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We study commutators between multiplication by a function, called the symbol,
and Riesz transformations on the Besov spaces. We characterize symbols, by poten-
tial capacity, for which the associated commutators are bounded. Clifford analysis
plays a key role in our approach. � 1999 Academic Press

1. INTRODUCTION

The study of commutators and their various generalizations plays an
important role in harmonic analysis, PDE and other related areas. Much
important work has been done in the past. We refer the reader to [CRW,
JP, CLMS, LMWZ] and the references therein. Recently, it was revealed
in [W1] that Clifford analysis provides a natural approach in the study of
commutators and other related operators on function spaces of Rn. For
example, the relation between Hardy space H1 and its dual BMO, and
Div�Curl theorem (see [CLMS]) in the theory of compensated compact-
ness can be associated with different parts of a bilinear form in certain
Clifford valued function spaces. The power of Clifford analysis is that, by
extending a function of n real variables monogenically (conju-analytically
if n=1) to a function of n+1 variables with values in a complex Clifford
algebra, one may use the ``analytic'' tools and associated function theory
effectively. Works of this kind include the generalization of the Plemelj
formula, the generalization of the three line theorems ([PS]), application of
Clifford analysis on singular integral, Hardy spaces, and harmonic functions
on Lipschitz domains and wavelets ([M1 and M2], [Mi]). One can also find
some fundamental results and tools of Clifford analysis in [S] and [GM].

In this paper, we characterize bounded commutators on the Besov
spaces on Rn. Potential capacity is used to measure the ``sizes'' of the sym-
bols of the commutators. Clifford analysis plays an important role in our
approach.
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Let C�0(R
n "[0]) be the set of all infinitely differentiable functions on

Rn"[0] with compact support. For : # R, the space B: is the Banach space
of functions on Rn obtained as the completion of C �

0 (Rn"[0]) under the
norm

& f &:={|R n
|!| 2: | f� (!)|2 d!=

1�2

.

Here f� is the Fourier transformation of f. The space B: is called a Besov
space if :>0. Clearly B0=L2(Rn).

For j=1, 2, ..., n, the j th Riesz transformation Rj is defined on C �
0 (Rn) by

Rj ( f )(x)=p.v.
cn

(2?)n |
Rn

xj&u j

|x&u| n+1 f (u) du.

For a function b on Rn and j=1, 2, ..., n, the commutator [b, Rj] is defined
by

[b, Rj]( f )(x)=b(x) Rj ( f )(x)&Rj (bf )(x), \f # C �
0 (Rn).

For 0<:<n, let I:(x)=|x|:&n, x # Rn. The :-Riesz capacity of a bounded
op set O/Rn is defined by

Cap:(O)=inf[& f &2
0 : I: V f �1 on O, f �0].

We note that Cap0(O)=|O| (obtained by letting : go to zero) is the
Lebesgue measure of O in Rn.

Denote by T (O) the tent of O in Rn+1
+ , which is

T (O)=[(x, y) # Rn+1
+ : the ball centered at x with radius y contains in O].

For a multi-index {=({0 , {1 ..., {n), let |{|={0+{1+ } } } +{n and

D{=
�{0

�y{0

�{1

�x{1
1

} } }
�{n

�x{n
n

.

The main result of this paper is

Theorem. Let b # L1(Rn, (1+|x| )&(n+1) dx) and k be a nonnegative
integer. For :=1�2, 2�2, 3�2, ..., n�2, the commutators [[b, Rj]]n

1 are bounded
on the Besov space B: if and only if there is a constant Ck such that

|
T (O)

:
|{|=2:+k

|D{b(x, y)|2 y2:+2k&1 dx dy�Ck Cap:(O) (1.1)
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holds for any bounded open set O/Rn. Here b(x, y) is the harmonic
extension of b.

It is proved implicitly in this paper that the ``if '' part of the theorem is
true for all :�0. We conjecture that the ``only if '' part is also true for all
nonnegative : (other than half integers). For :=0 and k=1, condition
(1.1) is equivalent to the measure |{b(x, y)| 2 y dx dy being a Carleson
measure, or b being in BMO. Therefore the main theorem in [CRW]
corresponds to the case :=0 (not covered here). However the method in
[CRW] cannot be used effectively to prove our theorem, because capacity
is not a localized quantity. We note also that for n=1, k=0 and
0<:�1�2, the theorem was proved in [CM] (see also related work on the
unit disk in [W2]).

Leaving more notations and terminologies later, let us outline roughly
our approach of the main result. By using Clifford analysis and some
technical results in Section 3, we prove in Section 5 that the commutators
[[b, Rj]]n

1 are bounded on the Besov B: if and only if the bilinear form

|
R+

n+1
F(Db) G dx dy

is bounded by C &F&: &G&&: . Here D is the Cauchy�Riemann operator,
F is a right monogenic function and G is a left monogenic function. Using
integration by parts, this result can be further refined as that the measure

:
|{| =m

|D{Db(x, y)|2 ym dx dy

is a (m+1)�2-Carleson measure and the following estimate holds:

} |R+
n+1

F(Dm+1b) Gym dx dy }�C &F&: &G&&: .

Here m is the greatest integer of 2:&1. Again using some technical results
in Sections 3 and 5, we conclude that the above refinement is equivalent to
that the measure

:
|{| =2:+k

|D{b(x, y)|2 y2:+2k&1 dx dy

is a :-Carleson measure. To obtain the main theorem, we then apply the
result in Section 4, which characterizes :-Carleson measures in terms of
potential capacity.

Preliminaries are in Section 2. Some technical results about Clifford
analysis are gathered in Section 3. Properties of the :-Carleson measures
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and their characterization in terms of potential capacity are studied in
Section 4. Section 5 contains the key approach of using Clifford analysis to
obtain the main theorem. Throughout this paper, the letter ``C'' denotes a
positive constant which may vary at each occurrence but is independent of
the essential variables or quantities. We always use bold case letters or
symbols for Clifford valued functions and function spaces.

