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1. Introduction

The dyadic maximal operator on R
n is defined by

Mdφ(x) = sup

{
1

|Q |
∫
Q

∣∣φ(u)
∣∣du: x ∈ Q , Q ⊆ R

n is a dyadic cube

}
(1.1)

for every φ ∈ L1
loc(R

n) where the dyadic cubes are the cubes formed by the grids 2−N
Z

n for N = 0,1,2, . . . .
As it is well known it satisfies the following weak type (1,1) inequality

∣∣{x ∈ R
n: Mdφ(x) > λ

}∣∣ � 1

λ

∫
{Mdφ>λ}

∣∣φ(u)
∣∣du (1.2)

for every φ ∈ L1(Rn) and every λ > 0 from which it is easy to get the following L p inequality

‖Mdφ‖p � p

p − 1
‖φ‖p (1.3)

for every p > 1 and every φ ∈ L p(Rn) which is best possible (see [1,2] for the general martingales and [13] for dyadic ones).
An approach for studying such maximal operators is the introduction of the so-called Bellman functions (see [5]) related

to them which reflect certain deeper properties of them by localizing. Such functions related to the L p inequality (1.3) have
been precisely evaluated in [3]. Actually defining for any p > 1,

Bp(F , f , L) = sup

{
1

|Q |
∫
Q

(Mdφ)p: AvQ
(
φp) = F , AvQ (φ) = f , sup

R:Q ⊆R
AvR(φ) = L

}
(1.4)
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where Q is a fixed dyadic cube, R runs over all dyadic cubes containing Q , φ is nonnegative in L p(Q ) and the variables
F , f , L satisfy 0 � f � L, f p � F which is independent of the choice of Q (so we may take Q = [0,1]n) it has been shown
in [3] that

Bp(F , f , L) =
⎧⎨
⎩

Fωp(
pLp−1 f −(p−1)Lp

F )p if L <
p

p−1 f ,

L p + (
p

p−1 )p(F − f p) if L � p
p−1 f ,

(1.5)

where ωp : [0,1] → [1,
p

p−1 ] is the inverse function of H p(z) = −(p − 1)zp + pzp−1. Actually this has been shown in a much
more general setting of tree like maximal operators on probability spaces and the corresponding Bellman function is always
the same. Also in [4] Bellman functions related to local L p, Lq inequalities have been determined, which turned out to be
considerably more complicated than those in (1.5).

For more information and results on the Bellman approach we refer to [5–7] and for exact determinations of various
Bellman functions (which usually is a difficult task) see [1–3,8–12].

One may look at (1.4) as an extremum problem which reflects the deeper structure of the dyadic maximal function since
it encodes information not only about the size of the function but also a measure of its variance. In this spirit we will study
here a corresponding extremum problem for the standard weak-L p quasi-norms. Therefore we define

Bp,∞(F , f , L) = sup

{
1

|Q | ‖Mdφ‖p
Lp,∞(Q ): AvQ (φp) = F , AvQ (φ) = f , sup

R:Q ⊆R
AvR(φ) = L

}
(1.6)

where ‖Mdφ‖Lp,∞(Q ) = sup{λ|{Mdφ � λ} ∩ Q |1/p: λ > 0} is the corresponding local weak-L p quasi-norm. In this note we
will among other things explicitly compute the above function.

Actually as in [3] we will take the more general approach of defining Bellman functions with respect to the maximal
operator on a nonatomic probability space (X,μ) equipped with a tree T (see Definition 1.1). Then we can define the
maximal operator associated to T as follows

MT φ(x) = sup

{
1

μ(I)

∫
I

|φ|dμ: x ∈ I ∈ T
}

(1.7)

for every φ ∈ L1(X,μ). The above maximal operator is related to the theory of martingales and satisfies essentially the same
inequalities as Md .

Next we let G : [0,+∞) → [0,+∞) be a strictly convex and increasing function and such that limx→+∞ G(x)
x = +∞ and

for any f , F , λ such that 0 < f < λ, G( f ) < F we define

DG(λ, f , F ) = sup

{
μ

({MT φ � λ}): φ � 0, φ ∈ L1(X,μ),

∫
X

φ dμ = f ,

∫
X

G ◦ φ dμ = F

}
. (1.8)

Then we will in Theorem 1 find the exact form of the above function. This gives the best possible behavior of the distribution
function of the maximal operator and can be thought of as a sharp refinement of the classical weak type inequality (1.2).

Using this we will then solve corresponding to (1.6) local extremum problems but with the more general functional
sup{H(λ)μ({Mdφ � λ}): λ > 0} where H is another convex function (in a sense at most as strong as G) and then we will
use this to find the solution of extremal problems like (1.6) but with mixed norms.

