7(ii) 
and (iii). 

Let P be a directed subset of E*(A, B), where A and B are objects of E*. 
The least upper bound of P is 

which is an arrow from A to B in E*. Let Q be a directed subset of 
E*(B, C). Then we calculate 

I IQ°I I P = I U { G ' [ G ] ~ Q } ] ° [ U { F I [ F ] ~ P }  ] 

=[U {GIEG]~Q}°U {FI [F] ~e}] 
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= [ U  { G o F I [ F ] e P a n d [ G ] e Q } ]  

= U {[GoF]I[F]  e P a n d  [G] e Q} 

= [_] {[G]o [F] I [F]  e P a n d  [G] e Q}. 

Hence E* satisfies condition (2) of Definition 4.1. ! 

Let C be an order-enriched ccc and let R be a retraction map category of 
C. The construction of the e-category E(C, IR(C)) means completion of C 
w.r.t, arrows, where IR(C, R) is the trivial retraction map category of C 
defined in Definition 2.5. The objects of E(C, IR(C)) are essentially the 
same as of C. Each object a of C corresponds to the object {a} in 
E(C, IR(C)). Completion of E(C, IR(C)) w.r.t, objects is accomplished by 
the e*-category construction. 

The next theorem shows that the obtained e*-category of E(C, IR(C)) 
coincides with the e-category E(C, R) of C. In other words, successively 
carrying out the completion w.r.t, arrows, then w.r.t, objects, is the same as 
carrying them out "in parallel" by the e-category construction. 

4.10. THEOREM. Let C and R be an order-enriched ccc and a retraction 
map category of C, respectively. Let E' = E(C, IR(C)). We define the retrac- 
tion map category R' of  E' as follows: 

(1) {a} ~< {b} in R' iff  a<~b in R, 

(2) i[{a}, {b}] = {i[a, b]}J,, and 

(3) j [{a},  {b}]={j[a ,b]}J , .  

Then E(C, R) is isomorphic to E*(E', R'). (Note that E' is a complete order- 
enriched ccc). 

Proof Let E = E(C, R) and E* = E*(E', R'). First note that the objects 
of E' are all {a}, where a ~ IcI, And the arrows from {a} to {b} in E' are 
all ideals of (C(a, b), ~< ). 

We define the pair of functors K: E --* E* and L: E* --* E as follows: 

K ( A ) = { { a } l a s A }  for A ~ IEI, 

K(F) = [K'(F)] for FeE(A,  B), 

L ( A ' ) = { a l { a } ~ A ' }  for A' e qE*l, and 

L([F ' ] )  =L ' (F ' )  for [F']  eE*(A', B'), 
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where K'(F)= {P[P is an arrow of E', (~fe F)(P ~_ {f}~)}, and 

L'(F') = U F'. 

Here { f },L means { g e C(a, b) [ g ~< f } for each arrow f :  a ~ b in C. First 
note that UF' ( {a} , {b} )=(UF' ) (a ,b  ) for any arrow F':A'-- ,B'  in 
E(E', R'), {a} eA '  and {b} eB'. It follows that L is well defined, because 
for every pair of arrows F', G':A'--.B' in E(E' ,R') ,  L'(F')=L'(G') if 
F' ~- G'. And note that, for any arrow F: A -~ B in E, and any pair of a e A 
and b ~ B, 

U K'(F)({a}, {b}) 

= U {P~E'({a},  {b})[ (3a'eA)(3b'~B)(3f 'EF(a',  b')) 

(a<~a', b <~b', and P c  {j[b, b'] of 'oi[a, a']  }~)} 

= {j[b, b'] o f 'oi[a,  a'] [a'6A, b'~B, a<~a', 

b<~b', andf '  eF(a', b')}+ 

= F(a, b) (by Lemma 4.5(i)). 

Clearly L(K(A))=A for every AeIEI  and K(L(A'-))=A' for every 
A ' c  [E*[. For every arrow [F '] :  A ' ~  B' in E*, K(L([F']))= [F ' ]  because 
[[ K'(L'(F'))({a}, {b}) = (U F')(a, b) = LJ F'({a}, {b}) for all pairs of 
{a}~A'  and {b}EB'. And for every arrow F : A ~ B  in E, L(K(F))=F 
because L'(K'(F) ) = U (K'(F) ) = F. 

Next we will show that K and L are really functors. For all arrows 
F: A ~ B and G: B ~ C in E and all pairs of a ~ A and c e C, 

(K'(G)oK'(F))({a}, {c}) 

=[ [ {[ [K'(G)({b}, {c})o[ [K ' (F) ({a} ,{b}) [b~B} 

(by Corollary 4.6(ii)) 

= U  {G(b, c)oF(a,b)lb~B} 

= { g o f l  (3b~B)( feF(a,  b) and g~G(b, c))}+ 

= (G o F)(a, c) (by Lemma 4.5(ii)) 

= [ [ K'(GoF)({a}, {c}). 
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So K( [G] ) o K( [F]  ) = K( [G] o [F]),  that is, K preserves the composition o. 
For all A e ]El and all pairs of a, b e A, 

[] {b}) 

= LJ {PeE'({a},  {b}l(3ce C)(a<~c, b<c, and P ~ {ida}+} 

= U {PeE'({a},  {b})l(~ceC)(a<~c, b<~c, 

and P c {j[b, c]o i[a, c] }J, } 

= {jib, c]oi[a, c] 1(3ce C)(a<~c and b<c)}~  

= IDA(a, b) 

= ~ K'(IDA)({a}, {b}). 

So/((IDA) = [-IDK(A)], that is, K preserves the identity arrow. Hence K is a 
functor. Because L is the inverse of K, L is also a functor. 

From the above we conclude that E and E* are isomorphic. | 

4.11. Remark. Let (X, <~) be a partially ordered set. In general, (X, ~< ) 
can be expanded so that every directed subset of X has the least upper 
bound. Such a partially ordered set is called a cpo. We define a partially 
ordered set (Y, c )  as follows: 

Y= {(A*), ] A is a directed subset of X}, 

where 

v * =  {xeXl(VvE v)(v<.x)} 

v ,  = {xeXl(Vve V)(x <<. v) }. 

Then (Y, c )  is a cpo, and (X, ~<) is embedded into (Y, ~ )  by the map 
f :  X ~ Y defined by f ( x )  = {x } l- The map f is one-to-one, and f preserves 
all least upper bounds of directed subsets if they exist. Note that all the 
elements of Y are ideals of (2-, ~< ). 

In the construction of e-categories, the completion of an order-enriched 
ccc C with a retraction map category R of C is slightly different from the 
above completion of partially ordered sets. In the ~-category E = E(C, R), 
arrows in E are ideals of (C, E ), and objects of E are also ideals of 
(ICI, ~<). In this type of completion, the least upper bounds of directed 
subsets are not generally preserved by f defined above. Define Z as the set 
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of all ideals of (X, ~< ). Let A be a directed subset of X. Suppose that there 
exists the least upper bound II A of A in (X, ~< ) and 11 A ¢ A. Then 

[_J {f(a) [ a ~ A }  = A,l, 4: f ( [ ~  A) .  

5. INDUCED RETRACTION MAP CATEGORIES 

We have constructed an order-enriched ccc E(C, R) called e-category 
from an order-enriched ccc C and a retraction map category R of C. In this 
section we will show that a particular retraction map category RE(C, R) of 
E(C, R) is naturally defined. We will construct RE(C, R) expanding R. We 
call RE(C, R) the induced retraction map category of E(C, R). 

5.1. DEFINITION. Let C and R be an order-enriched ccc and a retraction 
map category of C, respectively. Let E = E(C, R). For each pair of objects 
A and B of E, when A c B, we define the pair of arrows I[A, B] ~ E(A, B) 
and J[A, B] ~E(B, A) by 

I[A, B] = {i[a, b] la~A,  b~B, and a<~bin R}~., 

J[A, B] = {j[a, b ] laeA ,  b6B, and a<.bin R},L. 

5.2. LEMMA. Let C and R be an order-enriched ccc and a retraction map 
category of C, respectively. Let E = E(C,R) and let A, B, A', B', and C be 
objects of E: 

(i) I f  A c B then I[A, B] and J[A, B] are arrows of E. 

(ii) I f  A c B then J[A, B] o I[A, B] ~ ID A and I[A, B] o J[A, B] 
IDB. That is, (I[A, B], J[A, B]) is a retraction pair from A to B in E. 

(iii) I f  A c B ~ C  then 

(I[A, C],J[A, C ] ) =  (IEB, C] o IEA, Z~], J[A, Z~] o JE B, Cl). 

(iv) I f  A c A '  and B ~ B '  then A x B c A ' x B '  and 

(I[A x B, A' x B'],J[A x B, A' x B']) 

= (I[A, A'], J[A, A']) x (I[B, B'], J[B, B']). 

