On Chevalley-Groups Acting on Projective Planes

G. Stroth
II. Mathematisches Institut, Frcie Universität Berlin, Königin-Luise-Strasse 24-26, 1000 Berlin 33, Germany
Communicated by B. Huppert

Received March 31, 1981

In [10] Hering introduced the concept of a strongly irreducible collineation group. Let π be a projective plane, K a collineation group of π; K is said to be strongly irreducible iff K fixes no points, lines triangles, or subplanes of π. If K is a finite group acting strongly irreducible on π generated by perspectivities, then Hering shows in $|10|$ that K is either an extension of a 3-group with a subgroup of the automorphismgroup or there is a normal subgroup G in K, G a nonabelian finite simple group, such that $K \leqslant \operatorname{Aut}(G)$. The aim of this paper is to prove the following theorem.

Theorem. Let G be a finite Chevalley-group of normal or twisted type over a field with q elements and of rank m. Let $G \leqslant K \leqslant A u t(G)$ and suppose that K acts strongly irreducible on a finite projective plane π. If K is generated by perspectivities, then $m \leqslant 2$.

The case of a Chevalley-group of rank 1 has been treated by Hering and Walker in [11]. The occurring groups are $G \cong \operatorname{PSL}(2, q)$ and $G \cong \operatorname{PSU}(3, q)$. If $m=2$, then Walker informed me that he has proved $G \cong \operatorname{PSL}(3, q)$. If G is an alternating group, then by an unpublished paper of Hering and Walker, $G \simeq A_{n}, n \leqslant 7$. If G is a sporadic simple group known at the time of writing, then $G \cong J_{2}[15]$. Thus the problem of determining the structure of G is solved for all known simple groups G, and so it is quite probable that it is solved at all.

The proof of the theorem depends mainly on the following lemma due to Hering $[10,(5.1) \mid:$ Suppose that a, b are perspectivities of π. Then $a b$ is a generalized perspectivity or trivial. In particular $a b$ is not planar. Thus if $a b$ is an involution, then $a b$ is a perspectivity with all consequences. We use this lemma in the following way. Let G be a counterexample to the theorem. Then $m \geqslant 3$ and so G is one of the following groups $L_{n}(q), n \geqslant 4, \Omega_{n}^{+}(q)$, $n \geqslant 6, P s p_{2 n}(q), n \geqslant 2, P S U_{n}(q), n \geqslant 5, F_{4}(q), E_{6}(q), E_{7}(q), E_{8}(q)$ or ${ }^{2} E_{6}(q)$. Furthermore G is generated by a class of subgroups V of order q corresponding to the long root of the underlying root system. We get
$\left\langle V, V^{g}\right\rangle=Y$ is a p-group, $q=p^{f}$, or $Y \cong S L_{2}(q)$, for $g \in K$. For $x \in V^{*}$ Hering's lemma yields that $x^{-1} x^{\alpha}$ is a generalized perspectivity contained in $Y=\left\langle V, V^{\alpha}\right\rangle$, where α is a perspectivity in K. If Y is a p-group, then an easy play with parabolic subgroups of G yields a contradiction to the strongly irreducible action of K. Thus we may assume that $Y=S L_{2}(q)$. Now in almost all cases $N_{G}(Y)$ is a maximal subgroup of G. The action of G now forces $\alpha \in N_{K}(Y)$, as α and $N_{K}(Y)$ fixes the center and the axis of the generalized perspectivity $x^{-1} x^{\alpha}$. With the exception of some small cases we can reduce the situation to the case that $\alpha \in Y$. Then application of $121!$ yields that there is an involution in K acting as a perspectivity on π, provided q is odd. If q is even, it needs some further considerations to get the same result. Now there are lots of theorems available and we get a contradiction.

The given proof needs that π is finite in those cases where $x^{-1} x^{2 y}$ is triangular. But it is likely that all arguments with some changes go over to the infinite case.

I hope all the notation are standard. All the notations concerning with Chevalley-groups can be found in Carter's book [6]. The remaining grouptheoretical notation follows $\{9 \mid$; the geometric notation follows $\mid 10\}$.

1. Properties of Chevalley-Groups

Let Δ be a root system in an Eucliean space E_{n}, and let k be a finite field of characteristic p such that $|k|=q$. A Chevalley-group associated with A, and defined over k, is a finite group generated by certain p-groups U_{a}, $\alpha \in \Delta$, called root subgroups, defined as in [19] for Chevalley-groups of normal type, and in $[6,18,19]$ for a Chevalley group of twisted type. If A_{0} is a root system generated by some subset of a fundamental system of roots in Δ, then $G_{0}=\left\langle U_{\alpha}, \alpha \in \Delta_{0}\right\rangle$ is a Chevalley group associated with the root systemin Δ_{0}.

The groups under consideration are assumed to have indecomposable root systems. Unless otherwise stated, G will denote throughout the paper a Chevalley-group with root system Δ, such that $Z(G)=1$. Let B be the Borelsubgroup of G, U the Sylow p-subgroup of B, and H a p-complement of B. Then $U \unlhd B, B=U H$ and H is abelian. There exists a subgroup $N \unrhd H$ such that $W=N / H$ can be identified with a group generated by the reflections w_{1}, \ldots, w_{n}, corresponding to a fundamental set of roots $\alpha_{1}, \ldots, \alpha_{n}$ in the root system Δ. Setting $R=\left\{w_{1}, \ldots, w_{n}\right\}$ the pair (W, R) is a Coxetersystem [5] and the subgroups B, N define a Tits-system in G, with Weylgroup W. Wc shall view the elements of W as belonging to G when this causes no confusion. We shall use the notation $U_{a_{i}}=U_{i}$ and $U{ }_{\alpha_{i}}=U_{-i}$, $1 \leqslant i \leqslant n$. We assume $w_{i} \in\left\langle U_{i}, U_{i}\right\rangle$.

The Dynkin-diagram of an indecomposable root system of rank at least 3 will be given in Table I. The classical group notation is given in Table II. All the root systems are given explicitly at the end of [5]. The root system $B C_{n}$ is not reduced and consists of the union of vectors on pp. 252 and 254 of $[5]$. In this system, roots have length $1, \sqrt{2}$ or 2 . A root α has length 2 if and only if $\alpha / 2$ is a root, and in this case $U_{\alpha}=U_{\alpha / 2}$ in the corresponding Chevalley-group.