A common feature in all those computations is that the corresponding functions are independent from the particular
tree T used, and therefore we have suppressed the T from them.

2. The main result

As in [3] we will let (X,μ) be a nonatomic probability space (i.e. μ(X) = 1). Two measurable subsets A, B of X will be
called almost disjoint if μ(A ∩ B) = 0. Then we give the following.

Definition 1. A set T of measurable subsets of X will be called a tree if the following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have μ(I) > 0.
(ii) For every I ∈ T there corresponds a finite subset C(I) ⊆ T containing at least two elements such that:

(a) the elements of C(I) are pairwise almost disjoint subsets of I ,
(b) I = ⋃

C(I).

(iii) T = ⋃
m�0 T(m) where T(0) = {X} and T(m+1) = ⋃

I∈T(m)
C(I).

(iv) We have limm→∞ supI∈T(m)
μ(I) = 0.



406 A.D. Melas, E. Nikolidakis / J. Math. Anal. Appl. 348 (2008) 404–410
The elements of such a tree T behave in a similar to the dyadic cubes manner, in particular if the intersection of two
elements of T has positive measure then one is contained in the other. For more details as well as for a proof of the
following lemma we refer to [3].

Lemma 1. For every I ∈ T and every α such that 0 < α < 1 there exists a subfamily F(I) ⊆ T consisting of pairwise almost disjoint
subsets of I such that

μ

( ⋃
J∈F(I)

J

)
=

∑
J∈F(I)

μ( J ) = (1 − α)μ(I). (2.1)

Also we will need the following.

Lemma 2. Let G be a convex increasing function on [0,+∞) such that limx→+∞ G(x)
x = +∞ and let (Y ,μ) be a nonatomic measure

space with δ = μ(Y ) < +∞. Then given α,β > 0 there exists a nonnegative measurable function ψ on Y such that
∫

Y ψ dμ = α and∫
Y G ◦ ψ dμ = β if and only if δG( α

δ
) � β .

Proof. One direction is just Jensen’s inequality. For the other if δG( α
δ
) � β for any t such that 0 < t � δ we choose a

measurable subset C(t) of Y such that μ(C(t)) = t (this is possible since μ is nonatomic) and define ψt = α
t χC(t) . Clearly∫

Y ψt dμ = α and
∫

Y G ◦ ψt dμ = tG( α
t ). But now the assumptions on G,α,β easily imply that there exists t as above with

tG( α
t ) = β . �

Now we state the main result of this note.

Theorem 1. Let G be a C1 strictly convex increasing function on [0,+∞) such that limx→+∞ G(x)
x = +∞ and let 0 < f < λ, G( f ) < F

be given. Then DG(λ, f , F ) is equal to f
λ

when f G(λ)
λ

� F and it is equal to the unique solution k in (0,
f
λ
) of the equation

(1 − k)G

(
f − λk

1 − k

)
+ kG(λ) = F (2.2)

when f G(λ)
λ

> F .

Proof. Let φ � 0 be measurable and such that
∫

Y φ dμ = f and
∫

Y G ◦ φ dμ = F and consider the set E = {MT φ � λ}. It
is easy to see as in the dyadic case that E is the union of a family {Ii} (finite or countable) of pairwise almost disjoint
elements of T such that

∫
Ii

φ dμ � λμ(Ii). Let

k = μ(E), xi =
∫
Ii

φ dμ, ai = μ(Ii), yi =
∫
Ii

G ◦ φ dμ,

x̄ =
∫

X\E

φ dμ and ȳ =
∫

X\E

G ◦ φ dμ. (2.3)

We have

xi � λai,
∑

i

ai = k, x̄ +
∑

i

xi = f and ȳ +
∑

i

yi = F . (2.4)

Upon setting A = ∑
i xi the convexity of G implies

∑
i

ai G

(
xi

ai

)
�

∑
i

ai G

(∑
i xi∑
i ai

)
= kG

(
A

k

)
,

G

(
xi

ai

)
= G

(
1

μ(Ii)

∫
Ii

φ

)
� 1

μ(Ii)

∫
Ii

G ◦ φ = yi

ai
and

G

(
x̄

1 − k

)
= G

(
1

μ(X \ E)

∫
X |E

φ

)
� 1

μ(X \ E)

∫
X |E

G ◦ φ = ȳ

1 − k
. (2.5)

Hence

G

(
f − A

)
= G

(
x̄

)
� ȳ = F − ∑

i yi �
F − ∑

i ai G(
xi
ai

)
�

F − kG( A
k )

(2.6)

1 − k 1 − k 1 − k 1 − k 1 − k 1 − k
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which gives

Ck(A) = (1 − k)G

(
f − A

1 − k

)
+ kG

(
A

k

)
� F (2.7)

where λk = ∑
i λai �

∑
i xi = A � f .