2. PRELIMINARIES

In this section, we provide a minimum background of Clifford analysis
needed in this paper. For a rich resource, we refer the reader to [Mi, M1,
M2, GM, S and R].

The Clifford algebra C(n) is the 2n-dimensional algebra over C with the
standard basis

e< and eS=ej1
e j2

} } } ejs
, 1� j1< j2< } } } < js�n;

where S=[ j1 , ..., js ] is any ordered subset of [1, 2, ..., n],

and the rules

e0=e<=1, ej ek+ekej=&2$jk , ej =&ej , eR eS =eS eR .

Here 1� j, k�n, $jk equals one if j=k and zero otherwise; the overline is
for conjugation; and R and S are ordered subsets of [1, 2, ..., n]. Elements
in C(n) , called Clifford numbers, can be written as

*=:
S

*SeS with [*S ]/C.

Here *0=*[<] , denoted by Scalar(*), is called the scalar part of the
Clifford number *. The product of two Clifford numbers *=�S *SeS

and +=�S +S eS is defined by *+=�S, R *S +R eS eR . The magnitude of *
is |*|=- Scalar(**� ). We note that Scalar(*+)=Scalar(+*) (although
*+{+* in general). We observe also that |Scalar(*+)|�|*| |+| and |*+|�
C |*| |+|, where C is a positive constant depending only on n.

Suppose f=�S fS eS is a Clifford valued function, where [ fS ], the com-
ponents of f, are complex valued functions. We say f is in L p if |f | is in L p,
or equivalently if its components are in L p. For f # L p, the norm of f is
defined by &f&L p=& |f | &L p .
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For f, g in L2(0), define the pairing

( f, g) L2(0)=|
0

f g� dv.

Here dv is the Lebesgue measure on 0. Note that ( } , } ) L2(0) is not an
inner product for Clifford valued L2(0) space. However

(f, g)L2(0)=Scalar( f, g) L2(0)

is the inner product on L2(0) associated to the norm & }&L2(0) , and there-
fore we have

&f&2
L2(0)�|( f, f ) L2(0) | and |( f, g) L2(0) |�C &f&L2(0) &g&L2(0) .

We remark that under the pairing ( } , } )L2(R n) , the dual space of B: is B&: .
The Fourier transformation, convolution and harmonic extension can be

defined for Clifford valued functions. More explicitly, the Fourier transfor-
mation of a function f on Rn is

f� (/)=(2?)&n�2 |
R n

f (x) e&ix } ! dx, ! # Rn;

the convolution of two functions . and � on Rn is

. V �(x)=(2?)&n�2 |
Rn

.(x&u) �(u) du;

and the harmonic extension of f (x) onto Rn+1
+ is

f (x, y)=fy(x)=f V py(x),

where py(x)=cn( y�( |x|2+ y2) (n+1)�2) is the Poisson kernel and the con-
stant cn is chosen so that py@(!)=e&y |!|. Therefore fy@(!)=e&y |!| f� (!).

The Cauchy�Riemann operator is defined by

D= :
n

j=0

�
�xj

ej , (x0= y).

Here (x1 , ..., xn , y)=(x, y) # Rn+1
+ . Suppose f=�S fSeS is a Clifford

valued function defined on an open set 0�Rn+1
+ . The left and right actions

of D on f are defined, respectively, by

Df=:
n

0

:
S

�fS

�x j
ej eS and Dr f=:

n

0

:
S

�fS

�xj
eSe j .
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A function f on 0�Rn+1
+ is said to be left (or right) monogenic if Df#0

on 0 (or Drf#0 On 0). It is easy to see that D� D is the Laplacian. There-
fore left (or right) monogenic functions are harmonic functions.

For ! # Rn, write !=�n
j=1 ! jej . Define the characteristic functions /\(!)

by

/\(!)=
|!|\i!

2 |!|
, !{0. (2.1)

Suppose f # B0 (=L2(Rn)). It is well-known that f (x, y), the harmonic
extension of f onto Rn+1

+ , is left or right monogenic if and only if
/&(!) f� (!)=0 or f� (!) /&(!)=0, respectively. Some basic facts about
/\(!) are gathered in the following equalities:

/+(!)+/&(!)=1, /+(!) /&(!)=0, /\(!)=/\(!). (2.2)

Using the characteristic functions /\(!), we construct the following two
sets of right and left monogenic functions on Rn+1

+ . They play an important
role in this paper.

R=[f (x, y)=f V py(x)=f� (!) # C�
0 (Rn "[0]) and f� (!) /&(!)=0];

L=[g(x, y)=g V py(x): ĝ(!) # C�
0 (Rn "[0]) and /&(!) ĝ(!)=0].

We end this section with the following standard results. For self contain
we provide also proofs.

Lemma A. Suppose F and G are right and left monogenic on Rn+1
+ ,

respectively. If the boundary functions F0(x)=F(x, 0) and G0(x)=G(x, 0)
are in L2(Rn), then

F(x, y)+ :
n

j=1

Rj (F0) V py(x) ej =2F(x, y);

G(x, y)+ :
n

j=1

ejRj (G0) V py(x)=2G(x, y).

Proof. These identities are consequences of the Fourier transformation.
Indeed it is easy to verify that F(x, y)=F0 V pY (x), and using the fact that

Fy@(!)=e&y |!| F0@(!), Rj (F0)@ (!)=i
!j

|!|
F0@(!) and F0@(!) /&(!)=0,
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we have

Fy@(!)+ :
n

j=1

e&y |!| Rj (F0)@ (!) ej =2e&y |!| F0@(!) /+(!)

=2e&y |!| F0@(!)=2Fy@(!).

This yields the first formula. The second one can be established
similarly. K

Lemma B. Suppose : # R and { is a multi-index and f # R (or L). Then

&D{ f&:&|{|�C &f&: .

Moreover if :>0, k�[:] and j�0, then

"�k+1 f
�yk+1"

2

L2
2k+1&2:

=C &f&2
: and "� j f

�y j "
2

L2
2:+2 j&1

=C &f&2
&: .