For each subset $I \leqslant\{1, \ldots, n\}$ set $W_{l}=\left\langle w_{j} \mid j \notin I\right\rangle$,

$$
\begin{aligned}
& G_{I}=\left\langle B, U_{-j} \mid j \notin I\right\rangle=\left\langle B, W_{I}\right\rangle=B W_{I} B \\
& L_{I}=\left\langle U_{j}, U_{. . j} \mid j \notin I\right\rangle, \text { the so-called Levi-factor. } \\
& \left.\left.Q_{I}=\left\langle U_{\alpha} \mid \alpha\right\rangle 0, \alpha=\sum m_{j} \alpha_{j}, m_{j}\right\rangle 0 \text { for some } j \in I\right\rangle
\end{aligned}
$$

(1.1) Lemma. Let $I \subseteq\{1, \ldots, n\}$. Then
(i) $Q_{I} \unlhd G_{I}, Q_{I} L_{I} \unlhd G_{I}$ and $G_{I}=Q_{I} L_{I} H$.
(ii) $Q_{I}=O_{p}\left(G_{I}\right)$.
(iii) L_{I} is a product of pairwise commuting covering groups Chevalley groups, and its structure can be found by deleting the vertices in I from the Dynkin diagram.

Proof. [7, (2.2)].
(1.2) Lemma (Tits). If L is a proper subgroup of G such that $U \leqslant L$, then $L \leqslant G_{i}$ for some i.

Proof. |16, (1.6)|.
(1.3) Proposition. Let $G=P S O^{ \pm}(l, q)^{\prime}, l \geqslant 7, q$ odd if l is odd. Then
(i) Q_{1} is elementary abelian of order q^{1-2}.
(ii) $L_{1} \cong S O^{ \pm}(l-2, q)$ and acts on Q_{1} as a group of F_{q}-linear transformations preserving a nondegenerated quadratic form.
(iii) Let r be the positive root in Δ of maximal height. Then $G_{2}=N_{G}\left(U_{r}\right)=C_{G}\left(U_{r}\right) H,\left|U_{r}\right|=q$.
(iv) If q is odd, then U_{r} is an isotropic 1-space in Q_{1}. If q is even, U_{r} is a singular 1-space in Q_{1}.

Proof: [7, (3.1)].
(1.4) Proposition. Let $G=P \operatorname{Sp}(2 n, q), n \geqslant 2$. Then
(i) $\left|Q_{1}\right|=q^{2 n-1}$. If q is odd, then Q_{1} is special with center of order q. If q is even, Q_{1} is elementary abelian.

TABLE I
Dynkin-Diagrams ${ }^{a}$

$\underset{1}{ }$							$A_{n}, n \geqslant 1$
							$B_{n}, n \geqslant 2$
	2		$\stackrel{\circ}{n}$				$C_{n} \cdot n \geqslant 2$
							$D_{n}, n \geqslant 4$
1	3	$\begin{aligned} & \delta \\ & 2 \end{aligned}$					$E_{\text {K }}$
1	3	2	5	6			E.
	3	2		6	7	8	E_{8}
1		3	4				F_{4}

[^0]TABLE II

Classical group notation	(B, N) notation	Type
$P S O(2 n+1, q)^{\prime}$	$B_{n}-$	B_{n}
$P S p(2 n, q)$	$C_{n}(q)$	C_{n}
$P S O^{+}(2 n, q)^{\prime}$	$D_{n}(q)$	D_{n}
$P S O^{-}(2 n, q)^{\prime}$	${ }^{2} D_{n}(q)$	B_{n-1}
$P S U(2 n, q)$	$A_{2 n-1}(q)$	C_{n}
$P S U(2 n+1, q)$	${ }^{2} A_{2 n}(q)$	$B C_{n}$

(ii) Let r be the root of maximal height. Then $Z\left(Q_{1} L_{1}\right)=U_{r}$ has order q and $G_{1}=N_{G}\left(U_{r}\right)=C_{G}\left(U_{r}\right) H$. If q is odd, then $U_{r}=Z\left(Q_{1}\right)$. All elements of each nontrivial coset of U_{r} in Q_{1} are conjugate in $Q_{1} L_{1}$.
(iii) $L_{1} \cong S p(2 n-2, q)$ and acts on Q_{1} / U_{r} as a group of $F_{q^{-}}$ transformations preserving a nondegenerated alternating form. If q is odd, such a form is induced by the commutator function. If q is even and $q>2$ for $n=2$, then L_{1} is indecomposable on Q_{1}.
(iv) There is a positive root s such that $U_{s} U_{r} / U_{r}$ is central in $U_{/} U_{r}$ and is an isotropic 1-space in $Q_{1} / U_{r},\left|U_{s}\right|=q$.
(v) $Q_{12}=Q_{2} U_{1}, Q_{2} \unlhd G_{12}, Q_{2} L_{12} \unlhd G_{12}, Q_{2} L_{1,} \leqslant C_{G}\left(U_{s}\right), G_{12}=$ $\left(Q_{2} L_{12}\right) U_{1} H=C_{\sigma_{12}}\left(U_{s}\right) U_{1} H$.

Proof. [7, (3.2)].
(1.5) Proposition. Let $G=\operatorname{PSU}(l, q), l \geqslant 4$. Then
(i) Q_{1} is special of order $q^{2 l}{ }^{1}$ with center of order q.
(ii) There exists a uniquely determined root r such that $Z\left(Q_{1}\right)=Z\left(U_{r}\right)$ has order q. If l is odd, U_{r} is special of order q^{3}, while if l is even, U_{r} is elementary abelian. All elements of each nontrivial coset of $Z\left(Q_{1}\right)$ in Q_{1} are conjugate in Q_{1}. Moreover $G_{1}=N_{G}\left(Z\left(Q_{1}\right)\right)=C_{G}\left(Z\left(Q_{1}\right)\right) H$.
(iii) $\quad L_{1} \cong S U(l-2, q)$ and acts on $Q_{1} / Z\left(Q_{1}\right)$ as a group of $F_{q^{2}}$-linear transformations preserving a nondegenerated hermitian form.
(iv) There is a positive root s such that $U_{s} Z\left(Q_{1}\right) / Z\left(Q_{1}\right)$ is central in $U / Z\left(Q_{1}\right)$ and is an isotropic 1 -space of the unitary space $Q_{1} / Z\left(Q_{1}\right)$. Here $j U_{s} \mid=q^{2}$.
(v) $Q_{12}=Q_{2} U_{1}, \quad Q_{2} \unlhd G_{12}, \quad Q_{2} L_{12} \unlhd G_{2}, \quad Q_{2} L_{12} \leqslant C_{G}\left(U_{s}\right), \quad G_{12}=$ $C_{G_{12}}\left(U_{s}\right) U_{1} H=\left(Q_{2} L_{12}\right) U_{1} H$.