(v) I f  A = A '  a n d B = B '  then B A = B  'A' and 

(iEZr', 8'"'2, JEB", 8'"']) 
= (I[B, B'], J[B, Bt]) (I[A'A']'J[A'A']). 
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(vi) (IEA, A], J[A, A ] ) =  (IDA, IDA). 

(vii) I f  R is upper- (lower-) injective, then (I[A, B], J[A, B]) is 
upper- (lower-) injective for every pair of  A and B such that A ~ B. 

Proof. In general, for all a, a', b, and b'EIC], if a<.a'<~b' and 
a <~ b < b' then 

j[b, b'] oi[a', b ' ]o i [a ,  a'] = j[b, b'] oi[b, b'] oi[a, b ] >~ i[a, b ]. 

Namely i[a, b] E i[a', b']. Similarly j [a ,  b] E_ j[a', b']. We will prove the 
lemma, using these facts. 

(i) We will show that I [A ,B]  is really an arrow of E. From 
Lemma3.1, i t i s  enough to show that { i [a ,b]]a~A /x b ~ B  /x a<~b} 
satisfies the arrow conditions. For every pair of a E A and b E B there is 
b'~ B such that a ~< b' and b ~< b', because A c B. So the arrow condition 
(1) is satisfied. 

Let al, a2eA and b~, b2eB be given and suppose al<~bl and a2<~b2. 
Then there are a e A  and b e B  such that a~<~a, a2<<,a, bl<~b, b2<~b, and 
a<~b, because A c B .  So i[al, bl] E i[a,b] and i[a2, b2] ~ i [ a , b ] .  
Hence the arrow condition (2) is satisfied. 

Similarly it can be proved that J[A, B] is really an arrow of E. 

(ii) Because A c B ,  i d a = j [ a ,  a] oi[a, a] eJ[A,  B]oI[A,  B] for all 
aeA.  Thus I D ~ c J [ A ,  B]oI[A ,B] .  Next let k e I [ A , B ]  oJ[A, B] be 
given. Then there are k~ e l l A ,  B] and k2 e J[A, B] such that dom(k~) = 
cod(k2) and k ~ ka ok 2. There are al, a z e A  and bm, b2e B such that 
al <~bl, a2<~b2, kl ~_ i[al ,bl] ,  and k 2 ~ j[a2, b2]. There are a e A  and 
b e B  such that al <~a, a2<~a, bl <~b, bz<~b , and a<<.b. So i[al, b~] ~_ 
i[a, b] and j[a2,  b2] E_ j[a, b]. By Lemma 2.9(i), 

k ~_ k~ok2 ~ i[a,b]oj[a,b]<.. idbeIDB. 

Hence k e ID8 and I[A, B] o J[A, B] ~ ID B. 

(iii) We will show that I[A, C] =I[B, C]oI [A,  B]. For every pair 
of a e A  and c e C ,  if a~<c, then i [ a , c ] = i [ a , c ] o i [ a , a ] e  
I[B, C] o I[A, B] because A = B. So I[A, C] ~ I[B, C] o I[A, B]. Conver- 
sely let k~I[B ,  C] o I[A, B] be given. Then there are kl ~I[B, C] and 
k2eI[A,  B] such that dora(k1) = cod(k2) and k ~ k 1 ok 2. There are a e A ,  
b leB ,  b z e B  , and c e C  such that bl<~c, a<<.b2, kl ~_i[bl, c], and 
k2 E i[a, b2]. There are b e B  and c ' e C  such that bl~<b, b 2~<b, b~<c', 
and c<~c'. Because i[a, bl] ~_ i[a, b] and i[b2, c] ~_ i[b, c'], 

k ~ klok2 E i[b, c']oi[a, b] =i[a, c'] e l l A ,  C] 

by Lemma 2.9(i). So k e I[A, C] and I[B, C] o I[A, B] ~ I[A, C]. 
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Similarly it can be proved that JEA, C] = JEA, B] o JEB, C]. 

(iv) Suppose A c A '  and B = B ' .  It is clear that A x B c A ' x B ' .  We 
will show that I [ A x B ,  A ' x B ' ]  = I [ A , A ' ] x I [ B , B ' ] .  Let k~  
I [ A x B ,  A ' × B ' ]  be given. Then there are d e A  x B  and d ' ~ A ' x B '  such 
that d<~d' and k ~_ i[d, d']. There are a ~ A ,  bEB,  a' ~A '  and b' ~B'  such 
that d~< a x b and d' ~< a' x b'. There are a" e A' and b" e B' such that a <~ a", 
a' <~ a", b <~ b", and b' <~ b". Because d <~ a x b <~ a" x b" and d' <~ a' × b' <~ 
a" x b", 

k E i[d, d'] E i[a x b, a" x b"] 

= i[a, a"] x i[b, b ' ]  ~I[A,  A'] x l IB,  B']. 

So k ~ I[A,  A']  o I[B, B'] and IEA x B, A' x B'] ~ I[A,  A']  x IEB , B']. 
Conversely let h ~ I [ A ,  A'] x I [B ,  B'] be given. Because I[A,  A'] x 

I[ B, B' ] = ( I[ A, A ' ] o f l  { ,B, IE B, B' ] oi1(,8),  there are hi e l [ A ,  A ' ] o I1~ ,B 
and h2~IEB, B ' ]oI1  A'B such that dom(hl )=dom(h2)  and h E_ ( h i , h e ) .  
There are al, a2~A,  a'~EA', b~, b 2 c B  and b'zEB' such that a~<a'~, 
b2<~b'2, hi G i[al, a'l]orc~'b~ and h 2 ~ i[b 2, b~2]o7~ 2"bz. There are a ~ A ,  
a '~A ' ,  b~B ,  and b ' ~ B '  such that al <~a, a2<~a, bl <~b, bz<~b, a<~a', 
a'~<~a', b<~b', and b'2<~b'. So i[a~,a'a] ~_ i[a,a'],  i[b2, b'2] E_ i[b,b'],  
re7 ~,b~ ~_ 7r7 ,b, and rc~ ~,b2 E_ 7t~ ,b by Lemrna 2.8(i). By Lemma 2.9(i) and (ii), 

i[al, a'~] o7z7 ',b~ ~_ iEa, a'] ore7 ,b, 

i[b2, b'z] O rC~,~z ~_ i[b, b'] o rc~ ,~, 

and 
h G (lEa, a'] o ~,b, iEb, b'] o~ ,b )  

= iEa, a ' ]  × iEb, b'] 

= i E a x b ,  a ' x b ' ]  EI[A xB, A ' × B ' ] .  

Hence h ~ IEA x B, A' x B'] and IEA, A"] x I[B, B'] c IEA x B, A' x B']. 
Similarly it can be proved that 

J[A x B, A' x B'] = J[A,  A']  x JEB, B']. 

(v) Similar to (iv). 

(vi) It is clear that I D A = I [ A ,  A]. Conversely for every pair or a, 
a '~A,  if a<~a', then i[a,a ']  ~_ iEa ' ,a ' ]=ida ,~ID A. So I [ A , A ] ~ I D A .  
Similarly IDA = J[A, A]. 

(vii) If R is upper injective, by the similar way of the proof for 
I[A, B] o J[A,  B ] c  IDB it can be proved that J[A,  B] o I[A,  B] ~ IDa. So 
JEA, B ] o I [ A , B ] = I D a .  If R is lower injective, clearly 1EA, B]o 
J[A, B] ~ I D s .  | 
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5.3. THEOREM. Let C and R be an order-enriched ccc and a retraction 
map category of  C, respectively. Then we can define the retraction map 
category RE(C, R) of  E(C, R), whose partial order relation among the 
objects is the set inclusion c and whose unique retraction from A to B in 
E(C, R) is (I[A, B], J[A,  B]) for each pair of  objects A and B such that 
A c B .  

Moreover if  R is upper- (lower-) injective, then RE(C, R) is upper- 
(lower-) injective. 

Proof By Lemma5.2. I 

5.4. COROLLARY. Let C and R be a complete order-enriched ccc and a 
retraction map category of  C, respectively. Then we can define the retraction 
map category RE*(C, R) of E*(C, R) whose order relation among the 
objects is the set inclusion c and whose unique retraction pair from A to B in 
E*(C, R) is ((I[A, B]], [J[A, B]])for each pair of  objects A and B such 
that A c B. 

Proof It follows from Theorem 5.3. Note that for every pair of arrows 
F and G of E(C, R), if F c  G, then F~< G. I 

5.5. Remark. Let C be a complete order-enriched ccc and let R be a 
retraction map category of C. We have proved that the e*-category 
E*(C, R) is a complete order-enriched ccc, too. Moreover we have defined 
the induced retraction map category RE*(C, R) of E*(C, R). So we can 
define the e*-category E = E*(E*(C, R), RE*(C, R)). However E is essen- 
tially the same as E*(C, R). Indeed it can be proved that E and E*(C, R) 
are equivalent in the category theoretical sense. 