Proof. These results are consequences of Plancherel's formula and the
identity

|
�

0
e&2y |!|y ; dy=

C;

(2 |!| );+1 , ;>&1.

For example

"�k+1 f
�yk+1"

2

L2
2k+1&2:

=|
R+

n+1 }
�k+1 fy@
�yk+1 (!) }

2

y2k+1&2: d! dy

=|
R+

n+1
|f� (!)|2 e&2y |!| |!|2k+2 y2k+1&2: d! dy

=C &f&2
: .

The proofs for others are similar. K

3. CALCULUS ON CLIFFORD VALUED FUNCTION AND
FUNCTION SPACES

We start with the following lemma which shows how to transfer the
derivatives in an integration which has a monogenic function as a factor of
the integrand.
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Lemma 3.1. Suppose k is a positive integer, G is left monogenic on Rn+1
+

and the Clifford valued function . # Ck(Rn+1
+ ) satisfies

(D{.) G(x, y) � 0 as |x| � �,

for all multi-indices { with |{|�k. Then

|
R+

n+1

�k(.G)
�yk y ; dx dy=|

R+
n+1

(Dk
r .) Gy; dx dy. (3.1)

Proof. Since G is left monogenic, we have �G��y=&�n
j=1 ej (�G��xj ).

Therefore

�k(.G)
�yk =

�k&1

�yk&1 \�.

�y
G&. :

n

j=1

ej
�G
�x j+ .

Using integration by parts on xj , together with the assumption that
(�.��xj ) G � 0 as |x| � �, we get

&|
R+

n+1
.ej

�G
�x j

dx=|
R+

n+1

�.

�xj
ejG dx.

Therefore

|
R+

n+1

�k(.G)
�yk y ; dx dy

=|
R+

n+1

�k&1

�yk&1 \�.

�y
G+ y; dx dy+|

R+
n+1

�k&1

�yk&1 \ :
n

j=1

�.

�xj
ejG+ y; dx dy

=|
R+

n+1

�k&1((Dr.) G)
�yk&1 y; dx dy.

By this iterative formula and the assumption, we can easily obtain formula
(3.1). K

As an application of Lemma 3.1, we prove the following theorem of
integration by parts, which is fundamental in Section 5.

Theorem 3.2. Suppose m is a nonnegative integer and B is left mono-
genic on Rn+1

+ with yB(x, y) # L�(Rn+1
+ ). Then there is a bilinear form

IIm( } , } ) on R_L such that for any F # R and G # L

|
R+

n+1
FB� G dx dy=

(&1)m

m ! |
R+

n+1
F(DmB� ) Gym dx dy+IIm(F, G). (3.2)

128 ZHIJIAN WU



Moreover the bilinear form IIm(F, G) can be estimated by

|IIm(F, G)|�C :
|{|+|{$|=m, |{$|�1

|
R+

n+1
|D{$F| |D{B� | |G| ym dx dy. (3.3)

To prove Theorem 3.2 we need the following result, which is also needed
later.

For ;>&1 and p�1, denote by L p
;=L p

;(Rn+1
+ ) the space of all Clifford

valued functions f defined on Rn+1
+ with the norm

&f&Lp
;
={|R+

n+1
|f (x, y)| p y ; dx dy=

1�p

.

Lemma 3.3. Suppose ;>&1, p�1 and the Clifford valued function
h # L p

; is harmonic. Let { be a multi-index and $>0. Then

(1) �R+
n+1 | y |{|D{h(x, y)| p y ; dx dy�C &h& p

L p
;
;

(2) y |{|D{h(x, y) � 0 uniformly as |x| � � or y � � for y>$;

(3) h(x, y+$) is in L�(R+
n+1);

For complex valued h and ;=0, Lemma 3.3 was proved in [W3]. For
;{0, the proof is similar.

Proof of Theorem 3.2. Assume k�1 is an integer. It is a standard result
(see for example [W3] for B is harmonic)

"yk+1 �k B
�yk "L�(R+

n+1)

�C &yB&L�(R+
n+1)

Therefore by Lemmas B and 3.3, we have

yk+1 �k

�yk [FB� G] � 0 as y � � or |x| � �.

Using integration by parts, it is hence easy to establish the formula

|
�

0
FB� G dy=

(&1)m

m ! |
�

0

�m

�ym [FB� G] ym dy, \x # Rn.

By Lemma 3.1, we have therefore

|
R+

n+1
FB� G dx dy=

(&1)m

m ! |
R+

n+1
(D m

r (FB� )) Gym dx dy. (3.4)
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For 0� j1 , ..., jm�n, denote by

}� =( j1 , ..., jm), D}� =
�m

�x j1
} } } �xjm

, e}� =ej1
} } } ejm

.

Let }=(}0 , }1 , ..., }n) with } l be the number of times of the integer l
appears in }� . Then D}� =D}. Since

Dm=:
}�

D}� e}� =:
}�

D}e}� ,

using Leibniz's rule we have

Dm
r (FB� )=:

}�

D}(FB� ) e}� =:
}�

:
{�} \

}
{+ (D}&{F)(D{B� ) e}� .

Note that �}� D}B� e}� =DmB� . Therefore (3.4) can be expanded further as

|
R+

n+1
FB� G dx dy=

(&1)m

m ! |
R+

n+1
F(Dm

r B� ) Gym dx dy

+
(&1)m

m !
:
}�

:
{<} \

}
{+ |

R+
n+1

(D}&{F)(D{B� ) e}� Gym dx dy.

This is enough to derive the desired result. K

The following estimate is needed in Section 5.

Lemma 3.4. Suppose _>&1, k is a positive integer and . # C�
0 (Rn+1

+ ).
Then

|
R+

n+1

|.(x, y)| 2

y2k y&_ dx dy�C |
R+

n+1
|Dk

r .(x, y)|2 y&_ dx dy.

Proof. We first show that

|
R+

n+1

|.(x, y)| 2

y2k y&_ dx dy�C |
R+

n+1 } �
k.(x, y)

�yk }
2

y&_ dx dy. (3.5)

In fact integrating both sides of the following trivial inequality

�
�y

|.(x, y)|2�2 |.(x, y)| } �.