Proof. [7, (3.3)].
Now we give some properties of the exceptional groups. Let r be the positive root of maximal hcight. By [5, pp. 260, 265, 269, 272] r is as follows:

$$
\begin{aligned}
& F_{4}: r=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4} \\
& E_{6}: r=\alpha_{1}+2 \alpha_{2}+\alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6} \\
& E_{7}: r=2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7} \\
& E_{8}: r=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+5 \alpha_{5}+4 \alpha_{6}+3 \alpha_{7}+2 \alpha_{8}
\end{aligned}
$$

The centralizer of r in W is W_{i} where $i=1$ for $G=F_{4}(q),{ }^{2} E_{6}(q), E_{7}(q)$, $i=2$ for $G=E_{6}(q)$ and $i=8$ for $G=E_{8}(q)$. Also $G_{i}=N_{G}\left(U_{r}\right)$.
(1.6) Proposition. Let $G=E_{6}(q), E_{7}(q)$ or $E_{8}(q)$ and r and i as above. Then
(i) $\quad Q_{i}$ is special with center U_{r} and has order q^{21}, q^{33} or q^{57}, respectively.
(ii) $\quad G_{i}=N_{G}\left(U_{r}\right)=C_{G}\left(U_{r}\right) H, L_{i} \leqslant C_{G}\left(U_{r}\right), L_{i} / Z\left(L_{i}\right) \simeq A_{9}(q), D_{6}(q)$ or $E_{7}(q)$.
(iii) Q_{i} / U_{r} can be turned into an F_{q}-space such that the commutator function induces a nondegenerating form on Q_{i} / U_{r}. Moreover L_{i} acts on Q_{o} / U_{r} as a group of F_{q} transformations preserving this form.

Proof. $\quad|7,(4.4)|$.
(1.7) Proposition. Let $G=F_{4}(q)$. Then
(i) $\left|Q_{1}\right|=q^{15}$ and $L_{1} / Z\left(L_{1}\right) \cong P S p_{6}(q)$. If q is odd, then Q_{1} is special with center U_{r} of order q, G_{1} acts irreducibly on Q_{1} / U_{r}. If q is even, then $Q_{1}=L S$ with $[L, S]=1, L \cap S=U_{r}, L$ special with center U_{r} and S elementary abelian of order q^{7}. Moreover G_{1} acts irreducibly on S / U_{r} and Q_{1} / S.
(ii) $\left|Q_{4}\right|=q^{15}$ and $L_{4} \cong S O(7, q)^{\prime}, G_{4}$ has a normal elementary abelian subgroup R_{4} of order q^{7} such that $U_{5}<R_{4}<Q_{4}$. $s=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4} . G_{4}$ acts irreducibly on Q_{4} / R_{4}.
(iii) If q is odd, then L_{4} acts on R_{4} as a group of F_{4}-transformations preserving a nondegenerated symmetric form. The isotropic 1 -spaces of R_{4} are conjugates of root-groups U_{α} with α a long root.
(iv) If q is even, then $U_{s} \triangleleft G_{4}, L_{4}$ acts on R_{4} as a group of $F_{q^{-}}$ transformations preserving a quadratic form for which the radical of R_{4} is U_{5}. The singular 1 -spaces of R_{4} are conjugates of groups U_{a} with α a long root.
(v) $G_{1}=N_{G}\left(U_{r}\right)=C_{G}\left(U_{r}\right) H$. If q is even, $G_{4}=N_{G}\left(U_{s}\right)=C_{G}\left(U_{s}\right) H$.

Proof. [7, (4.5)].
(1.8) Proposition. Let $G={ }^{2} E_{6}(q)$. Then Q_{1} is special of order q^{21} with center U_{r} of order q. G_{1} acts irr. on Q_{1} / U_{r}. Moreover $G_{1}=N_{G}\left(U_{r}\right)=$ $C_{G}\left(U_{r}\right) H$.

Proof. [7, (4.6)].
(1.9) Proposition. Let G be a Chevalley-group of rank at least 3. Let r be a long root of maximal height, $V_{r}=Z\left(U_{r}\right)$, and $J=\left\langle V_{r}, V_{-r}\right\rangle$. Then
(i) $J \cong S L_{2}(q)$. If q is odd, set $\langle t\rangle=Z(J)$. Then $t \in H$.
(ii) $N_{G}(J)=L J H$ where $[L, J]=1$ and L is the Levi-factor of the parabolic subgroup $P=N_{G}\left(V_{r}\right)$.
(iii) Suppose q to be odd and G not isomorphic to $\Omega_{\dot{n}}^{(}(q)$, then $N_{G}(J)=$ $C_{G}(t)$.
(iv) If $G=\Omega_{n}(q) \neq \Omega_{8}^{+}(q)$, then $L=X J^{w}$ for some $w \in W$. If q is odd, then $C_{G}(t)=X J J^{w} H\langle w\rangle$.
(v) If $G=\Omega_{8}^{+}(q)$, then there exists a 4-group W_{1} in W such that $L J$ is a central product of four conjugates of J under W_{1}. If q is odd, then $C_{G}(t)=$ $L J H W_{1}$.
(vi) The isomorphism class of L and the weak closure of V in $L J$ are given in Table III.

Proof. For q odd this is $[2,(4.2)]$. Suppose q to be even. Then (i) is wellknown. Furthermore (iv)-(vi) is contained in [2, (4.2)].

Clearly $\quad N_{G}(J)=J N_{N_{G}(V)}(J)$. Let $G=\bigcup_{w} U H w U_{w}^{-}$the Bruhatdecomposition of G. Let w_{0} be a word of greatest length in the generators w_{1}, \ldots, w_{n}. Then $J^{w_{0}}=J,\left(\Delta^{+}\right)^{w_{0}}=\Delta^{-}$and $P^{w_{0}}=Q^{w_{0}}=Q^{w_{0}} L H$, where $Q=O_{p}(P)$. This yields $O_{p}\left(N_{G}(J)\right)=1$ and so $N_{Q}(J)=V_{r}$. Thus $N_{N_{G}\left(V_{r}\right)}(J)=$ $V_{r} L H$ and so (ii) is proved.
(1.10) Lemma. Let $g \in \operatorname{Aut}(G), o(g)$ odd if $G=F_{4}(q), q$ even. Let $V=V_{r}$ as in (1.9). Then $\left\langle V^{g}, V\right\rangle$ is a p-group or $\left\langle V^{g}, V\right\rangle$ is conjugate to $J=\left\langle V_{r}, V_{-r}\right\rangle$. If $\left\langle V^{g}, V\right\rangle$ is a p-group, then $\left\langle V^{g}, V\right\rangle$ is conjugate to $\left\langle V_{r}, V_{w(r)}\right\rangle$ for some w contained in the Weyl-group.