In the construction of Do ,  Do is a colimit (direct limit) of the system 
{in} and also a limit (inverse limit) of {Jn}, as stated in Section 1. We 
examine colimits and limits in e-categories based on induced retraction 
map categories. 

5.6. THEOREM. Let C and R be an order-enriched ccc and a retraction 
map category of  R, respectively. Let D be a full  subcategory of  RE(C, R) 
such that IDI is a directed subset of  (IRE(C,R)I, c ) .  Define 
I 1' D : D ~ E(C, R) and J ~ D °p :D °p ~ E(C, R) as the functors obtained 
from I and J by restricting their domains to D and D °v, respectively. Let 
X =  U {A I A ~ IDI }, which is an object of  E(C, R). 

Then X is a colimit of  I ~ D together with a universal cone # defined by 
I~A=I[A, X ] : A  ~ X for A t  IDI. At  the same time, X is a limit of  J I'D °p 
together with a limiting cone ~ defined by % = J[A,  X]  :X ~ A for A ~ [D°Pl. 
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Proof We deal only with colimit. As for limit, it is similar. For  every 
pair of A, B e  IDh if A ~ B ,  then I[B, X]oI[A, B] =I[A, X] from Lem- 
ma 5.2(iii). Namely the following diagram commutes: 

X 

A ) B  iEa, B] 

Next we assume that there is an object Y of E(C, R) and that there is an 
object Y of E ( C , R )  and that, for each C~[D[,  there is an arrow 
Zc: (I r D)(C) -~ Y in E(C, R) such that the following diagram commutes 
for every arrow [-A, B]  in D. 

Y 

Y \,< 
A ) B  I[A, B] 

Namely z~oI[A, B] =ZA" Define F= [.)(ZcI Ce [D[ }. Then F is an arrow 
from X to Y in E(C,R) .  Here note that ZA=ZBoI[A,B]~zso 
I[B, B] = ZB if A c B. 

We show that the following diagram commutes for every A • ]D]. 

X F ) y 

A 

Namely, Fo/~A = zA. Clearly FopA ~ zA o IDA = vA. Conversely suppose 
that k~Fo#A. Then there are C~JDI,  f ~ Z c  and he I [A ,X]  such that 
d o m ( f )  = cod(h) and k ~ f o  h. Because h ~ I[A, X], there are a e A and 
b ~ X  such that a<~b in R and h E_ i[a, b]. Because b~X, there is B e  ]D[ 
such that b e  B. Since I Df is directed, there is A ' e  I DI such that A c A ' ,  
BcA ' ,  and CcA' .  Therefore feZc~ZA, ,  h ~ i[a,b]eI[A,A'] ,  and 
k E_ foh  ~ ZA, ° I[A, A'] = zA. Hence Fo #A = Z A .  

Finally assume that there is an arrow G: X ~ Y in E(C, R) such that the 
following diagram commutes for every A ~ ID[. 

X G ) Y 

A 
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Namely G o #A = ~ .  Then 

F= U {~AIA~lDI} 

:G°U {~AIA~lOl} 

= Go I[X, X] = G. 

We conclude that X is a colimit of I p D together with a universal 
cone #. 1 

5.7. Remark. Let C be an order-enriched ccc and let R be a retraction 
map category of C. Let E = E(C, R) and R E =  RE(C, R). We define a 
functor K:C ~ E by 

K(a) = {a} $ 

K( f )  = {f}  

and define a functor L : R  ~ RE by 

L(a) = {a} 

L([a, b ] ) =  [{a}+, {b}+] 

Then the following diagrams commute: 

for object a of C, and 

for arrow f of C, 

for object a of R, and 

for arrow [a, b] of R. 

R i > C R °p Y ~ C 

RE > E R E  °p , E 
I J 

Namely Ko i =  Io L and Koj= Jo L °p, where L °p is a functor from R °p to 
RE °p defined by 

L°P(a) = {a } ,L 

L°P([a, h i ) =  [{a}$, {b}i ]  

The above functor K, L, and L °p 
objects and w.r.t, arrows. Thus C is embedded into E, and R with i and j is 
embedded into RE with I and J. 

By Theorem 5.6, for every full subcategory D of R, if [DI is directed, then 
X= {al(3x E ]DI )(a <~ x)} is an object of E and X is a colimit of (Io L) ~ D. 
Conversely, for every object X' of E, X' is a colimit of (Io L) ) D', where D'  
is the full subcategory of R defined by ID'l = X'. Thus, informally speaking, 

for object a of R °p, and 

for arrow [a, b] ofR °p. 

are one-to-one maps both w.r.t. 
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the e-category E(C, R) is an expansion of C so that i p D has a colimit and 
j [" D °p has a limit for every full subcategory D of R such that [D[ is direc- 
ted. 

6. MODELS OF THE ~,-CALCULUS 

In this section we will examine the relationship between models of the 2- 
calculus and e*-categories. For the definition of lambda-calculus models, 
we refer the reader to Barendregt (1984). Also see Meyer (1982) and Hin- 
dley and Longo (1980). Let P be a ccc. We say that an object u of P is 
reflexive if there are arrows q~: u ~ u u and ~u: uU_~ u in P such that 

o ~ =  iduu. Many authors pointed out the relation between models of 2- 
calculus and ccc's equipped with reflexive objects. In this paper we call such 
(u, ~b, ~) a reflexive structure. 

6.1. FACTS. (i) Every ccc P equipped with a reflexive structure 
(u, ~b, qt) defines a 2-algebra 9J/(P, u, 4~, ~u). 

(ii) (Scott) Every ).-algebra ffd defines a ccc P(92) with a reflexive 
structure (u, 45, ~u). 

(iii) (Koymans) For every 2-algebra 9~, ~X(P(O2),u,~b, ~g) is 
isomorphic to 9~, where (u, q~, ~) is the reflexive structure defined in (ii). 

We refer the reader to Koymans (1982) and Barendregt (1984), in which 
the exact meanings of the above facts and their proofs appear. Also see 
Lambek (1974), Scott (1980), and Koymans (1984). 

6.2. DEFINITION. Let P be a ccc and let a and b be objects of P, Then P 
has enough points at a w.r.t, b iff the following condition is satisfied: for 
every pair of arrows f, g~P(a,b), if f ¢ g ,  then there exists an arrow 
h~P(1,  a) such tat f o h : ~  goh. 

Similarly when C is an order-enriched ccc, we say that C has enough 
points at a w.r.t, b iff the following condition is satisfied: for every pair of 
arrows f, g~C(a,b), if f ~  g, there is an arrow h~C(1,  a) such that 
foh ~ goh. 

6.3. FACT. Let P be a ccc with a reflexive structure (u, 45, 70. Then P 
has enough points at u w.r.t, u iff 9J/(P, u, q~, ~)  is a 2-model (i.e., a weakly 
extensional 2-algebra). 

We refer the reader to Koymans (1982). 

643/7l/I-2-5 
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6.4. DISCUSSION. Our method of constructing 2-algebras is based on 
Facts 6.1 and 6.3. If we can construct a ccc P with a reflexive structure 
(u, ~b, ~), then we get a ).-algebra 9Jr(P, u, q~, ~) by Fact 6.1. So we are 
reduced to construct various kinds of ccc's with reflexive structures. The e- 
category method can be used for constructing such ccc's. 

Let C be an order-enriched ccc. In general there exist many retraction 
map categories of C. Consider the case that we can eventually choose an 
upper-injective retraction map category R of C that satisfies the condition: 
there exists a directed subset U ' c  IC[ w.r.t. <~ of R such that bat U' for 
every pair of a e U' and b ~ U'. Let U be the object U'] of E(C, R). Because 
U ~  U and R is upper injective, (I[ U v, U], J [  U ~, U]) is an upper-injec- 
tive retraction pair. So J[U U, U] o I [U  v, U] = IDuu and namely U is a 
reflexive object of E(C,R). By Fact6.1 we can get a 2-algebra 
9Jt(E(C, R), U,J[U ~', U], I[U ~, U]). By such method we can construct 
various kinds of ~,-algebras. The above construction is an example. We will 
give concrete examples in Sections 8 and 9. However there is not always a 
retraction map category R such that E(C, R) has a reflexive object. 

6.5. PROPOSITION. Let C and R be a complete order-enriched ccc and a 
retraction map category of C, respetively. Let A and B be objects of 
E*(C, R). Then condition (1) below implies condition (2): 

(1) C has enough points at a w.r.t, b for every pair of a ~ A and b 6 B; 
(2) E*(C, R) has enough points at A w.r.t. B. 

Moreover, if R is upper-injective, the above conditions are equivalent. 