�y
(x, y) }
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over the interval [0, y], we obtain

|.(x, y)|2=|
y

0

�
�x

|.(x, s)| 2 ds�2 |
y

0
|.(x, s)| } �.

�s
(x, s) } ds.

Integrating again the left and right sides of above inequality over the inter-
val [0, �) with respect to the measure y&_&2 dy, then using Fubini's
theorem, we get

|
�

0

|.(x, y)| 2

y2 y&_ dy�2 |
�

0
|

y

0
|.(x, s)| } �.

�s
(x, s) } ds

1
y2+_ dy

=2 |
�

0 \|
�

s

dy
y2+_+ |.(x, s)| } �.

�s
(x, s) } ds

=
2

1+_ |
�

0
|.(x, s)| } �.

�s
(x, s) } ds

s1+_ .

Applying Schwarz's inequality to the last integral above, we continue the
estimate by

�
2

1+_ \|
�

0 } �.

�s
(x, s) }

2

s&_ ds+
1�2

\|
�

0

|.(x, s)|2

s2 s&_ ds+
1�2

.

Therefore

|
R+

n+1

|,(x, y)| 2

y2 y&_ dx dy�
4

(1+_)2 |
R+

n+1 } �,

�y
(x, y) }

2

y&_ dx dy.

Replacing _ by _+2k&2 in above inequality, we have

|
R+

n+1

|.(x, y)|2

y2k y&_ dx dy

�
4

(2k+_&1)2 |
R+

n+1

|(�.��y)(x, y)|2

y2k&2 y&_ dx dy.

This iterative estimate yields (3.5).
We show next that

|
R+

n+1
|Dr .(x, y)|2 y&_ dx dy=|

R+
n+1

|D� r.(x, y)|2 y&_ dx dy. (3.6)
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In fact, using the identity DD� =D� D and integration by parts, we have

|
R+

n+1
(Dr.)(Dr.) y&_ dx dy=|

R+
n+1

(Dr.)(D� .� ) y&_ dx dy

=&|
R+

n+1
.(DD� .� &_y&_&1) dx dy

=&|
R+

n+1
.(D� D.� &_y&_&1) dx dy

=|
R+

n+1
(D� r .)(D� r .) y&_ dx dy.

The scalar part of above identity is (3.6).
Finally the desired result follows from estimate (3.5), the fact that

���y= 1
2 (Dr+D� r) and identity (3.6). K

We now turn to the Clifford valued function space L2
; . The following

lemma constructs a dense set in L2
; , which consists of left monogenic func-

tions and the image of the Cauchy�Riemann operator. This result is needed
in Section 3.

Lemma 3.5. For ;>&1, the set

S=[8(x, y)+ y&;Dr .(x, y): 8 # L, . # C�
0 (Rn+1

+ )]

is dense in L2
; . Moreover if 8 # L and . # C�

0 (Rn+1
+ ), then

&8� + y&;Dr.&2
L2

;
=&8� &2

L2
;
+&y&;Dr.&2

L2
;
.

Proof. The norm identity is trivial. For denseness, we only need to
show that for 9 # L2

; & C1(Rn+1
+ ) the equation

(9, Dr.)L2
0
=(9, y&;Dr.)L2

;
=0, \. # C�

0 (Rn+1
+ )

implies that 9� is left monogenic.
In fact, integration by parts yields

(D9� , .) L2
0
=&(9, Dr.) L2

0
=0.

This is enough to conclude that D9� #0. K
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4. :-CARLESON MEASURES

In this section, we study properties of :-Carleson measures and charac-
terize them in terms of capacity. Results here have little to do with Clifford
analysis.

A non-negative measure + on Rn+1
+ is called an :-Carleson measure if the

following inequality holds:

|
R+

n+1
| f V py(x)| 2 d+(x, y)�C & f &2

: , \f # C �
0 (Rn"[0]).

It is clear that in the above definition f can be replaced by a Clifford valued f.
0-Carleson measures are just the classical Carleson measures. For :�0,

:-Carleson measures can be characterized by the requirement that the
inequality +(T (B))�C |B| 1&(2:�n) holds for any open ball B/Rn (see for
example [T, p. 372] for :=0; [L] for :<0 and n=1). For :>0 and
n=1, characterizations of :-Carleson measures can be found in [St] and
[KS].

We need some definitions. Assume s>0. Let $s=(2?)&n�2 � |x| <s p1(x) dx.
For (x, y) # Rn+1 denote by Bs(x, y) the ball centered at (x, y) with
radius sy. For x # Rn, denote by 1s(x)=[(u, t) # Rn+1

+ : |u&x|�st] the
cone with vertex at x and opening s. For an open set O/Rn denote the
tent of O in Rn+1

+ with opening s by

Ts(O)=[(x, y) # Rn+1
+ : the ball centered at x with radius sy contains in O].

Given a function F defined in Rn+1
+ , the nontangential maximal function

(of opening s) of F is defined by

Ns(F)(x)= sup
(u, t) # 1s (x)

|F(u, t)|.

For _�0, define py
(_)@(!)=|!|_ e&y |!|. For a function g on Rn, let

A (0)
s (g)(x)=sup

t>0 \
1

|[u: |u&x|<t]| |[u: |u&x| <st]
| g(u)|2 du+

1�2

and

A (_)
s (g)(x)=\|1s(x)

| g V p (_)
t (u)| 2 t2_&n&1 du dt+

1�2

, if _>0.

Then

&A (_)
s (g)&0=Cs(n+1)�2 &g&0 . (4.1)
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In fact, for _=0 the above identity is standard, for _>0 straightforward
computation yields

&A (_)
s (g)&2

0 =|
Rn |1s (x)

| g V p (_)
t (u)| 2 t2_&n&1 du dt dx

=Csn+1 |
R+

n+1
| g V p (_)

t (u)|2 t2_&1 du dt

=Csn+1 |
R+

n+1
| ĝ(!)|2 |!|2_ e&2t |!|t2_&1 du dt

=Csn+1 &g&2
0 .