Proof. Let $G=B N B$ be the $B N$-decomposition of G and $g=x y$ with $x \in G$. Then $x=b h w \tilde{b}$, with $b, \tilde{b} \in B, h \in H$ and $w \in W$. We may assume $B H \leqslant N_{G}\left(V_{r}\right)$. Furthermore $\left(V_{r}\right)^{w}=V_{w(r)}$. Thus $V^{g}=\left(V_{w(r)}\right)^{\delta y}$. Without loss

TABLE III

$G(q)$	L	$\left\langle V^{G} \cap L J\right\rangle$
$L_{n}(q)$	$S L_{n-2}(q)$	$L J$
$P S p_{n}(q)$	$S p_{n-2}(q)$	LJ
$U_{n}(q)$	$S U_{n}{ }_{2}(q)$	LJ
$\Omega_{n}^{\prime}(\underline{q})$	$S L_{2}(q) S O_{\square-4}(q)$	LJ
		unless $n=7$ or 8 , $\varepsilon=-1$, where $J J^{\prime \prime}$
$F_{4}(q)$	$S p_{6}(q)$	LJ
${ }^{2} E_{6}(q)$	$S U_{6}(q)$	LJ
$E_{6}(q)$	$S L_{6}(q) / \mathcal{Z}_{(a-1,3)}$	LJ
$E_{7}(\underline{q})$	$\mathrm{SO}_{12}^{-1}(\mathrm{q})$	LJ
$E_{8}(q)$	$E_{,}(\mathrm{q})$	IJ J

$y \in N_{G}(U)$. As $o(y)$ is odd for $G=F_{4}(q)$ we get $\left(V_{r}\right)^{y}=V_{r}$. Now $\left\langle V^{g}, V\right\rangle$ is conjugate to $\left\langle V_{w(r)},\left(V_{r}\right)^{y-1 \tilde{\hbar}-1}\right\rangle=\left\langle V_{w(r)}, V_{r}\right\rangle$. Now the assertion follows with [6|.
(1.11) Lemma. Let $G \neq P S U_{m}(q)$ or $P S p_{2 n}(q)$ and $E=\left\langle V_{n(r)}, V_{r}\right\rangle$ elementary abelian. Then there is a $g \in G$ such that $E^{\beta} \leqslant O_{p}\left(N_{G}\left(V_{r}\right)\right)$.

Proof. Application of (1.3)-(1.9) yield that the centralizer of r in the Weyl-group W acts on $\Delta_{0}=\left\{s \mid s \in \Delta, s\right.$ long and $\left.V_{s} \leqslant O_{p}\left(N_{G}\left(V_{r}\right)\right)\right\}$. Suppose now $G \neq P S O^{\varepsilon}(n, q)$. Then the Weyl-group acts transitively on $\Delta_{1}=\left\{s \mid s \in \Delta, s\right.$ long and $V_{s} \leqslant L$, the Levifactor of $\left.N_{G}\left(V_{r}\right)\right\}$. As $G \neq P S U_{m}(q)$ or $P S p_{2 n}(q)$ we get $\Delta_{0} \neq \varnothing$. Thus there is an element $\tilde{w} \in W$ with $\left(V_{r}\right)^{\dot{w}} \neq V_{r}$ and $V_{r}^{\tilde{w}} \leqslant O_{p}\left(N_{G}\left(V_{r}\right)\right)$. Now $\left(\Delta_{0}\right)^{\tilde{m}} \neq \Delta_{0}$. Thus we may assume that there is a root $s \in \Delta_{0}$ such that $\tilde{w}^{-1}(s)=w(r)$. Now

$$
\left\langle V_{r}, V_{w(r)}\right\rangle^{\bar{w}}=\left\langle V_{w^{\prime}(r)}, V_{s}\right\rangle \leqslant O_{p}\left(N_{G}\left(V_{r}\right)\right) .
$$

Let now $G=P S O^{c}(n, q)$. Then look at G_{1}. Set $\Delta_{0}=\{s \in \Delta, s$ long, $\left.V_{s} \leqslant L_{1}\right\}$. Then W_{1} is transitive on Δ_{0}. Thus we may assume $\left\langle V_{w(r)}, V_{r}\right\rangle$ is contained in $Q_{1} O_{p}\left(N_{G}\left(V_{r}\right)\right)=O_{p}\left(N_{G}\left(V_{r}\right)\right) U_{1}$. As $V_{w_{2}(r)}$ and $U_{a_{1}+\alpha_{2}}=U_{w_{2}\left(a_{1}\right)}$ are contained in $O_{p}\left(N_{G}\left(V_{r}\right)\right)$ we get the assertion.
(1.12) Lemma. Let. $\left\langle V_{r}, V_{w(r)}\right\rangle$ be a nonabelian p-group. Then $\left\langle V_{r}, V_{w(r)}\right\rangle$ is special with center $V_{r+w(r)}$ and $r+w(r)$ is long. Furthermore $\left\langle V_{r}, V_{w(r)}\right\rangle \leqslant O_{p}\left(N_{G}\left(V_{r+w^{\prime}(r)}\right)\right)$.

Proof. If $w(r)$ is positive, then $\left\langle V_{r}, V_{w(r)}\right\rangle$ is special with center $V_{r-w(r)}$ by $|7,(4.8)|$. Thus assume $-w(r)$ is positive. As r is of maximal height, $\left|V_{r}, V_{-w(r)}\right|=1$ by $[7,(4.8)]$. Set $\tilde{w}=w_{w(r)}$. Then $\left(\left\langle V_{r}, V_{w^{\prime}(r)}\right\rangle\right)^{\tilde{x}}=\left\langle V_{r-w(r)}\right.$, $\left.V_{w w(r)}\right\rangle$. Now $\{7,(4.8)\rfloor$ yields that $\left\langle V_{r}, V_{w(r)}\right\rangle$ is special with center $V_{r: w(r)}$ and $r+w(r)$ is long.

As $V_{w(r)}$ and $V_{\ldots(r+w(r))}$ are not contained in $C_{G}\left(V_{r}\right)$ we get $\left\langle V_{r+w(r)}\right.$, $\left.V_{. w_{(r)}}\right\rangle \leqslant O_{p}\left(N_{G}\left(V_{r}\right)\right)$ and by conjugation we get the conclusion.
(1.13) Lemma. Let $G=\operatorname{PSU}(n, q)$ or $\operatorname{PSp}(2 n, q)$ and $\left\langle V_{r}, V_{w(r)}\right\rangle$ a p group, then $\left\lfloor V_{r}, V_{w(r)}\right\rfloor=1$.

Proof. By (1.4) and (1.5) we get that V_{r} is weakly closed in $O_{p}\left(N_{G}\left(V_{r}\right)\right)$ with respect to G. Now (1.12) yields the conclusion.
(1.14) Proposition. Let J be as in (1.9) and $K \leqslant G$ such that $J L \leqslant K$. If q is odd, then $K \leqslant C_{C}(t)$ or $G=L_{4}(q)$ and $K \leqslant \operatorname{Aut}\left(P S p_{4}(q)\right)$ or $G=L_{n}(q)$ and K is a subgroup of the stabilizer of a 2 -space or $a(n-2)$-space in the natural representation of $S L_{n}(q)$, or $G=\Omega_{m}(3), m \leqslant 8$.