Proof Let E* = E*(C, R). 
First we show that condition (1) implies (2). Let [F], [G]~E*(A, B) 

and suppose that [F]  ~ [G]. Then there are ao ~ A and bo ~ B such that 
UF(ao, bo) 4~ [_JG(ao, bo). From condition (1) there is ho6C(1, ao) such 
that [_]F(ao, bo)oh o 4~ [_JG(ao, bo)oho. We define [H]  6E*(1, A) by 

Then 

H =  {i[ao, a ]oho]a~A and ao<~a}$ 

[_] (Foil)(1, bo) 

= ~ { U F ( a ,  bo)o[ [H(i,a) la~A } (byCorollary4.6(ii)) 

= ~ {~J F(a, bo)o U {jia, a']oi[ao, a']oho] 

a' ~A,a<~a',a<~a',andao<~a'} a~A}  
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= ~J {U F(a, bo)oj[a, a']oi[ao, a'] I 

a ~ A, a' e A, a <~ a', and ao <~ a' } o ho 

~J {U F(a', bo)oi[a, a'] oj[a, a'] oi[a o, a'] 

a e A, a' s A, a <~ a', and ao <~ a' } o ho 

(by Corollary 4.60) ) 

=H{UF(a',bo)oi[ao, a '] a'eAandao<~a'}oho 

= U F(ao, bo) o ho (by Corollary 4.6(i)) 

4; [_] G(ao, bo)oho 

= [_] (aoF) (1 ,  bo). 

65 

Therefore [F]o [H] ~ [G]o [HI. 
Next we show that condition (2) implies (1), assuming that R is upper 

injective. Let aeA, beB, feC(a,b),  and geC(a, b), and suppose that 
]" ~ g. We define two arrows IF],  [G] e E*(A, B) by 

F= {i[b, b'] ofoj[a, a'] [a' ~A, b' EB, a<~a', and b<~b'}~ 

and 

G= {iEb, b']o goj[a, a']la' cA, b' ~B, a<~a', and b<~b'}]. 

Because f =  [_JF(a, b) and g = [_]G(a, b) from the assumption, [F] ~ [G]. 
By condition (2), there is [H]EE*(1, A) such that [ F ] o [ H ]  
[G]o [HI. Namely there are Co~ 1 = {1},~ and bomB such that LA(FoH) 
(eo, bo) ~ [ l(GoH)(co, bo). There is b'eB such that bo<~b ' and b<~b'. 
Define ho= I [H(1, a) E C(1, a). Then 

U (FoH)(co, b') 

=] [{UF(a',b')o[ [H(co, a') a'EA} (by Corollary 4.6(ii)) 

643/71/1-2-5 * 
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=] [ { ~ F ( a ' , b ' ) o ~ H ( c o ,  a' ) a '~Aanda<~a ' }  

(from the assumption) 

= i[b, b'] ofo [_] g(co, a) (by Corollary 4.6(i)) 

= i[b, b'] o f o  ho o i[co, 1 ] (by Corollary 4.6(i)) 

and similarly [J(a o H)(co, b') = i[b, b'] o g o ho o i[co, 1 ]. Therefore f o  h o 
~ g o ho. Indeed, i f f o  ho ~< g o ho, then 

[_] (Fo H)(co, bo) 

= j[bo, b']o [I (Fo H)(co, b') (by Corollary 4.6(i)) 

= j [ b o ,  b ' ]  oi[b, b']o f ohooi{c o, 1] 

<~j[bo, b ' ]o i [b ,  b ' ]o  g ohooi[co, 1] 

= ~ (Go H)(co, bo), 

which is a contradiction. | 

7. GENERATION OF RETRACTION MAP CATEGORIES 

In order to construct various kinds of k-calculus models, we will examine 
the method of generating retraction map categories that satisfy some 
desired properties. In general, there are many retraction map categories of 
a given order-enriched ccc. We want particular retraction map categories of 
them. 

We intend to construct a retraction map category from a basic set of 
retraction pairs adding the needed retraction pairs to them. We can 
naturally expand a given set of retraction pairs to a retraction map 
category, if the set satisfies a comfortable property. However we do not 
always accomplish the expansion. We will give a sufficient condition that 
the expansion of a set of retraction pairs really becomes a retraction map 
category. The method in this section will be used, when we give examples 
of k-algebras based on e-categories in Sections 8 and 9. 

7.1. DEFINITION (Retractive closure). Let R be a set of retraction pairs 
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of an order-enriched ccc C. The retractive closure of R, denoted by 
close(R), is the set of retraction pairs of C inductively defined as follows: 

R o = R  U {(id,, ida)[a~ ]C[}, 

R,+ I = { (i'oi, jo j ' ) l  (i, j ) 6  R , ,  ( i ' , j ' ) s  R , ,  and 

cod(i) = dom(i') } 

U {(ia, ja) x(ib, jb) ,  (ib'jb)(i~'A)[ 

( ia , ja )ER,  and ( ib , Jb )~R , }  (n>~O) 

close(R)= U R,- 
n = O  

7.2. Remarks. The retractive closure of R satisfies the following con- 
ditions: 

(1) for every object a, (ida, ida): a ~ a e c l o s e ( R ) ;  

(2) if (i, j): a--* b and (i', f ) :  b ~ c are contained in close(R), then 
(i'o i, j o f ) :  a ~ c is also contained in close(R); 

(3) if (ia,ja): a ~ a '  and (ib, jb): b--*b' are contained in close(R), 
then 

(ia,ja) x(ib, j b ) : a x b ~ a ' x b '  

(ib, jb)(ia'Ja): b a ~ b'a' 

are also contained in close(R). 
We define a binary relation ~< among the objects of C by 

a ~< b iff there is r: a ~ b ~ close(R). 

The above binary relation ~< is a preorder. If ~< is a partial order relation 
and close(R) has at most one arrow r: a ~ b for every pair of objects a and 
b, then close(R) together with ~< determines a retraction map category 
of C. 

7.3. DEFINITION (Canonical order-enriched ccc). Let C be an order- 
enriched ccc. Then C is canonical iff the following conditions are satisfied: 

(1) i f a x b = a ' x b '  then a = a '  and b=b';  

(2) if ha=  b 'a' then a = a' and b = b'; and 

(3) a x b ¢ b  'a' for all a, b, a', and b'. 

An object c of C is atomic iff c is neither a x b nor b a for any pair of a, 
b e IC[. When C is canonical, a retraction map category R of C is canonical 
iff R satisfies the conditions: for all objects a, a', b, b', of C, a~< a', and 
b<~b' iff a x b < . a ' x b '  iff ba<~b 'a'. 
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7.4. DEFINITION (Primitive set of retraction pairs). Let C be a canonical 
order-enriched ccc and let P be a set of retraction pairs of C. Then P is 
primitive iff the following condit ions are satisfied: 

(1) if r: a ~ b ~ P then a and b are atomic; 

(2) for all atomic objects p of C, (idp, idp): p --, p e P; 

(3) if ( / , j ) :  a ~ b e P a n d  ( i ' , j ' ) :  b ~ c e P t h e n  (i'oi, jo j ' ) :  a--*cEP; 

(4) if r: a - - * b e P  and r': a ~ b s P  then r=r';  

(5) if r: a- - - ,beP  and r': b ~ a e P  then a = b .  

7.5. TI-mOREM. Let C be a canonical order-enriched ccc and let P be a 
primitive set of  retraction pairs of  C. Let Q be a set of  retraction pairs of  C 
in the form of  either r: c ~ a × b or r: e ~ b ~, where a, b, and c are atomic 
objects. I f  the following conditions are satisfied, then the retractive closure 
close(R) of  R = P w Q satisfies the conditions of  retraction map categories of  
C. Let (i~, Ja): a --+ a' ~ P and (ib, Jb): b --* b' ~ P be given: 

(1) I f  ( i , j ) :  c ~ a x b ~ Q  then there are (i~,jc): c - -* c ' eP  and 
(i', j ' ) :  c' ~ a' x b' ~ Q such that the following diagram commutes: 

a' x b' 

(ia,Ja) X ~  I (i',j') 
a x b  c' 

C 

That is, (ia, Ja) x (ib, jb) o (i, j )  = (i', j ' )  o (ic, jc). 

(2) / f  ( i , j ) :  c--+b a ~ o  then there are (ic, jc): c ~ c ' ~ P  
(i', j ' ) :  c' ~ b'a'6 Q such that the following diagram commutes: 

c ib'm(i°';°g//~ ~ a' 

b a c' 

(i'J) l 
c 

and 

That is, (ib, jb) (i"da)° (i, j )  = (i', j ' )  o (ic, Jc). 

(3) I f  r: c - -+deQ andr': c ' - -+deQ then c = c '  a n d r = r ' .  
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Moreover the generated retraction map category f r o m  close(R) is 

canonical. 

Condition (3) in the above says that, for every nonatomic object d, there 
exists at most one retraction pair r E Q such that cod(r )=  d. Conditions (1) 
and (2) require that P and Q are chosen without conflict. Theorem 7.5 
gives a method of generating retraction map categories. We will show 
examples in Sections 8 and 9. 