Lemma 4.1. Suppose p, s>0 and + is a non-negative measure on Rn+1
+ .

Then

|
R+

n+1
| f (x, y)| p d+(x, y)�C |

R+
n+1

|Ns(F ) V py(x)| p d+(x, y).

Proof. For t>0 let 0t=[(x, y) # Rn+1
+ : |F(x, y)|>t ]. It is standard

that

|
R+

n+1
|F(x, y)| p d+(x, y)=|

�

0
+(0t) dt p.

To estimate +(0t), consider any compact subset K of 0t . Associate each
point (x, y) # K with B(x; sy), which is the ball in Rn centered at x with
radius sy. Clearly the point (x, y) is in the tent Ts�2(B(x; sy)). Therefore the
set of tents [Ts�2(B(x, sy)): (x, y) # K ] covers K. By compactness, there
are finitely many tents [Ts�2(Bj )]m

1 cover K, i.e. K/�m
1 Ts�2(Bj ). Since

u # B(x; sy) if and only if (x, y) # 1s(u), it is easy to see that

Bj/Ot*=[x # Rn : Ns(F )(x)>t ]

holds for each j=1, 2, ..., m. Then K/�m
1 Ts�2(Bj )�Ts�2(Ot*), and there-

fore

+(0t)�+(Ts�2(Ot*)).

Let Ot*=� O j be the decomposition of the open set Ot* in Rn, where
each Oj is a connected open set and Oj & Ok=< if j{k. For each j, it is
clear that for any point, (x, y) # Ts�2(O j ),

1
t

Ns(F ) V py(x)�/Oj V py(x)�(2?)&n�2 |
|u|<sy�2

py(u) du=$s�2 .
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Thus Ns(F ) V py(x)�$s�2 t on � Ts�2(Oj )=Ts�2(Ot*). Therefore we have

+(Ts�2(Ot*))�+([(x, y) # Rn+1
+ : Ns(F ) V py(x)>$s�2 t ]).

This implies

|
�

0
+(0t) dt p�$&p

s�2 |
R+

n+1
|Ns(F ) V py(x)| p d+(x, y).

The proof is complete. K

Theorem 4.2. Suppose ;<:<n and the non-negative measure + is an
:-Carleson measure. Then the measure y2(:&;) d+(x, y) is a ;-Carleson
measure.

Proof. For :�0, the result is trivial. For :>0 and the ball B(u; t)/Rn,
let f (x)= pt(x&u). It is easy to verify that f V py(x)�Ct&n for all (x, y) #
T1(B(u; t)) and & f &2

:=Ct&n&2:. We have therefore

+(T1(B(u; t)))�Ct2n |
R+

n+1
| f V py(x)| 2 d+(x, y)�Ct2n & f &2

:�Ctn&2:.

Thus, if ;<0, then

|
T1(B(u; t))

y2(:&;) d+(x, y)�Ct2(:&;)+(T1(B(u; t)))�Ctn&2;.

This implies that y2(:&;) d+(x, y) is a ;-Carleson measure.
Assume now ;�0. First we note that, for 0<_<n, f is in B_ if and only

if f can be represent as f =I_ V g with & f &_=&g&0 . Let _=:; and write
Fg(x, y)= y_I; V g V py(x). It suffices to show that

|
R+

n+1
|Fg(x, y)| d+(x, y)�C &g&2

0 , \g # B0 .

Since + is an :-Carleson measure, by Lemma 4.1 and the identity (4.1) it
suffices to show that

Ns(Fg)(x)�CI: V A (_)
2s (g)(x). (4.2)
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Let \=s�(1+2s). For (x$, y) # Rn+1
+ , the volume of the ball B\(x$, y)

satisfies |B\(x$, y)|=Cyn+1. And for any (u, t) # B\(x$, y) we have 1�C�
t�y�C. Applying the mean value inequality to the subharmonic function
|I; V g V pt(u)|2 on the ball B\(x$, y), we have

|Fg(x$, y)| 2�
y2_

|B\(x$, y)| |B\(x$, y)
|I; V g V pt(u)|2 du dt

�C |
B\(x$, y)

|Fg(u, t)|2

tn+1 du dt.

Since B\(x$, y)/12s(x) for any point (x$, y) # 1s(x), we have

Ns(Fg)(x)�C {|12s(x)
|Fg(u, t)|2 t&n&1 du dt=

1�2

.

Finally, we notice that Fg can be represented as Fg(u, t)=t_I: V g V p (_)
t (u).

Hence the estimate (4.2) can be obtained by applying Minkowski's
inequality to the right hand side of the above estimate. K

Theorem 4.3. Let 0<\<1 and :<n. Suppose + is a nonnegative
measure on Rn+1

+ . Then + is an :-Carleson measure if and only if the average
of + defined by

d&(x, y)=\ |B\(x, y)|&1 |
B\(x, y)

d++ dx dy

is an :-Carleson measure.

Proof. Assume first that & is an :-Carleson measure. Let r=\�(1+\).
It is not hard to check that for any (x, y) # Rn+1

+ .

[(u, t) # Rn+1
+ : Br(u, t) % (x, y)]/B\(x, y)

and

|B\(x, y)|
(1+2\)n+1�|Br(u, t)|.

Applying the mean value inequality to the subharmonic function |F(u, t)|2

=| f V pt(u)|2 on the ball Br(u, t), together with Fubini's theorem, we have
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|
R+

n+1
|F(u, t)|2 d+(u, t)�|

R+
n+1

1
|Br(u, t)| |Br(u, t)

|F(x, y)|2 dx dy d+(u, t)

�(1+2\)n+1 |
R+

n+1
|F(x, y)| 2 d&(x, y)

�C & f &2
: .

Assume now + is an :-Carleson measure. Since the result is trivially true
for :�0, we assume :>0. Consider g # B0 . By Fubini's theorem, we have

|
R+

n+1
|I: V g V pt(u)|2 d&(u, t)=|

R+
n+1

|F(x, y)| 2 d+(x, y), (4.3)

where

F(x, y)=\|R+
n+1

|I: V g V pt(u)|2

|B\(u, t)|
/B\(u, t)(x, y) du dt+

1�2

.