Proof. Suppose first $O_{p}(K) \neq 1$. Then $O_{p}(K) \cap O_{p}\left(N_{G}(V)\right) \neq 1$. As $V \$ O_{p}(K)$ the action of $L H$ on $O_{p}\left(N_{G}(V)\right) / V$ is not irreducible. Thus $G=L_{n}(q)$ by (1.3)-(1.8). Let M be the natural module for G. Then $M=M_{1} \oplus M_{2}$ where M_{1} is a natural module for J and M_{2} is a trivial J module. Thus we may assume that $O_{D}(K)$ stabilizes M_{1} or M_{2} and the structure of $L_{n}(q)$ yields now $K=O_{p}(K) J L H$ is a subgroup of the stabilizer of a 2 -space or a ($n-2$)-space.

So we may assume $O_{p}(K)=1$. Suppose now $O_{2}(K) \neq 1$. Clearly $\left|V, O_{2}(K)\right| \leqslant J \cap O_{2}(K)$. Furthermore the action of L on $O_{p}\left(N_{G}(V)\right)$, (1.3) - (1.8), yields

$$
C_{O_{2}(K)}(V) \leqslant\langle t\rangle \quad \text { or } \quad C_{C_{O_{2}(K)}(V)}\left(O_{p}\left(N_{G}(V)\right)\right) \neq 1
$$

But as $N_{G}(V)$ is p-constraint we get $C_{O_{2}(K)}(V) \leqslant\langle t\rangle$. This yields $\Omega_{1}\left(O_{2}(K)\right)=\langle t\rangle$ and so $K \leqslant C_{G}(t)$.

So we may assume that $F(K)$ is a $\{2, p\}^{\prime}$-group. Take $a \in F(K)$. Then $\left\langle V^{a}, V\right\rangle \leqslant V F(K)$. By (1.10), $\left\langle V, V^{a}\right\rangle$ is a p-group. Thus $[F(K), V]=1$ and so $F(K) \leqslant C_{G}(t)$. So we may assume $F(K)=1$. Let E be a component of $E(K)$. Then $V \leqslant N_{G}(E)$. Suppose $|V, E| \neq 1$. By Baer's theorem $|9,(3.8 .2)|$ we get $V \leqslant E$ and so $J \leqslant E$ or $q=3$ and $t \in E$. Suppose now $E=E(K)$. Then the conclusion follows with [1] and (1.3)-(1.9). Thus $E(K)=E F, F \neq 1$. Then $F \leqslant C_{G}(t)$ and so $F \leqslant C_{G}(V)$. This yields $J L \notin E V$. Suppose $G \neq \Omega_{n}^{\prime}(q)$. Then there is a $V^{g} \leqslant J L$ such that $V^{g} E V$. Thus $\left[V^{g}, E\right]=1$ and so $[L, E V]=1$. As $E \leqslant{ }_{G}\left(V^{g}\right)$ we get now the contradiction $E V \cong S L_{2}(q)$.

Let $G=\Omega_{\dot{n}}(q)$ and $n \neq 7$ and $n \neq 8, \varepsilon=-1$. Then $L=J^{w} X$. If $X \leqslant E$, then $\left[J^{w}, E\right]=1$, contradicting $t \in J^{w}$. Thus $J^{w} \leqslant E V$. Now we may assume $|X, E|=1$, yielding the same contradiction as above. Thus $G=\Omega_{7}(q)$ or $\Omega_{8}^{-}(q)$. Furthermore $J J^{w} \leqslant E$. Thus $J L \cap E=J J^{w}$. Then a Sylow p-subgroup of $C_{E}(V)$ is of order q^{2}. Application of $[1]$ yields now a contradiction.
(1.15) Proposition. Let J be as in (1.9) and $K \$ G$ such that $J L \leqslant K$. Suppose q to be even. Then $K \leqslant N_{G}(J L)$ or $G=F_{4}(q)$ and $K=P S p_{8}(q)$, $G=L_{4}(q)$ and $K=P S p_{4}(q), G=L_{n}(q)$ and K is contained in the stabilizer of a 2-space or $a(n-2)$-space in the natural representation of G, or $G=L_{4}(2), S U_{4}(2)$ or $\Omega_{8}^{\dagger}(2)$.

Proof. Suppose $q>2$. Then $O(K)=\left\langle C_{O(K)}(v) \mid v \in V^{*}\right\rangle=C_{O(K)}(V)$. Thus by (1.9), $O(K) \leqslant N_{G}(J L)$. So we may assume $O(K)=1$. Set $R=O_{2}(K)$. Suppose $R \neq 1$. Then $C_{R}(V) \neq 1$. Thus $C_{R}(V) \leqslant O_{2}\left(N_{G}(V)\right)$ and so $L H$ cannot act irreducible on $O_{2}\left(N_{G}(V)\right) / V$. This yields $G=L_{n}(q)$ or $F_{4}(q)$. If $G=F_{4}(q), Z\left(O_{2}\left(N_{G}(V)\right)\right) \leqslant R$ as $L H$ acts indecomposable on $Z\left(O_{2}\left(N_{G}(V)\right)\right.$). Thus $V \leqslant R$, a contradiction. Hence $G=L_{n}(q)$ and an easy argument shows that K is contained in the stabilizer of a 2 -space or a ($n-2$)-space.

So we may assume $O_{2}(K)=1$. Set $K_{1}=\left\langle J^{g}\left\{J^{2} \leqslant K\right\rangle\right.$. Then by [23], K_{1} is a direct product $X_{1} \times X_{2} \times \cdots \times X_{r}$ with Chevalley-groups X_{i}. We may assume $J \leqslant X_{1}$. If $O_{2}\left(N_{G}(V)\right) \leqslant K$, then $K=G$ by (1.2). Thus $O_{2}\left(N_{G}(V)\right) \leqslant K$. Suppose $V=O_{2}\left(N_{K}(V)\right)$. Then $X_{1} \cong L_{2}(q)$ and so $X_{1}=J$. Furthermore $K \leqslant N_{G}(J L)$. Thus $V \neq O_{2}\left(N_{K}(V)\right)$ and so $G=L_{n}(q)$ or $G=F_{4}(q)$. As $O_{2}\left(N_{X_{1}}(V)\right) \neq V$ we get by inspection $X_{1}=S p_{4}(q)$ or $X_{1}=S p_{8}(q)$ and $J L \leqslant X_{1}$. Then $K_{1}=X_{1}=K$. The proposition is proved.

Suppose now $q=2$. Suppose $O_{2}\left(C_{K}(V)\right) \neq V$. If $O_{2}\left(C_{G}(V)\right) \leqslant K$, we get the assumption with (1.2). Thus $G=L_{n}(q)$ and $O_{2}\left(C_{K}(V)\right)$ is elementary abelian of order 2^{n-1} or $G=F_{4}(q)$ and $O_{2}\left(C_{K}(V)\right)$ is elementary abelian of order 2^{7}.