Conversely given 0 < k < 1 and λk � A < f satisfying (2.7) we use Lemma 1 to choose a pairwise almost disjoint
family {Ii} of elements of T such that k = ∑

i μ(Ii) and then use Lemma 2 on Y = X \ ⋃
i I i we choose a nonnegative

measurable function ψ on Y satisfying
∫

Y ψ dμ = f − A and
∫

Y G ◦ ψ dμ = F − kG( A
k ) the condition in Lemma 2 being here

just (2.7). Thus by defining

φ = A

k

∑
i

χIi + ψχY (2.8)

it is easy to see that
∫

Y φ dμ = f and
∫

Y G ◦φ dμ = F and moreover since clearly MT φ � λ on
⋃

i I i we get DG(λ, f , F ) � k.

Thus DG(λ, f , F ) is the supremum of all k in (0,
f
λ
) for which there exists at least one A in [λk, f ) such that (2.7) holds.

Now observing that

C ′
k(A) = −G ′

(
f − A

1 − k

)
+ G ′

(
A

k

)
> 0 if

A

k
>

f − A

1 − k
(2.9)

that is when A � f k and since λ > f we conclude that (2.7) holds for some A as above if and only if it holds at A = λk.
But defining now

R(k) = (1 − k)G

(
f − λk

1 − k

)
+ kG(λ) (2.10)

the convexity of G implies that

R ′(k) = G(λ) − G

(
f − λk

1 − k

)
−

(
λ − f − λk

1 − k

)
G ′

(
f − λk

1 − k

)
> 0 (2.11)

for any k in (0,
f
λ
). Moreover R(0) = G( f ) < F and R(

f
λ
) = f G(λ)

λ
and these easily complete the proof of the theorem. �

It is obvious that when λ � f the expression DG(λ, f , F ) is equal to 1. Specializing now the above theorem to the case
G(x) = xp where p > 1 we get the following.

Corollary 1. For any p > 1, Dp(λ, f , F ) is equal to f
λ

when f p−1 < λp−1 � F
f and it is equal to the unique solution k in (0,

f
λ
) of the

equation

( f − kλ)p

(1 − k)p−1
+ kλp = F (2.12)

when λp−1 f > F .

In particular

D2(λ, f , F ) =
⎧⎨
⎩

f
λ

if f < λ � F
f ,

F− f 2

F−2λ f +λ2 if F
f < λ.

(2.13)

Next Theorem 1 implies that with f , F fixed the function k(λ) = DG(λ, f , F ) satisfies k(λ)G(λ) < F as λ → +∞ and so
since G(x)

x → +∞ that k(λ)λ → 0 as λ → +∞. Using this into (2.2) and letting λ → +∞ we get the following.

Corollary 2. We have for any G as in Theorem 1 that limλ→+∞ G(λ)DG (λ, f , F ) = F − G( f ). In particular if p > 1 we have
limλ→+∞ λpDp(λ, f , F ) = F − f p .

Remark 1. If Q is C1 strictly concave and increasing function on [0,+∞) satisfying limx→+∞ Q (x)
x = 0 then the proof of

Theorem 1 can be carried out with minor modifications and by reversing the inequalities to give that whenever 0 < f < λ

and 0 < F < Q ( f ) the corresponding function DQ (λ, f , F ) is equal to f
λ

when f Q (λ)
λ

� F and to the unique solution k in

(0,
f
λ
) of Eq. (2.2) with Q replacing G otherwise. Thus the function Dp(λ, f , F ) can be computed and for 0 < p < 1. In

particular for p = 1/2 we get

D1/2(λ, f , F ) =
⎧⎨
⎩

f
λ

if f < λ � (
f
F )2,

f −F 2

f −2F
√

λ+λ
if (

f
F )2 < λ.