Let s=\�(1&\). As in the proof of Theorem 4.2, we can get Ns(F )(x)�
CI: V A (0)

2s (g)(x). Applying this estimate, the identity (4.1) and Lemma 4.1
to the right hand side of (4.3), we can easily conclude that & is an
:-Carleson measure. K

Theorem 4.4. Suppose s>0 and 0<:�n�2. A non-negative measure +
on Rn+1

+ is an :-Carleson measure if and only if

+(Ts(O))=|
Ts(O)

d+(x, y)�C Cap:(O). (4.4)

holds for every bounded open set O/Rn.

This theorem generalizes the characterization of classical Carleson
measures ( the case of :=0). Our approach is similar to the proof in [St],
which pertains to the case n=1 on the unit disk of complex plane.

Proof of Theorem 4.4. We prove the ``only if '' part first. Let O=� Oj

be an open set in Rn, where Oj is connected open set and O & Ok=< if
j{k. By the definition of capacity, there is a test function g # B0 with g�0,
I: V g(x)�/O(x) and &g&2

0�2 Cap:(O). Let f =I: V g. Then & f &:=&g&0 .
As in the proof of Lemma 4.1, we have

f V py(x)�$s , \(x, y) # Ts(O).
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Therefore

|
Ts(O)

d+�$&2
s |

R+
n+1

| f V py(x)| 2 d+(x, y)�C & f &2
:�C Cap:(O).

We now prove the ``if '' part. Let Fg be the function defined in the proof
of Theorem 4.2 with _=0. Then as in the proof of Lemma 4.1, we have

+([(x, y) # Rn+1
+ : |Fg(x, y)|>t ])�+(Ts([x # Rn : N2s(Fg)(x)>t ])),

and N2s(Fg)(x)�CI: V A (0)
4s (g)(x). These, together with the assumption,

imply that

+(Ts([x # Rn : N2s(Fg)(x)>t ]))�Cap: \{x # Rn : I: V A (0)
4s (g)(x)>

t
C=+ .

Therefore

|
R+

n+1
|I: V g V py(x)| 2 d+(x, y)�C |

�

0
Cap:([x # Rn : I: V A (0)

4s (x)>t ]) dt2

It was proved in [A] that the integral on the right hand side of the above
estimate is bounded by C &A (0)

4s (g)&2
0 , and therefore bounded by C &g&2

0 .
This completes our proof. K

5. COMMUTATORS AND BILINEAR FORMS OF
MONOGENIC FUNCTIONS

In this section, we always assume that b is a complex valued function
and the commutators [[b, Rj]]n

1 are bounded on B0=L2(Rn), or equiv-
alently (see [CRW]) the symbol function b is in BMO. Therefore b #
L1(Rn, (1+|x| )&(n+1) dx) and sup(x, y) # R n |(�b��xj )(x, y)| y�C &b&BMO .
In fact, the following result indicates that the assumption is necessary.

Lemma 5.1. Suppose :>;�0 and 1� j�n. If the commutator [b, Rj]
is bounded on B: then it is bounded on B; .

Proof. In fact the boundedness of [b, Rj] on B: or on B&: (the dual
of B:) are equivalent. Therefore interpolation theory yields the desired
result. K

The following theorem ties the boundedness of the commutators with the
boundedness of certain bilinear form defined on the monogenic function
spaces.
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Theorem 5.2. The commutators [[b, Rj]]n
1 are bounded on B: if and

only if the bilinear from defined on R_L by

|
R+

n+1
F(x, y)(Db(x, y)) G(x, y) dx dy, \F # R, G # L (5.1)

is bounded by C &F&: &G&&: .

Proof. Let f and g in C �
0 (Rn"[0]) be complex valued functions and

1� j�n. Then

([b, Rj]( f ), g� ) =( fRj (g)+Rj ( f ) g, b� ) .

It is a straightforward computation that

fg& :
n

j=1

Rj ( f ) Rj (g)=& :
n

j=1

[ fRj (Rj (g))+Rj ( f ) Rj (g)].

Rj ( f ) Rk(g)&Rk( f ) Rj (g)= fRj (Rk(g))+Rj ( f ) Rk(g)

&[ fRk(Rj (g))+Rk( f ) Rj (g)].

Since Riesz transformations [Rj ]n
1 are bounded on B: , we conclude that

for 1� j, k�n the bilinear forms

( fRj (g)+Rj ( f ) g, b� ) L2(Rn) , � fg& :
n

j=1

Rj ( f ) Rj (g), b� �L2(Rn)

and

(Rj ( f ) Rk(g)&Rk( f ) Rj (g), b� ) L2(Rn)

are bounded (by C & f &: &g&&:) on B:_B&: if and only if the commu-
tators [[b, Rj]]n

1 are bounded on B: . Note that this statement is still true
if f and g are replaced by Clifford valued functions f and g, respectively.

For any f and g in C�
0 (Rn"[0]), let

F(x, y)=f V py(x)+ :
n

j=1

Rj (f ) V py(x) ej , (5.2a)

G(x, y)=g V py(x)+ :
n

j=1

ej Rj (g) V py(x). (5.2b)

It is easy to check that F and G are right and left monogenic functions
on Rn+1

+ , respectively. By Lemma A, we know also that functions
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F # R and G # L can always be written as (5.2a) and (5.2b), respectively.
Since

FG=fg& :
n

j=1

Rj (f ) Rj (g)+ :
n

j=1

[fejRj (g)+Rj (f ) ejg]

+ :
j{k

[Rj (f ) ej ek Rk(g)&Rk(f ) ejekRj (g)],

we conclude that the bilinear form

(FG, b� )L2(Rn) , \F # R, G # L

is bounded by C &F&: &G&&: if and only if the commutators [[b, Rj]]n
1 are

bounded on B: . It is easy to see that b(x, y) F(x, y) G(x, y) � 0 as y � �.
Therefore we can establish the formula

(FG, b� ) L2(Rn)=&|
R+

n+1

�
�y

[bFG] dx dy

Applying Lemma 3.1 to the integral on the right hand side above, we get
the desired result. K

When we apply Theorem 3.2 to the bilinear form (5.1), we get two
bilinear forms as displaced in (3.2) with B (x, y)=Db(x, y). We need to
show these two bilinear forms are bounded under appropriate conditions.
The following three theorems serve the purposes in a more general way.