Set $\dot{K}=: K / O(K)$. Suppose $O_{2}(\vec{K}) \neq 1$. Then $O_{2}\left(C_{K}(V)\right) \neq V$ or $\tilde{V}=O_{2}(\tilde{K})$. If $\tilde{V}=O_{2}(\tilde{K})$, then $K=O(K) C_{K}(V)$. The structure of $C_{G}(V)$ yields $O(K)=O_{3}(K)$. The action of L on $O_{2}\left(C_{G}(V)\right)$ yields that V cannot centralize a subgroup of order 9 in $O_{3}(K)$. Furthermore V inverts no subgroup of order 9. By $[24,(3.14)]\left|O_{3}(K)\right| \leqslant 27$. If $K \$ N_{G}(J L)$, then $O_{3}(K)$ has to be extraspecial of order 27. Thus $O_{3}\left(C_{G}(V) / O_{2}\left(C_{G}(V)\right)\right) \neq 1$. Now (1.9) yields $G=U_{n}(2)$ or $\Omega_{n}(2)$. The action of L on $O_{3}(K)$ shows $G=U_{n}(2)$ and $\left[L, O_{3}(K)\right]=1$. But the action of G on the natural module shows that G cannot contain such a subgroup. Thus $O_{2}(K) \neq V$ and so $G=L_{n}(2)$ or $F_{4}(2)$. If $V \leqslant O_{2}(K)$, we get a contradiction as above. Thus $V \not O_{2}(K)$ and so $G=L_{n}(2)$. Now it is easy to see that a Sylow 2 -subgroup of G is contained in K. By (1.2) we get that K is the stabilizer of a 2 -space or a $(n-2)$-space in the natural representation of G. Hence we have shown $O_{2}(\tilde{K})=1$. Then $J \cap O(K)=1$ and so $\{V, O(K) \mid=1$. So we may assume $O(K) \leqslant Z(K)$.

Set $E_{1}=E(K)$. Let E be a component of E_{1} with $1 \neq|E, V| \leqslant E$. Suppose $V \notin E$. Then by [23], $E \cong \Omega_{n}^{\prime}\left(2^{m}\right), \Omega_{n}(3), \Omega_{n}(5)$ or A_{n}. As V inverts no subgroup of order $9, E \unlhd E L H$ and so $C_{E}(V)=O_{2}\left(C_{E}(V)\right) N_{E}(J)$. Let D be $O_{3}(J)$. Then $D \leqslant E$. If $E=\Omega_{n}^{\prime}\left(2^{m}\right)$, then $C_{F}(V) \cong S p\left(n-2,2^{m}\right)$. But an easy argument shows that $\Omega_{n}^{\prime}\left(2^{m}\right)$ contains no subgroup $Z_{3} \times S p\left(n-2,2^{m}\right)$. If $E \cong A_{n}$, then $C_{E}(V) \cong A_{n-2}$. As A_{n} contains no subgroup $Z_{3} \times A_{n-2}$, we get $n=: 6$. Now $O_{2}\left(C_{E}(V)\right) \neq 1$, and so $\left|O_{2}\left(C_{K}(V)\right)\right|=4$, a contradiction. Suppose $E \cong \Omega_{n}^{\prime}(p), p=3,5$. As $N_{E}(J) \triangleleft N_{G}(J)$ and there are only two isomorphisms between $\Omega_{m}^{\prime}(p)$ and a Chevalley-group in characteristic 2 , namely, $\Omega_{5}(3) \cong U_{4}(2) \cong \Omega_{6}^{-(2)}$ and $\Omega_{4}^{\sim}(3) \cong S p_{4}(2)^{\prime}$, we get $G=U_{6}(2)$, $\Omega_{8}^{-}(2)$ or $S p_{6}(2)$. As $N_{E}(J)$ has to normalize an element of order 3 in E, we get a contradiction to the structure of E.

Thus we have $V \leqslant E$. Clearly $J L$ normalizes E. The structure of the groups in [23] yields $E \cong M(22)$ or $M(23)$ of $O_{2}\left(C_{E}(V)\right)=V$. Now $C_{E}(V)$ is contained in $N_{E}(J)$ a contradiction as $V \leqslant C_{E}(V)^{\prime}[8$, Chaps. 17, 18]. Thus $O_{2}\left(C_{E}(V)\right)>V$. Thus $G L_{n}(2)$ or $F_{4}(2)$. Furthermore $O_{2}\left(C_{K}(V)\right) \leqslant E$. As E is a Chevalley-group by $|22|$, we get by inspection $J K \leqslant E$ and $E \cong S p(8,2)$. $G:=F_{4}(2)$.
(1.16) Lemma. Let $G=L_{2}(q), q$ even. Let $g \in G$ with $o(g) \neq 3$ if $3 \mid q+1$. Then there is an element $h \in G$ such that $o\left(g\left(g^{i}\right)^{h}\right)=2$ for some i.

Proof. Let T be a Sylow 2-subgroup of $G, r \in N_{G}(T)$ with $o(r)=q-1$ and $x \in N_{G}(\langle r\rangle), o(x)=2$. Then each element of G is conjugate to an element $t x$ with $t \in T$. Suppose $g-t x$. If there is some j such that $g \nsim g^{j}$ in G set $i=-j$. Now g^{j} is conjugate to $t_{1} x$ for some t_{1} in T. Choose h with $\left(g^{j}\right)^{h}=t_{1} x$. Then $g\left(g^{i}\right)^{h}=t x x t_{1}=t t_{1}$. As $g \nsim g^{j}$ we have $t \neq t_{1}$. Thus $o\left(g\left(g^{i}\right)^{h}\right)=2$. Suppose now that $g \sim g^{j}$ for all j. Then $o(g)=3$. Thus $3 \mid q-1$. But then g normalizes a Sylow 2 -subgroup S of G and so $o\left(g\left(g^{-1}\right)^{s}\right)=2$ for some $s \in S$.
(1.17) Lemma. Let $G=\Omega_{6}^{-}(q)$ or $\Omega_{8}^{+}(q)$. For $g \in G, o(g)=3 \mid q+1$, there is a nontrivial 2-group T such that $g \in C_{G}(T)$.

Proof. Let M be the natural module for $G . M$ is a direct sum of 2-dim totally anisotiopic G-spaces. If g acts trivially on two of them, then there is an element of order 2 in G interchanging these spaces and acting trivially on the remaining spaces. Hence g centralizes this element.

Thus we may suppose that there are two spaces where g acts nontrivially on. Then there is an involution i interchanging these spaces and acting trivially on the remaining spaces. Now the structure of $\mathrm{SO}_{4}^{+}(q)$ shows that i may be chosen in the centralizer of g.