(2.14)



408 A.D. Melas, E. Nikolidakis / J. Math. Anal. Appl. 348 (2008) 404–410
Remark 2. One can generalize the above result as follows. Instead of fixing the L1 norm and the higher “quasi-norm” defined
by G ◦ φ one could fix two quasi-norms a lower one and a higher one. To describe the result, given G is as in Theorem 1
and g another strictly convex and increasing function on [0,+∞) we define for any f , F , λ such that 0 < λ, G( f ) < F

DG,g(λ, f , F ) = sup

{
μ

({MT φ � λ}): φ � 0 measurable,

∫
X

g ◦ φ dμ = f ,

∫
X

G ◦ g ◦ φ dμ = F

}
. (2.15)

Then the following holds

DG,g(λ, f , F ) =DG
(

g(λ), f , F
)
. (2.16)

The proof in the case g(λ) > f is similar to that of Theorem 1 by taking xi = ∫
Ii

g◦φ dμ, yi = ∫
Ii

G ◦ g◦φ dμ, x̄ = ∫
X\E g◦φ dμ

and ȳ = ∫
X\E G ◦ g ◦ φ dμ in (2.3) instead and noting that xi � g(λ)ai by Jensen’s inequality and so A � g(λ)k, and, for the

lower bound, taking φ = g−1( A
k )

∑
i χIi + g−1 ◦ ψχY in (2.8) instead. If g(λ) � f then to show that DG,g(λ, f , F ) = 1 we

take A = f k for any k < 1 then take φ as before and let k → 1. Of course for the upper bound one could just use Theorem 1
for the function g ◦ φ since by Jensen’s inequality g(MT φ(x)) � MT (g ◦ φ)(x) for all x ∈ X .

Now we let H : [0,+∞) → [0,+∞) be a strictly convex and increasing function and such that H(0) = 0 and given any ψ

measurable in X we define

|ψ |H,∞ = sup
{

H(λ)μ
({|ψ | � λ

})
: λ > 0

}
. (2.17)

Then we consider the following

BG,H,∞(F , f ) = sup

{
|Mdφ|H,∞: φ � 0, φ ∈ L1(μ),

∫
X

φ dμ = f ,

∫
X

G ◦ φ dμ = F

}
. (2.18)

In view of the above corollary it is clear that this will be +∞ if H is stronger than G in the sense H(x)/G(x) → +∞ as
x → +∞. Next we prove the following.

Theorem 2. Assume G is a C2 increasing function on [0,+∞) satisfying G ′′ > 0 on (0,+∞), G(0) = G ′(0) = 0 and limx→+∞ G(x)
x =

+∞ and let H be a strictly convex and increasing function on [0,+∞), such that H(0) = 0. Moreover we assume that the function G
H

is increasing on (0,+∞). Then we have

BG,H,∞(F , f ) = H(τ ( F
f ))

τ ( F
f )

f (2.19)

where τ is the inverse of the function G̃(x) = G(x)
x on (0,+∞).

Proof. Fix f , F as in Theorem 1. Given φ � 0 be measurable and such that
∫

Y φ dμ = f and
∫

Y G ◦φ dμ = F , Theorem 1 and
the convexity of H implies that

H(λ)μ
({MT φ � λ}) � H(λ)DG(λ, f , F ) = H(λ)

λ
f �

H(τ ( F
f ))

τ ( F
f )

f (2.20)

when λ � τ ( F
f ). On the other hand the same theorem implies that there is φ as above with H(λ0)μ({MT φ � λ0}) � H(λ0)

λ0
f

where λ0 = τ ( F
f ). In particular this implies that BG,H ( f , F ) � H(λ0)

λ0
f . Hence in view of the other part of Theorem 1 upon

setting k(λ) to denote the unique solution of (2.2) when λ > λ0 the proof will be complete once we have shown that
H(λ)k(λ) is strictly decreasing on λ > λ0. Differentiating (2.2) with k replaced by k(λ) which is legitimate in view of the
implicit function theorem we easily get setting x(λ) = f −k(λ)λ

1−k(λ)
that

d

dλ
log H(λ)k(λ) = H ′(λ)

H(λ)
− k′(λ)

k(λ)
= H ′(λ)

H(λ)
− G ′(λ) − G ′(x(λ))

G(λ) − G(x(λ)) − (λ − x(λ))G ′(x(λ))
(2.21)

(the implicit function theorem can be applied since G(λ) − G(x(λ)) − (λ − x(λ))G ′(x(λ)) > 0) and this expression has the
same sign as

W (x) = H ′(λ)
[
G(λ) − G(x) − (λ − x)G ′(x)

] − H(λ)
[
G ′(λ) − G ′(x)

]
(2.22)

evaluated at x = x(λ). Moreover since f < λ we have 0 < x(λ) < λ and so it suffices to prove that W (x) � 0 on [0, λ]. But
W (0) = H ′(λ)G(λ) − H(λ)G ′(λ) � 0 since G is increasing and W (λ) = 0. Also
H
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W ′(x) = G ′′(x)
[−(λ − x)H ′(λ) + H(λ)

]
(2.23)

and so W ′(λ) > 0 and W ′ has at most one zero in (0, λ). These easily imply that W (x) � 0 on [0, λ] and thus complete the
proof of the theorem. �

Specializing the above theorem to the case where G(x) = xp , H(x) = xq where p > 1, 1 � q � p we easily get the
following.