Theorem 5.3. Suppose _>&1, :<n and B(x, y) is a harmonic function
on Rn+1

+ . Then the measure |B(x, y)| 2 y_ dx dy is an :-Carleson measure if
and only if the measure

:
n

j=0
} �B
�x j

(x, y) }
2

y_+2 dx dy

is an :-Carleson measure.

Proof. We start with the ``only if '' part. Using the reproducing formula
for harmonic function on the ball ([ABR, p. 157]), we have for 0� j�n

y2 } �B
�xj

(x, y) }
2

�
C

|B1�2(x, y)| |B1�2 (x, y)
|B(u, t)| 2 du dt, \(x, y) # Rn+1

+ .
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Therefore

:
n

j=0
} �B
�x j }

2

y2+_�
C

|B1�2(x, y)| |B1�2 (x, y)
|B(u, t)| 2 t_ du dt.

The desired result follows from Theorem 4.3.
For the ``if '' part, it suffices to show that for a complex valued harmonic

function b=B the result is true.
For F # R, G # L and , # C�

0 (Rn+1
+ ), consider the following identities

|
R+

n+1
F(x, y) b(x, y) G(x, y) y_ dx dy

=&
1

_+1 |
R+

n+1
F(x, y)(Db(x, y)) G(x, y) y_+1 dx dy,

|
R+

n+1
f(x, y)(Db(x, y)) ,(x, y) dx dy

=&|
R+

n+1
F(x, y) b(x, y) Dr,(x, y) dx dy

Since |Db|2=�n
j=0 |�b��x j |

2, we know by the assumption that |Db(x, y)| 2

y_+2 dx dy is an :-Carleson measure. Hence

} |R+
n+1

F(x, y) b(x, y) G(x, y) y_ dx dy }�C &F&: &G&L2
_
,

} |R+
n+1

F(x, y) b(x, y) Dr,(x, y) dx dy }�C &F&: " ,

y1+_"L2
_

�C &F&: &y&_Dr,&L2
_
.

The last estimate above is obtained by using Lemma 3.4.
Combine above two estimates together, we have

} |R+
n+1

F(x, y) b(x, y)(G(x, y)+ y&_ Dr,(x, y)) y_ dx dy }
�C(&F&:+&y&_ Dr,&L2

_
).

By Lemmas 3.5, we have therefore

|
R+

n+1
|F(x, y) b(x, y)| 2 y_ dx dy�C &F&2

: .

The proof is complete. K
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Suppose ;>&1 and B is a Clifford valued function on Rn+1
+ . Define the

bilinear form T ( } , } ) on R_L by

T (F, G)=|
R+

n+1
F(x, y) B(x, y) G(x, y) y; dx dy, F # R, G # L. (5.3)

Theorem 5.4. Suppose :<n and B is left monogenic on Rn+1
+ . Then

the bilinear form T (F, G), defined by (5.3), is bounded by C &F&: &G&L2
;

and |B(x, y)|2 y ;+2 dx dy is an (:&1)-Carleson measure if and only if the
measure.

|B(x, y)|2 y; dx dy

is an :-Carleson measure.

Proof. The ``If '' part follows from Theorem 4.2 and the following
estimate:

} |R+
n+1

FB� Gy ; dx dy }�C &FB� &L2
;

&G&L2
;
�C &F&: &G&L2

;
.

For the ``only if '' part, we prove first that

|
R+

n+1
|FB� |2 y; dx dy�C &F&2

: , \F # R. (5.4)

Because of Lemma 3.5 and the assumption that the bilinear form T is
bounded, we only need to prove that

|(FB� , Dr.) L2
0
|�C &F&: &y&;Dr.&L2

;
, \. # C�

0 (Rn+1
+ ).

In fact, using integration by parts, we have

(FB� , Dr.) L2
0
=|

R+
n+1

FB� D� (.� ) dx dy=&|
R+

n+1
(D� r(FB� )) .� dx dy

Since DB#0, we have

Dr(FB� )= :
n

j=0

�F
�xj

B� ej .
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By the assumption that the measure |B(x, y)|2 y;+2 dx dy is an (:&1)-
Carleson measure, we have therefore

|(FB� , Dr.)L2(R+
n+1) |�C \ :

n

j=0
"�F

�xj ":&1+ &y&;&1.&L2
;

�C &F&: &y&;Dr.&L2
;
.

This last inequality is obtained by Lemmas B and 3.4. Hence the estimate
(5.4) is proved.

Finally if we let F= f+�n
j=1 Rj ( f ) ej , then |F|2=FF� and therefore

|FB� |2=Scalar(BF� FB� )=|F|2 Scalar(BB� )=|F|2 |B|2.

Estimate (5.4) yields therefore �R+
n+1 |F|2 |B|2 dx dy�C &F&2

: . This is
enough. K

Theorem 5.5. Suppose _>&1, :<n and B is left monogenic on Rn+1
+ .

Then the measure

:
|{| =m

|D{B� (x, y)|2 y_ dx dy

is an :-Carleson measure if and only if the measure |Dm&k B� |2 y_ dx dy is an
(:&k)-Carleson measure for every k=0, 1, ..., m.

Proof. We show the ``only if '' part first. Since DB#0, we have
DB� =2(�B� ��y). This implies that the measure

|DmB� |2 y_ dx dy=22m } �
m B�

�ym }
2

y_ dx dy

is an :-Carleson measure. By Theorem 4.2, we know that the measure

:
|{$| =m&1

:
n

j=0
} �D{$ B� (x, y)

�x j }
2

y_+2 dx dy

is an (:&1)-Carleson measure. Therefore by Theorem 5.3, the measure

:
|{$| =m&1

|D{$B� (x, y)|2 y_ dx dy

is an (:&1)-Carleson measure. Repeating the process above, we get the
desired result.