For the proof we need lemmas. 

7.6. LEMMA. (i) I f  r: a x b ~ d ~ c l o s e ( R ) ,  then d i s  in the f o r m  o f  a' x b '  
and there are (ia, j~): a - ~ a '  and (ib,Jb): b ~ b '  in close(R) such that 

r = (i~, j~) x (ib, Jb)" 

(ii) I f  r: b a n d , c l o s e ( R ) ,  then d is in the f o r m  o f  b '~' and there are 

(ia, Ja): a --* a' and (ib, Jb); b --~ b' in close(R) such that r = (ib, jb) (ia'j°). 

(iii) I f  r: a ~ b ~ close(R) and b is atomic, then a is atomic and r ~ P. 

Proo f  It is clear from the difinition of close(R). | 

7.7. LEMMA. Let  c be an atomic object o f  C: 

(i) I f  r: c ~ a x b ~ close(R), then there are atomic objects a', b', and 
c', and retraction pairs 

r I : c ~ c' ~ P, r 2: c' ~ a' x b' ~ Q, 

(i a, j~): a' ~ a e close(R), 

and 

such that 

(ib, Jb): b' --* b ~ close(R) 

r = (ia, Ja) X (ib, Jb) o r 2 o rl. 

(ii) I f  r: c ~ b a ~ close(R), there are atomic objects a', b', and c', and 
retraction pairs 

rl : c ~ c' E P, r 2 : C' ~ b 'a' G Q, 

(i a, j~): a' + a e close(R), 

and 

such that 

(io, Jb): b' ~ b ~ close(R) 

r = (ib, jb)  (i~'ja)° r2 ° rl. 
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P r o o f  Let r e R~. We use induct ion on n: 

(i) When  n = ~ ,  r e Q and it is clear. Suppose  that  that  n >~ 1. Then 
there are an object  d, re t ract ion pairs r ' : c ~ d e R , _ l ,  and r " : d - - ,  
a x b e Rn 1 such tha t  r = r" o r'. F r o m  L e m m a  7.6, d must  be either a tomic  
or in the form of a" x b". 

If  d is atomic,  then by the induct ion hypothesis  there are a tomic  objects 
a' ,  b', and c', and re t ract ion pairs 

r ' l : d ~ c '  e P ,  r 2 : c ' ~ a ' x b '  e Q, 

(i~, j~): a '  -~ a e close(R), 

and 

(ib, Jb): b' ~ b ~ close(R) 

such that  r" = (ia, Ja) x (ib, Jb) ° r 2  ° r'l. By the condi t ion of P, /1 ° r': 
c ~ c' e P. So the l e m m a  is satisfied. 

On  the other  hand,  if d is a" x b", then by L e m m a  7.6 there are re t ract ion 
pairs 

(i'~, j'~): a" ~ a • close(R) 

(i; ,  j ; ) :  b" --* b • c lose(R) 

such that  r" = (i'a, j'a) X (i'b, J'b)" 
By the induct ion hypothesis  there are a tomic  objects a' ,  b', and c', and 

retract ion pairs 

r l : c ~ c ' 6 P ,  r 2 : c ' - - + a ' x b ' E Q ,  

. . . . . . .  a '  a" close(R) ( l o , y ~ ) .  --, e 

. . . . . . .  b '  b" (tb, Jb). ~ • c l o s e ( R )  

such that  r '  = (i;', j2)  x (ib', j ; ' )  ° r2 o r l .  Let  

(ia, j~) = (i'~ o i~', j~ oj'a) 

( ib, Jb ) = ( z~," ° tb" . . . . . ,  Jb ° Jb 

Then  (ia, Ja): a '  ~ a and (ib, Jb): b' ~ b are conta ined in close(R), and 

r = r" o r' = (ia, Ja) X (ib, Jb) ° r2 o r l .  

Hence the l e m m a  is satisfied. 

(ii) Similar to (i). | 
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7.8. DEFINITION, We inductively define the subset W c  ]C[, the atomic 
object w(c) and the retraction pair 

Wr(C) = (Wi(C), Wj(C)): W(C) ~ C e close(R) 

for each object c e W as follows: 

(1) every atomic object c is contained in W, and w ( c ) = c  and 
Wr(C ) = (ida, idc); 

(2) if a e W ,  h e W ,  and there is r : d ~ w ( a ) x w ( b ) e Q ,  then 
a x b e  W, w ( a x b ) = d  and 

(3) if a e  W, 
w(b ~) = d, and 

w,(a x b) = (Wr(a) × wr(b))o r; 

h e W ,  and there is r:d--- ,w(b)W(")eQ, then b ~ e W ,  

wr(b  a) ~- Wr(b)  w r (a) o r. 

Note that w(a) and Wr(a ) are uniquely determined for each object a e W, 
which follows from condition (3) of Q. The meaning of Definition 7.8 will 
be clarified by the next lemma. 

7.9. LEMMA. I f  r: c ~ d e  close(R) and c is atomic, then d e  W and there 
is r': c ~ w(d) e P such that the following diagram commutes: 

d 

C 

That is, r = wr(d) o r'. 

Proof. We use induction on the structure of d: 

(1) If d is atomic, then w(d) = d  and wr(d) = Odd, idd). 

(2) If d is a x b, then by Lemma 7.7 there are atomic objects a', b', 
and c', and retraction pairs 

r l : c ~ c ' e P  , r 2 : c ' - + a ' x b ' e Q ,  

( ia,  Ja): a'  ~ a e close(R) 

and 

(ib, Jb): b' ~ b e close(R) 

such that r = (ia, j~) x (ib, Jb) ° r2 ° r l .  
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By the induction hypothesis, a ~ W, b ~ W, and there are 

. . . . .  a' w(a)E  P (Io, j~).  --, 

(i~, j~): b' --+ w(b) ~ P 

such that (i~, Ja) = Wr(a) o (i'a, j'~) and (ib, Jb) = wr(b)° (i'b, J'b)" 
By condition (1) in Theorem 7.5, there are atomic object c" and retrac- 

tion pairs 

r 3 : C t ~ C tt E P 

and 

r 4 : c tt ~ w(a) × w(b) ~ Q 

such that (i'a, j'a) x (i~, j~)o r2 = r 4 °  r3 .  

By the definitions of W, w( - ), and wr( - ), a x b ~ W, w(a x b) = c", and 

Wr(a X b) = Wr(a ) × Wr(b  ) o r4. 

So the following diagram commutes: 

~ d = a  x b ~ ' 1  

~ a a b . / / ~ ( i ~  ,jr )x( i t  ], ) ~kk . ) 
a o  

c 

w (a × b) 
I" 

Especially r = wr(a × b)o (r 3 o rl). Hence the lemma is satisfied. 

(3) When d is b a, it is similar to (2). | 

Note that wr(d) is uniquely determined only by d and that wr(d) does not 
depend on r: c ~ d. From the conditions in Theorem 7.5, r': c ~ w(d) is uni- 
quely determined, because c and w(d) are atomic objects. Therefore r: c ~ d 
is also uniquely determined for each pair of c and d, if it exists. 

7.10. Proo f  o f  Theorem 7.5. First we show that close(R) has at most 
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one retraction pair from c to d for every pair of objects c and d. We use 
induction on the structure of c. Let r l ,  r2 : c ~ d e  close(R): 

(1) If c is atomic, then by Lemma7.9, d e  W, and there are 
r'l : c --* w(d)  ~ P and r'2: c ~ w(d)  ~ P such that r 1 = wr(d)  o r'l and r2 = 
w a d )  o r'2. Because r] = r~ from the conditions of P, rl = r2. 

(2) If c is a x b ,  then by Lemma 7.6, d is in the form of a ' x b '  and 
there are (ia, Ja): a --* a', (i b, Jb): b --~ b', (i'a, fa): a ~ a', and (i~, j~): b ~ b' 
in close (R) such that 

r 1 = (i~, Ja) x ( ib ,  Jb)  

r2 = (i'o, j'~) x (i;, j ;) .  

Because (i~, J a )=  (i'~, f )  and (ib, J b ) =  (i;, ;) by the induction hypothesis, 
r 1 =r2 .  

(3) When c is in the form of b a, it is similar to (2). 

Next we show that the preorder ~< defined in Remarks 7.2 is a partial 
order relation. Suppose that close(R) has r: c--+ d and r': d--+ c. By induc- 
tion on the structure of d, we show that c = d. 

If d is atomic, then by Lemma 7.6(iii), c is atomic and r ~ P .  Also r ' e  P. 
From condition (5) of primitive set P, c = d. 

If d is a x b, then by Lemma 7.60) , c is in the form a' × b' and there are 
(ia, ja): a ' -+ a and (ib, Jb): b ' -~ b in dose(R). Similarly there are (i'~, J'a): 
a--+ a' and (i'b, j~): b--+ b' in close(R). By the induction hypothesis, a = a '  
and b = b ' .  Hence c = a '  × b ' = a x b = d .  