2. Perspectivities

(2.1) Lemma. Let T be a special 2-group acting on a projective plane π. Let α be a perspectivity of odd order such that $[T, \alpha]=T$, and $[Z(T), \alpha]=1$. Then $Z(T)$ contains nontrivial perspectivities.

Proof. Choose $t \in T-Z(T)$. Set $u=t^{-1} t^{\alpha}$. Then u is a generated perspectivity. If $o(u)=2$, then u is a persepectivity and there is an nontrivial element $z \in Z(T)$ such that $u \sim u z$ in T. Thus z is a perspectivity. So we may assume $o(u)=4$. Set $z=u^{2}$ and $\pi_{1}=\operatorname{Fix}(z)$. Suppose π_{1} to be a plane. Then u and α act on π_{1} and α induces a perspectivity and u induces a generalized perspectivity of order 2 on π_{1}. Thus u induces a perspectivity on π_{1}. As the axis of u is $Z Z^{t}, Z$ the center of α, we get that Z is fixed by u. But then $u^{1} u^{\alpha}=w$ is a perspectivity contained in T. If $o(w)=2$, we get the assumption as above. If $o(w)=4$, then w^{2} is a perspectivity, $w^{2} \in Z(T)$.

For the remainder of this chapter let $G=G(q)$ be a Chevalley-group different from $\Omega_{n}^{\prime}(2), \Omega_{n}^{\prime}(3), n \leqslant 8$, of rank at least 3 , and K a subgroup of $\operatorname{Aut}(G)$ acting strongly irreducible on a finite projective plane π and containing perspectivities $\alpha \neq 1$. Let the notation be as in (1.9).
(2.2) Lemma. Let $V_{1} \leqslant V$. Then V_{1} is planar or regular.

Proof. Suppose to be false. Let V_{1} be a minimal counterexample. Then each subgroup of V_{1} different from V_{1} is planar. Let $V_{1}=V_{2}\langle v\rangle$. Set $\pi_{1}=\operatorname{Fix}\left(V_{2}\right)$. Then v induces a generalized perspectivity or a perspectivity on π_{1}. Furthermore $\operatorname{Fix}\left(V_{1}\right)=\operatorname{Fix}_{\pi_{1}}(v)$. Let L be the Levifactor of $N_{G}(V)$. Suppose that L stabilizes te center of v.

According to (1.9) choose $g \in G$ with $\left(V_{1}\right)^{g} \leqslant L$. If $\left(V_{1}\right)^{g}$ has the same center as V_{1}, then $J L$ stabilizes this center. If J does not stabilize the center of V_{1}, then all V_{1}^{g} contained in L have the same axis. As J is contained in the Levifactor of $N_{G}\left(\left(V_{1}\right)^{g}\right)$ we get that J fixes the axis of V_{1}.

By duality we may assume that $J L$ fixes the center of V_{1}. But the stabilizer of the center of V_{1} in $O_{p}\left(N_{G}(V)\right)$ is of index at most three in $O_{p}\left(C_{G}\left(V^{\prime}\right)\right.$. Now the action of L on $O_{p}\left(C_{G}(V)\right)$ yields that U stabilizes the center of V_{1}. But now G stabilizes the center of V_{1} by (1.2).

Thus we have that L does not stabilize the center of V_{1}. Then V_{1} has to be triangular and so L has to contain a subgroup of index at most three. This yields $q=2$ or 3 and $G=\Omega_{n}(q)$. Let $L=J^{w} X$. As $n>8$, there is a $g \in G$ such that $\left(V_{1}\right)^{g} \leqslant X$. Thus $\operatorname{Fix}\left(V_{1}\right)=\operatorname{Fix}\left(\left(V_{i}\right)^{g}\right)$ and so $L J$ normalizes Fix $\left(V_{1}\right)$. As above we get, that U normalizes Fix $\left(V_{1}\right)$. Application of (1.2) implies that G normalizes $\operatorname{Fix}\left(V_{1}\right)$, a contradiction.
(2.3) Lemma. Let q be even, $o(\alpha)=r$ an odd prime, then $[V, \alpha] \nsubseteq V$.

Proof. Suppose $\{V, \alpha\} \subseteq V$. By (2.2), $\mid V, \alpha\}=1$. Now α acts on $O_{2}\left(C_{G}(V)\right)$. By (2.1) we get that $Z\left(O_{2}\left(C_{G}(V)\right)\right)$ contains a nontrivial perspectivity. Now (2.2) yields $G=S p_{2 n}(q)$ or $F_{4}(q)$. As $C_{G}(V)$ acts indecomposable on $Z\left(O_{2}\left(C_{G}(V)\right)\right)$ we get that all involutions in $Z\left(O_{2}\left(C_{G}(V)\right)\right)$ are perspectivities contradicting (2.2).
(2.4) Proposition. Suppose $o(\alpha)=r$, prime. Then $\left\langle V, V^{\alpha}\right\rangle \cong S L_{2}(q)$ or $[V, a]=1$.

Proof. Suppose $o(\alpha)=2$ and $G=F_{4}(q), q$ even. By [15], there is a nontrivial perspectivity $\beta \in Z(U)$. By (2.2), $\beta \notin V$. Set $Z=Z\left(O_{2}\left(N_{G}(V)\right)\right)$. By (1.7), $Z=\left\langle\beta^{a} \mid a \in N_{G}(V)\right\rangle$. Thus by [15, (2.7)] all involutions in Z are perspectivities. As $V \leqslant Z$, we get a contradiction.

Suppose now $\left\langle V, V^{\alpha}\right\rangle \nsubseteq S L_{2}(q)$. By (1.10), $\left\langle V, V^{\alpha}\right\rangle$ is a p-group. Assume $G \neq P S U_{m}(q)$ or $P S p_{2 n}(q)$. By (1.11) and (1.12), $\left\langle V, V^{\alpha}\right\rangle$ is contained in $O_{p}\left(N_{G}(Y)\right)=R$ for some $Y \sim V$ in G. Set $h=v^{-1} v^{\alpha}$ for some $v \in V^{*}$. By $[10,(5.1)] h$ is a generalized perspectivity. Thus $\operatorname{Fix}(R) \subseteq \operatorname{Fix}(h)$. Let L be the Levi factor of $N_{G}(Y)$. By (2.2), Y is planar. Set $\operatorname{Fix}(Y)=\pi_{1}$. Then h induces a generalized perspectivity on π_{i}. If h is a perspectivity, then α fixes the center or the axis of h. If h is ot a perspectivity, α fixes both the axis and
the center. Thus we may assume that α fixes the center of h. If L fixes the center of h, then the action of L on $O_{p}\left(N_{G}(Y)\right)$ yields that R fixes the center too. If $G \neq L_{n}(q)$, then (1.2) implies that α normalizes Y.