The ``if '' part can be proved by induction on m. For m=1, it suffices to
show that for each j=0, 1, ..., n the measure |�B� ��xj |

2 y_ dx dy is an
:-Carleson measure. Since |B� |2 y_ dx dy is an (:&1)-Carleson measure, by
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Theorem 5.3 we know |�B� ��xj |
2 y_+2 dx dy is also an (:&1)-Carleson

measure. It is easy to verify that

(_+1) |
R+

n+1
F

�B�
�xj

Gy_ dx dy=&|
R+

n+1
F(DB� )

�G
�xj

y_+1 dx dy

+|
R+

n+1
:
n

k=0

�F
�xk

B� ek
�G
�xj

y_+1 dx dy

&(_+1) |
R+

n+1

�F
�xj

B� Gy_ dx dy.

Therefore we can show that the bilinear form

|
R+

n+1
F

�B�
�x j

Gy_ dx dy

is bounded by &F&: &G&L2
_
. By Theorem 5.4, we complete the proof for

m=1. The argument for the final part of the induction is similar. K

The last result needed in this paper is

Theorem 5.6. Suppose :� 1
2 and m=[2:&1]. The commutators

[[b, Rj]]n
1 are bounded on B: if and only if the estimate

} |R+
n+1

F(Dm+1b) Gym dx dy }�C &F&: &G&&: , (5.5)

holds for F # R and G # L, and the measure � |{|=m |D{Db(x, y)| 2 ym dx dy
is a (m+1)�2-Carleson measure.

Proof. Let _ be the number such that :=_+(m+1)�2. Then 0�_< 1
2 .

We prove the ``only if '' part by induction on m.
For m=0, estimate (5.5) is true because of Theorem 5.2. Since 1�2�:,

we have by Theorems 5.1 and 5.2 and Lemma B that the bilinear form

|
R+

n+1
F(Db) G dx dy

is bounded by C &F&1�2 &G&L2
0
. Since yDb(x, y) # L�(Rn+1

+ ) (i.e. |Db|2 y2

dx dy is a &1�2-Carleson measure), by Theorem 5.4 we have that
|Db|2 dx dy is a 1�2-Carleson measure.
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Assume the result is true for m�k. Consider m=k+1. For any
l=0, 1, ..., k, since _+(l+1)�2<:, we have that [[b, Rj]]n

1 are bounded
on B(l+1)�2 by Theorem 5.1. Therefore by induction the measure

:
|}|=l

|D}Db(x, y)| 2 yl dx dy

is a (l+1)�2-Carleson measure.
In order to prove the estimate (5.5), by Theorem 3.2, we only need to

prove that, with F # R, G # L and B� =Db, the bilinear form IIk+1(F, G),
defined by formula (3.2), is bounded by C &F&: &G&&: . Since the estimate
(3.3) yields

|IIk+1|�C :
|{|+|{$|=k+1, |{$|�1

&(D{$F)(D{Db)&L2
k+1&2_

&G&L2
k+1+2_

,

and &G&L2
k+1+2_

=&G&&: is clear, we only need to show that

&(D{$F)(D{Db)&L2
k+1&2_

�C &F&: , for |{|+|{$|=k+1 and |{$|�1.

(5.6)

If |{$|>:, then D{$ F # B:&|{$|=L2
1&2 |{$| +2: , by Lemma B. Since

&y1+|{|D{Db&L�(R+
n+1)�C &yDb&L�(R+

n+1)�C,

we have therefore

&(D{$F)(D{Db)&L2
k+1&2_

�C &D{$ F&L2
k&1&2_&2 |{|

=C &D{$F&L2
2 |{ $ |&2:&1

�C &F&: .

If |{$|<:, then |{$|�(k+2)�2. Let l=k+2&2 |{$|. We have 0�l�k
because of |{$|�1. Therefore � |}|=l |D}Db(x, y)|2 y l dx dy is a (l+1)�2-
Carleson measure. Since k+1&|{$|=l+|{$|&1�l, by Theorem 5.3,
� |{|=k+1&|{$| |D{Db(x, y)|2 yk dx dy is a (l+1)�2-Carleson measure. Note
that _<1�2 and l�2+_=:&|{$|. Hence by Theorem 4.2 � |{|=k+1&|{$|

|D{Db(x, y)|2 yk+1&2_ dx dy is a (:&|{$| )-Carleson measure. Thus

&(D{$F)(D{Db)&L2
k+1&2_

�C &D{$F&:&|{$|�C &F&: .

Estimate (5.6) is proved.
Since [[b, Rj]]n

1 are bounded on Bk+1�2 , we have

} |R+
n+1

F(Dk+2b) Gyk+1 dx dy }�C &F&(k+2)�2 &G&L2
k+1

.
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Since |Dk+1b| 2 yk dx dy is a (k+1)�2-Carleson measure, we have by
Theorems 4.2 and 4.3 that |Dk+2b|2 yk+3 dx dy is a k�2-Carleson measure.
Therefore by Theorem 5.4 |Dk+2b|2 yk+1 dx dy is a (k+2)�2-Carleson
measure. This implies, by Theorem 5.5, that � |{| =k+1 |D{Db|2 yk+1 dx dy
is a k+2�2-Carleson measure.

To prove the ``if '' part, we note that the case of m=0 follows from
Theorem 5.2. Assume m�1. As above, one can prove that for F # R and
G # L the bilinear form IIm(F, G) is bounded by C &F&: &G&&: , if the
measure � |{|=m |D{Db(x, y)|2 ym dx dy is a (m+1)�2-Carleson measure.
The desired result follows from Theorem 3.2 and Theorem 5.2. K

Proof of the main theorem. It is a consequence of Theorems 4.4, 5.3, 5.4,
5.5 and 5.6. K
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