If d is b ~, then it is similar to the case d = a x b. 
Hence close(R) determines a retraction map category of C by 

Remarks7.2. Moreover it follows from Lemma7.6(i),  (ii), that the 
generated retraction map category is canonical. | 

8. Do~ AND e*-CATEGORIES 

We will construct D o by the e-category method. The e-category method 
is generalization of Scott's inverse limit method used for the D o -  
construction of 2-calculus models. In order to construct D o we will define 
a complete order-enriched ccc SP and a retraction map category RSP of 
SP such that the e*-category E = E*(SP, RSP) has a reflexive object V. We 
will show that V=  V v and D~=.~IR(E ,  V, [ IDv] ,  [ IDv]) .  Note that 
I [  V v, V]  = J [  V v, V] = ID v because V = V v. 

Furthermore, extending SP and RSP, we will define a complete order- 
enriched ccc WP and a retraction map category RWP of WP, and show 
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that the generated 2-algebra from E*(WP, RWP) is not k-model (that is, 
not weakly extensional). 

8.1. DEFINITION. (i) A complete partially ordered set (abbreviated to 
cpo) is a partially ordered set (X, ~< ) such that for every directed subset 
Y c X there is the least upper bound I_l Y e X. 

(ii) Let X and Y be two cpo's. A function from X to Y is continuous 
iff for every directed subset Z c X, { f ( z ) [ z e  Z}  is a directed subset of Y 
and 

8.2. LEMMA. We define the category CPO with partial order <<, among 
the arrows as follows: 

(a) the objects of  CPO are all cpo's; 

(b) the arrows of CPO are all continuous functions among cpo's; and 

(c) for each pair o f f ,  g: a -~ b, f <~ g iff  f ( x )  <~ g(x) for all x e a. 

Then, CPO is a complete order-enriched ccc if  we define a suitable structure 
for ccc. 

Proof Easy. I 

Rigorously speaking, we must slightly modify the definition of complete 
order-enriched ccc's because the collection of all cpo's is not a set but a 
proper class. 

8.3. DEFINITION. Let Po be a cpo that has the bottom (denoted by ±)  
and at least two distinct elements. We arbitrarily choose such Po and fix it. 
Then SP is the subcategory of CPO that is obtained from CPO by 
restricting the objects of CPO as follows: 1 (a singleton set)¢lSP[; 
po e [SP[; and if a e  {SP[ and b~ [SP[, then a x b e  ISP] and bae ]SPI. Here 
we use induction. We can assume that SP is canonical. 

8.4. LEMMA. Let 0 E SP(po, pp0) and ip ~ SP(Po p0, Po) be defined by 

(~(x)(y) = x for x, y e Po 

~ ( f )  = f ( ± )  for f~ppo.  

Then (~b,~): p o ~ p  po is a retraction pair of  SP, and P =  {idl, idl) ,  
(idpo , idp0)} and Q = {(~b, ~0)} satisfy the conditions of  Theorem 7.5. So we 
can define the generated retraction map category RSP of SP from P ~ Q. 

Proof Clear. | 
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8.5. PROPOSITION. Let V be the set of  objects of  SP inductively defined as 
follows: Poe V; and if  a e V and b e V, then b ' e  V. Then V is an object of  
E*(SP, RSP) and V= V v. Moreover Doo is isomorphic to 931(E*(SP, RSP), 
V, [ IDv] ,  [ IDv]) ,  where D o is the 2-model constructed from Po and (~, ~) 
by means of Scott's inverse limit method. 

Proof First we show that V is directed, namely, for every pair of a, 
b e V there exists c e V such that a ~< c and b ~< c. We use induction on the 
structures of a and b. For  every d e  V, Po ~< d, which is proved by induction 
on the structure of d. So it is clear when a = P0 or b = Po. Suppose that 

_ al b = b2 b', and al ,  a2, bl, b2 e V. Then, by the induction hypothesis, a - - a 2 ,  
there are cl, c z e V  such that al<<.cl, bl<<.ct, a2<<.c2, and b2<~c2. 
Therefore a ~< c~ 1, b ~< c2Cl, and c~ 1 e V. 

Next we show that V = V J.. We prove that a ~< b e V implies a E V, using 
induction on the structure of a. When a is atomic, a = P0 e V. Note that SP 
is a canonical order-enriched ccc. It is impossible that a is of the form 
al x a2, because b is either atomic or of the form b2 bl by the definition of V. 
Suppose a = ag ~. Then b must be of the form b~ 1, and a I ~< b~ and a2 ~< b2. 
By the definition of V, bl e V and b 2 e V. Thus, by the induction hypothesis, 
a l e V a n d a 2 e V ,  a n d s o a = a ~  IeV.  

Hence V is really an object of E(SP, RSP). It is clear that V= V v. 
The construction of 9X(E*(SP, RSP), V, [ IDv] ,  [ I D v ] )  is the same as 

Doo. (The detailed proof is omitted, because the precise construction of Do~ 
is needed.) | 

8.6. PROPOSITION. We define the category WCPO equipped with partial 
order <<. among the arrows as follows: 

(a) The objects of WCPO are all pairs of  cpo's a and a' such that 
a c a' and Ua X =  [_J,, X e  a for every directed subset X c  a. 

(b) The arrows from (a, a') to (b, b') are all continuous functions J 
from a' to b' such that f ( x ) e b  for every x e a .  

(c) For each pair of  arrows f,  g: (a, a') -~ (b, b'), f <~ g iff  f ( x )  <~ g(x) 
for every x e a'. 

Then WCPO is a complete order-enriched cec with a suitable structure for 
CCC. 

Proof We define the structure for ccc in WCPO: 

(1) The terminal object is (1, 1), where 1 is an arbitrary singleton set. 
For  each object a, !(a.a,)(X)=Zo for x e a ' ,  where {Zo} = 1. 
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(2) For each pair of objects (a, a') and (b, b'), 

(a, a ' ) x  (b, b ' ) =  (axb ,  a' xb') ,  

~°'a'~'(~'~'~((X, y > )  = x, 

7[ (a'a')'(b'b')( / X 2 ~\ , y ) ) = y  for ( x , y ) ~ a ' x b ' .  

For each pair of arrows f :  (c, c') --, (a, a') and g: (c, c') ---, (b, b'), ( f ,  g ) :  
(c, c') --, (a x b, a' x b') is the same arrow as in CPO. 

(3) For each pair of objects (a, a') and (b, b'), 

(b, b') (a,a') = (~, b'°'), 

ev("'a')'(b'b')((f,x))=f(x) for f E b ' a ' a n d x ~ a  ', 

where c~ is the set of all continuous functions f from a' to b' such that 
f ( x )  e b for every x e a. For each arrow f :  (c, c') x (a, a') ~ (b, b'), A(f) :  
(c, c') --, (b, b') (a'"') is the same as in CPO. 

It is clear that the above structure satisfies the conditions of complete 
order-enriched ccc. ] 

8.7. DEFINITION. Let (P0, P;) be a pair of nonempty cpo's that satisfies 
the following conditions: 

(1) (Po, P;) is an object of WCPO. That is, pocP'o and [_JpoX= 
lip6 X e  Po for every directed subset X c  P0- 

(2) P0 and p;  have the same least element. 

(3) There is a pair of continuous functions f, g: p ;  ~ p;  such that 
f # g and f ( x ) =  g(x) for every xE po. 

We arbitrarily choose such Po and p;  and fix them. For example, if we set 
po = {A_} a n d p ; =  {_k, T}  (_1_ < T),  then (Po, P;) satisfies the above con- 
ditions. 

Then we define W P  as the subcategory of W C P O  obtained from W C P O  
by restricting the objects as follows: 

(1, 1)e  [WPI, (po, p~)) e [WP[, 

if (a,a')elWP] and (b,b')E[WPI then (a,a')x(b,b')elWP[ and 
(b, b') (a'a') e [WPI. 

8.8. LEMMA. We define two arrows 0': 
0': (Po, P'o) (p°'p6) --* (Po, P'o) in W P  by 

q~'(x)(y) = x for 

~b'(f) = f(_l_) for 

(Po, P;)  -* (Po, p;)(po,p6) a n d  

x, yep'o, 

f s p'o p6. 
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Then ((~', ~'): (Po, P'o) ~ (Po, P'O) (p°'p6) is a retraction pair, and P = 
{(id(i,1), id(i.1)), (id(p0.p6), id(p0.p6))} and Q = {(q~', ~')} satisfy the conditions 
of  Theorem 7.5. So we can define the generated retraction map category 
RWP of  WP f rom P u Q. 