Corollary 3. Given p > 1 and q with 1 � q � p we have for any nonnegative measurable φ that

‖MT φ‖q,∞ � ‖φ‖
p(q−1)
q(p−1)

p ‖φ‖
p−q

q(p−1)

1 (2.24)

and this is sharp in the sense that the right-hand side is the supremum of the left-hand side over all φ ’s with fixed L1 and L p norms. In
particular when p = q we get the sharp inequality

‖MT φ‖q,∞ � ‖φ‖q. (2.25)

Note that inequality (2.24) follows from (2.25) via Hölder’s inequality. The main point though is the sharpness of (2.24)
when the L1 and L p norms of φ are fixed. We also remark that in the case p = q the value of the L1 norm of φ does
not appear in the corresponding supremum which is in sharp contrast with the corresponding problem involving strong
L p norms mentioned in the Introduction.

Also specializing (2.16) to the case where G(x) = xp2/p1 , g(x) = xp1 where 1 � p1 < p2 and then using the above theorem
with H(x) = xq where p1 � q � p2 one easily obtains the following.

Corollary 4. Given p2 > p1 � 1 and q with p1 � q � p2 we have for any nonnegative measurable φ that

‖MT φ‖q,∞ � ‖φ‖
p2(q−p1)

q(p2−p1)

p2 ‖φ‖
p1(p2−q)

q(p2−p1)

p1 (2.26)

and this is sharp in the sense that the right-hand side is the supremum of the left-hand side over all φ ’s with fixed L p1 and L p2 norms.

Similar remarks as with Corollary 3 apply here.
Now let G be as in Theorem 2 and let q � 1. For any 0 < f < L and F > G( f ) we define

BG,q,∞(F , f , L) = sup

{∥∥max(MT φ, L)
∥∥q

q,∞: φ � 0, φ ∈ L1(μ),

∫
X

φ dμ = f ,

∫
X

G ◦ φ dμ = F

}
. (2.27)

This is a generalized version of the function defined in (1.6). Then using Theorems 1 and 2 we get the following.

Theorem 3. If G is as in Theorem 2 and q � 1 is such that x−qG(x) is increasing in x > 0 then we have

BG,q,∞(F , f , L) =
⎧⎨
⎩

τ ( F
f )q−1 f if f < L < τ( F

f )
1− 1

q f
1
q ,

Lq if τ ( F
f )

1− 1
q f

1
q � L.

(2.28)

In particular if p > 1 and p � q then

Bp,q,∞(F , f , L) =
⎧⎨
⎩

F
q−1
p−1 f

p−q
p−1 if f < L < F

q−1
q(p−1) f

p−q
q(p−1) ,

Lq if F
q−1

q(p−1) f
p−q

q(p−1) � L,

(2.29)

and so for any p > 1,

Bp,∞(F , f , L) =
{

F if f < L < F 1/p,

L p if F 1/p � L.
(2.30)

Proof. Given any φ as in (2.27) and any λ > f we have λqμ({max(Mdφ, L) � λ}) � Lq if λ � L and it is � λqDG(λ, f , F ). On
the other hand the proof of Theorem 2 implies that λqDG(λ, f , F ) is decreasing if λ > τ( F

f ). This combined with Theorem 1

implies that BG,q,∞(F , f , L) is equal to Lq if L � τ ( F
f ) and to max(Lq, τ ( F

f )q−1 f ) otherwise and this easily completes the
proof. �

Also by using Corollary 4 and defining
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Bp1,p2,q,∞(F , f , L) = sup

{∥∥max(MT φ, L)
∥∥q

q,∞: φ � 0 measurable,

∫
X

φp1 dμ = f ,

∫
X

φp2 dμ = F

}
, (2.31)

we get the following.

Corollary 5. Given p2 > p1 � 1 and q with p1 � q � p2 we have

Bp1,p2,q,∞(F , f , L) =
⎧⎨
⎩

F
q−p1

p2−p1 f
p2−q

p2−p1 if f < L < F
q−p1

q(p2−p1) f
p2−q

q(p2−p1) ,

Lq if F
q−p1

q(p2−p1) f
p2−q

q(p2−p1) � L.

(2.32)
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