Proof  Clear. l 

8.9. PROPOSITION. Let V be the set o f  objects o f  WP inductively defined 
as follows: (Po, P'o) ~ V; i f  (a, a') ~ V and (b, b') ~ V then (b, b') (a'a') ~ V. 
Then V is an object o f  E*(WP, RWP) and V =  V v. Moreover the 2-algebra 
9~(E*(WP, RWP), V, l ID v], l ID v]) is not a 2-modeL 

Proof Let 93/= 9X(E*(WP, RWP), V, [ID v], l ID v]). Suppose 9J/is a 
2-model. Then, by Fact 6.3, E*(WP, RWP) has enough points at V w.r.t. 
V. Because all retraction pairs in P u Q defined in Lemma 8.8 are upper 
injective, RWP is also upper injective. By Proposition 6.5, WP has enough 
points at (a, a') w.r.t. (b, b') for every pair of (a, a'), (b, b') e V. Especially 
we set (a, a') = (b, b') = (Po, P;)- For every pair of arrows f, g: (Po, P;) -~ 
(Po, P~), if f #  g, then there exists an arrow h: (1, 1) ~ (Po, P~) in WP such 
that f o b  ¢ gob. That is, there exists x ~ p o  such that f ( x ) ¢  g(x). This con- 
tradicts condition (3) in Definition 8.7. Hence 93l is not a 2-model. | 

9. RECONSTRUCTION OF P,o 

In this section we will examine the relation between Po~ and e-categories. 
We will reconstruct P,o under the e-category method. First we will define a 
complete order-enriched ccc PFN. Roughly speaking, P F N  consists of 
{xi ..... xn} as objects and continuous functions on them, where Xm,..., xn are 
finite subsets of co. Next we will define a retraction map category RFN 
using Theorem 7.5. Finally we will show that EFN = E(PFN, RFN) has a 
reflexive object and that the generated 2-model from EFN with the 
reflexive object is isomorphic to P~o. 

9.1. DEFINITION. We define some notat ions about the set co of all 
natural numbers: 

(i) We define PFN as the set of all a = {x 1 ..... xn}, where 0 ~< n, each 
xi is a finite subset of co, and a satisfies the condition: U b e a for any subset 
b c a. Note that each element of PFN is a cpo under the set inclusion = as 
the partial order relation. 

(ii) F o r m ,  n~co, 

(m,  n )  = ½ ( m + n ) ( m + n +  1)+n.  
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(iii) 

(iv) 
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For n e co, e, = {ko, k 1 ..... km_ 1} with 

rn--1 

k o < k l < " '  < k  m_l iff n =  ~ 2 k'. 
i = 0  

For finite subsets x, y ~ co, 

(x, y )  = {(m, n ) [ m E x a n d n e y } .  

9.2. DEFINITION. Let p, q ~ PFN: 

(i) For continuous function f :  p ~ q, 

graphP'q(f) = { (m, n ) l e n ~ p and m ~ f ( e , )  }. 

(ii) FS(p, q) = {zf (Sf)  ( f  is a continuous function from p to q and 
z c graphp,q(f))}. 

(iii) For each z E FS(p, q), funP,q(z) is the continuous function from p 
to q defined by 

funP'q(z)(x)-- {m ] (~en c x)( (m, n ) ~ z)} 

for x ~ p. 

(iv) P S ( p , q ) = { ( x ,  y ) l x s p a n d  y e q } .  

Note that 

FS(p, q ) :  {zLz~ { (m, n ) [ m ~  U q and enep}}  ePFN.  

The above graph p,q and fun p'q come from graph and fun which appear in 
the P,o-construction. As well as graph and fun in Po,, graph p'q and fun p,q 
have the following properties: 

(1) funP'q(graphP'q(f))=f, for every continuous function f :  p---, q; 
and 

(2) graphP'q(funP'q(z)) ~ z, for every z e FS(p, q). 

9.3. DEFINITION. We define the canonical complete order-enriched ccc 
PFN: 

(a) The objects of PFN are syntactically defined as follows: 

(1) for every p ~ PFN, Cp is an object of PFN, and 

(2) if a and b are objects of PFN then ( a x b )  and (b a) are also 
objects of PFN. 
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(b) For each object a of PFN,  we define v(a) ~ PFN as follows: 

(1) p, 
(2) v (axb)=PS(v (a ) , v (b ) )  ( = { ( x ,  y ) l x e v ( a )  and yev(b)} ) ,  

and 

(3) 
to v(b)}. 

v(b a) = {graph"(al'~(b)(f)If is a continuous function from v(a) 

For each pair of objects a and b of PFN,  the arrows from a to b in P F N  
are all continuous functions from v(a) to v(b). 

(c) We define the structure of order-enriched ccc in PFN. Let a, b, 
and c be objects of PFN:  

(1) For each pair of arrows f, g e P F N ( a ,  b), 

f ~< g iff f ( x )  c g(x) for all x ~ v(a). 

(2) l = c i ~  / and ! aePFN(a ,  1) is defined by 

!~(x) = ~ for x ~ v(a). 

(3) ~,b e P F N ( a  x b, a) and ~,b e P F N ( a  x b, b) are defined by 

~7'b((x, y ) ) = X  and ~ 'b ( (x ,  y ) ) = y  

for (x ,  y ) e v ( a x b ) .  

For each pair o f f e  PFN(c,  a) and g e PFN(c,  b), ( f  g )  e PFN(c,  a x b) 
is defined by 

( f  g ) ( z ) =  (,f(z), g(z))  for xev(c) .  

(4) ev a'b s PFN(b  a x a, b) is defined by 

( f  g ) ( z ) =  (,f(z), g(z))  for xev(c) .  

(4) ev a,b e PFN(b  a x a, b) is defined by 

eva'b((graphVIa)'~(b)(f), x )  ) = f ( x )  

for (graphV(a)'vlb)(f), x )  ~ v(b ~ x a). 

(This is well defined, because graph p'q is one-to-one by the remark (1) 
below Definition 9.2.) For each f s  PFN(c  x a, b), A ( f ) ~  PFN(c,  b a) is 
defined by 

A( f ) ( z )  = graphV(a)'"(b)(kz) for z e v(c), 
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where k~ is the continuous function from v(a) to v(b) defined by 

k z ( x ) = f ( ( z , x ) )  for x~v(a) .  

9.4. LEMMA. PFN is really a canonical complete order-enriched ccc. 

Proof Clear. Here note that 

f~< g iff graph~(a),~(b)(f) c graphV(a>(b)(g). | 

9.5. DEFINITION. (i) We define 

P = { (i, j): Cp ~ Cq I P, q ~ PFN and p c q }, 

where (i, j): Cp--. Cq is the retraction pair in P F N  defined by 

i(x) = x for x ~ p, 

J ( Y ) = U  { z ~ p l z c y }  for y~q .  

(ii) We define 

QI = {(i, j): C es(p,q ) ~ Cp x C q Ip, q ~ PFN},  

where (i, j): Cps(p,q ) ~ Cp x c a is the retraction pair in PFN defined by 

i ( (x ,  y ) ) =  (x ,  y )  = j ( ( x ,  y ) )  

for each (x ,  y )  • eS(p ,  q)( =v(cp x Cq)). 

(iii) We define 

02 = {(i, j): CFS(p,q) ~ (Cq) ~ [P, q e PEN}, 

where (i, j): CFS(p,q) ~ (Cq) ~ is the retraction pair in PFN defined by 

i(z) = graphP'q(funP'q(z)) for z e FS(p, q), 

j ( z ' )  = z '  

(Note that j o i ~> idc~s(~,q~ 
below Definition 9.2.) 

for Zt EI)((Cq)Cp). 

and ioj=id%~c~ by the remarks (1) and (2) 

9.6. PROPOSITION. Let Q = Q1 U Q 2 .  Then P and Q satisfy the conditions 
in Theorem 7.5. So we can define the generated retraction map category 
RFN of P F N  from P ~ Q by Theorem 7.5. 

Proof We will show that condition (2) in Theorem 7.5 is satisfied. The 
rest is clear. 
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Let p, q, p', q' ~ P F N  be given, and suppose p c p' and q c q'. We define 
the objects a, a', b, b', c, and c' of P F N  by a = Cp, a '=  cp,, b = Cq, b '=  Ca,, 
c = CFSW,q), and c' = CFS~,',q'). Then clearly FS(p,  q) c FS(p' ,  q'). There are 
three retraction pairs uniquely defined in P: 

(ia, j a ) : a ~ a ' ,  

(ib, Jb): b ~ b', 

(ic, j c ) : c ~ c ' ,  

and two retraction pairs uniquely defined in Q: 

We define 

(i, j): c ~ b a, 

( i ' , j ' ) :c '  ~ b  '~'. 

(i[ja, it,], j[ ia,  Jb]) = (ib, jb) (i"O~) 

(=  (A(iboev ab o (idbo x j~)), A ( j  b oev a''b' o (ida,o, x ia))). 

Then we must show that 

i[j,,, ib]o i=  i'o i~ 

j ° j [ i a ,  jb] = j  oj', 

which the following figure illustrates: 
a I 

a b ~ ( i ' , ]  ' /  
b 

( i  , j )  FS(p '  , q ' )  
) 

C=C C C 
F S ( p , q )  

We will show the first equation i [ j  a, ib] o i=  i 'oi  c. Let z ~ F S ( p ,  q ) c  
FS(p',  q'). It can be proved that 

(i[j,,, ib ] ° i)(z) = graphP"q" (ib o funP'q(z) o Ja) 

(i'o ic)(z) = graphP"q' (funP"q'(z)). 

For every x' E p', 

(ib ofUnP'q(z)oja)(x ') = {m I (3e. c ja(x'))( <m, n> ~ z)} 

and 

funP"q'(z)(x ') = {m[ (3e, c x ' ) ( < m ,  n )  ~z)}. 
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If ( m , n ) ~ z ,  then e ~  p (=p ' ) .  For every ene p c  p', 

e. j~(x ) = U { x ~ p [ x c x ' }  iff en~X '  

Thus, for all x '~  p', 

( ia o funP'q(z) o j~)(x') = funP',q' (z)(x'). 

Therefore i l ia,  ib] o i = i' o ic. 
Next we will show that j o j [ i ~ , j b  ] = j o j ' .  Let graphP',q'(f ')ev(b 'a') 

Then, we can prove the following: 

(ioj[i~,  JbJ)(graphP"q'(f')) 

= graphP'q(jb o f '  o ia) 

= { < m ,  n> e , , e p a n d m e ~ { y e q [ y c f ' ( e , , ) } }  

and 

(Jc ° J')(graphP"q' ( f ' )  ) 

= jc(graphP',q' ( f )  ) 

= ~) {z ~ rS (p ,  q) lz ~ graphP',q'(f')} 

= U {graphP'q( f ) I f  is a continuous function from p to q 

and graphP,q(f) c graphP',q' ( f  ') }. 

Because (Jb' ° f ' °  i~)(x) c f ' ( x )  for every x e  p, 

graphP'q(jb o f ' o  i~) c graphP',q' ( f  '). 

So graphP, q(j b o f '  o i ~) c (Jc ° f )(graphP"q' ( f ' )  ). 
Conversely let (m,  n ) ~  (jcoj')(graphP',q'(f ')) be given. Then there is a 

continuous function f from p to q such that 

( m, n ) ~ graph P,q ( f ) ~ graph P',q' ( f ' ). 

Because e. ~ p, m ~ f (en)  ~ q and f (e~)  ~ f ' (en)  , 

( m, n )  ~ graphP,q(j b o f ' °  ib ). 
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Hence graphP'q(jbof' o i.) = (jc oj')(graphP"q'(f')). Since graphP"q'(f ') is 
arbitrary, we conclude that 

i°j[ia, jb]=jc° j ' .  | 

9.7. PROPOSITION. Let E F N  = E(PFN,  RFN). We define U as the set of 
all Cpe [PFN[, where pePFN.  Then U is an object of  EFN, U c  U U and 
I[U, UU]oJ[U, U ~]=IDUv. Moreover Po, and 9J/=gJ/(EFN, U, 
I[U, Uv], J[U, U~]) are isomorphic. That is, there is a bijective function 
from Po, onto 9Jl that preserves the application ", and the elements k and s. 
(The definition of isomorphism between two 2-algebras appears in Barendregt 
(1984).) 

Proof It is clear that U is really an object of EFN. We show that 
U c  U v. Let d e  U. Then d =  c r for some re  PFN. There are finite subsets x, 
Y c c0 such that 

U r =  {(m, n ) l m e y a n d n e x } ,  

since ( - , - )  is a one-to-one map from co x ~o onto ~o. 
Define 

q = { z l z c y } .  

Then p ~ PFN and q e PFN. For every v e r, 

and so 

Hence r = FS(p, q). Therefore cr <<. CFS(p.q) ~ (Cq) cp e U U and cr e U v. Since 
d =  cr is arbitrary, U c  U U. 

Next we show that I[U, U v] oJ[U, U v] = IDly .  Because all the retrac- 
tion pairs in Pro Q1 ~o Q2 defined in Definition 9.5 are lower injective, the 
generated retraction map category RFN is lower injective, too. Here we use 
Lemma 2.3. By Lemma 5.2(vii), (I[U, UV], J[U, UU]) is lower injective, 
namely, I[U, U ~] oJ[U, U v] = IDuv. 

643/71/1-2-6 
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For the proof that Po~ and 932 are isomorphic, we need the precise con- 
struction of 9J/, the definition of P~ as a 2-model, and the definition of 
isomorphisms between two ;.-algebras, which appear in Barendregt (1984). 
We only go through the key points of the proof. 

First we will show that EFN(1, U) and EFN(U, U) correspond to P~ 
and [P~o ~ Po~], respectively, where [Po~ ~ Po~] means the set of all con- 
tinuous functions from Po) to Po. We define the pair of functions 
K: EFN(1, U) ~ Po, and L: EFN(U, U) ~ [Po ~ P~)] by 

K(H)=  ~ {h(~)[heH} for H e E F N ( I ,  U), 

L(F)(x) = U {f(Y)IY c x, f ~ F, and 

(3p ~ PFN)(dom(f) = Cp and y e p) } 

for F~ EFN(U, U) and x ~ P~. 

Clearly K and L are bijective. Indeed the following K-1 and L-~ are the 
inverse functions of K and L, respectively: 

K- l (x)  = {h [ (3p ~ PFN)(h ~ PFN(1, Cp) and h(3Zl) ~ x)} 

for x ~ P ~ ,  

L-~(k) = { f  ] (3p, q ~ PFN)(f~ PFN(cp, Cq) and 

(Vx~p)( f (x)ck(x))}  for k~ [Po~-~Po~]. 

Moreover K and L preserve the order and satisfy the property: K(Fo H)= 
L(F)(K(H)) for every pair of F e  EFN(U, U) and H e EFN(1, U). These can 
be shown by simple calculation. 

Next we define the pair of functions q~: EFN(1, U ) ~ E F N ( U ,  U) and 
gt: EFN( U, U) ~ EFN(1, U) by 

q~(H)=EVU'Vo(I[U, UU]oHo!u, IDv) for HeEFN(1 ,  U), 

~ ( F ) =  J[U, UV]oA(FoH~ ,~) for FEEFN(U,  U). 

Then ~ and T correspond to graph and fun in Po~, respectively. Here we 
repeat the definitions of fun and graph in Po~ : 

fun(z)(x)={ml(~encx)((m,n)~z)}  for z, xeP,~, 

graph(f) = { (m, n) lm ~f(e,)} for f e  [P,o --* P~]. 

We will show that 

L(qS(H)) = fun(K(H)) 

K(~U(F)) = graph(L(F)) 

for every H e EFN(1, U), 

for every F e  EFN(U, U). 
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Let H • E F N ( 1 ,  U) and x • P ~ .  I f y • p • P F N ,  then we can prove that 

{ f ( y )  I f •  ~ (H)  and do ra ( f )  = Cp} 

-~ U {( eVcp'cq ° ( i[ C FS(p,q) ' ( C q)cp ] oh o !~, id~p))(y)[ 

q • P F N  and h • H(I ,  CFS(p, q)) } 

= U {funP'q(h(~))(Y)[q e P F N a n d  h • 1, CFs(p,q))}. 

Thus 

L(q)(H))(x) 

= ~) { f ( Y ) l Y ~ x ,  feq~(H),  

and (3p e PFN) (dom( f )  = cp and y e p) } 

= ~) {funP,q(h(~))(y)lp,  q e P r U ,  y E p ,  y c x ,  

and h e H(1, Crs(p,q)) } 

= {m [ (3p, q e PFN)(3h • H(1, CFS(p.q)))(3e. e p) 

(en C X and (m,  n ) e h(~3()) } 

= {m] ( 3 e . = x ) ( 3 h e H ) ( ( m ,  n )  e h ( ~ ) ) }  

= {ml ( 3 e . ~ x ) ( ( m ,  n )  e K(H))} 

= fun(K(H)). 

On the other hand, if F e  EFN(U,  U), then 

K(7"(F)) = [_) {h(.@)lhe T(F)} 

= U {(j[CFS(p,ql, (Cq)C'] ° A ( f o  z~{'cp))(~)[ 

p, q e PFN and f • F(cp, Cq) } 

= U {graphP'q(f)[P, q • PFN and f •  f(Cp, Cq) } 

= { (m, n ) l ( 3 p  • P F N ) ( ? f •  F) (dom( f )  = cp, 

e n • p, and m • f (en) )}  

= {(m, n)[rn•L(F) (en)}  

= graph(L(f)) .  

From the above arguments we can conclude that P~ and 
isomorphic. | 
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