Suppose that α normalizes Y. By (2.2), α centralizes Y. If $r=p$, then [15,(2.5)] implies that $Z(U)$ contains perspectivities. Now (2.2) and (1.3)-(1.8) yields $G=F_{4}(q), q$ even. But then $r=2$, a contradiction. Thus $r \neq p$. Now we may assume that α normalizes L [6, Chap. 12]. By (1.14) and (1.15) we get that α normalizes $\tilde{J}=J^{x}, V^{x}=Y$. As α centralizes Y, a centralizes \tilde{J}. Suppose $[L, \alpha]=1$. Then α acts fix-point-free on R / Y. Thus α normalizes a conjugate Y_{1} of Y but $\left[Y_{1}, \alpha\right] \neq 1$, a contradiction to (2.2). As no element of order p is a perspectivity we get that there is an element $l \in L$ such that $\alpha^{l} \neq \alpha$ and α^{l} and α have different axis. Thus $\operatorname{Fix}(L\langle\alpha\rangle)$ is contained in a triangle. Furthermore \tilde{J} fixes $\operatorname{Fix}(L\langle\alpha\rangle)$. Thus $\tilde{J} L$ fixes the center of h, contradicting (1.2).

Thus α cannot normalize Y. Thus $G=L_{n}(q)$ and a subgroup isomorphic to $E M, M \cong S L_{n, 1}(q)$ and E elementary abelian of order q^{n-1} stabilizes the center of h. Now α normalizes E. As all elements of $E^{\#}$ are conjugate to v in G we get $\{\alpha, E \mid=1$ by (2.2). But this contradicts the structure of $\operatorname{Aut}\left(L_{n}(q)\right)$.

So we have shown that L cannot fix the center of h. Thus $\operatorname{Fix}(R)$ is empty or a triangle. Suppose that $\operatorname{Fix}(R)$ is a triangle. Then L has a subgroup of index at most 3 . Thus $G=\Omega ;(q), q=2$ or 3 .

Suppose $q=2$. By (2.2), $h^{2} \neq 1$ and h^{2} is planar. Let $\pi_{1}=\operatorname{Fix}\left(h^{2}\right)$. By [15, (2.7)| all elements in $O_{2}\left(N_{G}(Y)\right) / Y$ induce perspecitivities on π_{1}, with the same center or the same axis. As α fixes the center and the axis of h, we may assume that all perspectivities of R / Y have the same center. But then L fixes the center of h, a contradiction.

Let $q=3$. Suppose that α normalizes R. Then α centralizes Y by (2.2). As above we get $r \neq p$. Thus we may assume that α normalizes L. We have $L=J^{w} X$. Thus α normalizes X. Suppose that α centralizes X, then we get a contradiction as above. As X contains conjugates of Y we get that there is a conjugate, α^{x}, with $x \in X$, such that α and α^{x} have different centers and axes. Hence $\operatorname{Fix}(X)$ is contained in a trianglc. This yields $\operatorname{Fix}(X)=\operatorname{Fix}(R)$. Thus $P=\left\langle J L, N_{G}(Y)\right\rangle$ fixes $\operatorname{Fix}(R)$. By (1.2) $P=G$, a contradiction.

Thus $\{\alpha, Y] \neq Y$. Set $P=\left\langle C_{N_{G}(Y)}(\operatorname{Fix}(R)), \alpha\right\rangle \cap G$. Let M be the natural module for G. Then the action of P on M is irreducible. Thus $O_{3}(P)=1$. By Baer's theorem $[9,(3.8 .2)]$ we get a conjugate Y_{1} of Y such that $\left\langle Y, Y_{1}\right\rangle \cong$ $S L_{2}(3)$. As all groups $\left\langle Y, Y^{g}\right\rangle \cong S L_{2}(3)$ are conjugate under $N_{G}(Y)$ we get $\tilde{J} \subseteq P$. Thus the whole Weyl-group is contained in P. But then all U_{r} are contained in P. This yields $P=G$, a contradiction.

Thus Fix $(R)=\varnothing$. Then h is triangular on $\operatorname{Fix}(Y)$. But now application of $|10,(3.13)|$ yields a contradiction.

It remain the cases $G=P S U_{m}(q)$ and $G=P S p_{2 n}(q)$. Let M be the natural
module of G and M_{1} a maximal isotropic subspace of M. Let P be the stabilizer of M_{1} in G. Then $P / O_{p}(P) \cong S L_{n}(q)$ for $G=P S p_{2 n}(q)$ and $\left.P / O_{p}(P) \cong S L_{1}\left(q^{2}\right), t=\mid m / 2\right\rfloor$, for $G=P S U_{m}(q)$. Furthermore we may assume that $h=v^{-1} v^{\alpha} \in Z\left(O_{p}(P)\right)$. Suppose $\operatorname{Fix}\left(Z\left(O_{p}(P)\right)\right) \neq \varnothing$. Then the center of h is contained in $\operatorname{Fix}\left(Z\left(O_{D}(P)\right)\right.$). Thus P fixes the center of h. Now the action of P on $O_{p}(P)$ yields that there is a conjugate Y of V such that $h \in O_{p}\left(N_{G}(Y)\right)$. By (2.2), (1.4) and (1.5) we get that Y is planar with $\operatorname{Fix}(Y)=\pi_{1}$. Let $\operatorname{Fix}\left(O_{p}\left(N_{G}(Y)\right)=\varnothing\right.$. Then h is triangular on π_{1}. Now application of $[10,(3.13)]$ yields a contradiction, as $N_{G}(Y)$ contains no normal subgroup $K \leqslant O_{p}\left(N_{G}(Y)\right)$ such that $O_{p}\left(N_{G}(Y)\right) / K i=9$. Thus Fix $\left(O_{p}\left(N_{G}(Y)\right)\right.$ contains the center of h. Let be the Levifactor of $N_{G}(Y)$; then L fixes the center of h. But now $\langle P, L\rangle$ fixes the center of h. By (1.2) this group is G, a contradiction. Thus $\operatorname{Fix}\left(Z\left(O_{p}(P)\right)=\varnothing\right.$. Then $p=3$ and h is triangular. Again application of $[10,(3.13)]$ yields a contradiction.
(2.5) Proposition. Let q be odd, α a perspectivity with $o(\alpha)=r, r a$ prime, then the involution $t \in J$ is a perspectivity.

Proof. By (2.4) we may assume $J=\left\langle V, V^{a}\right\rangle$. Let $v \in V^{\#}$. Set $h=v^{-1} v^{a}$. Then h is a generalized perspectivity. If h is a perspectivity the proposition follows with $[21 \mid$. Thus h is not a perspectivity. Let L be the Levifactor of $N_{G}(V)$. Then $L \leqslant C_{G}(h)$. Let Z be the center of h. By (1.9) there is an element $g \in G$ such that $h^{g} \in L$. Let T be the center of h^{g}. (If h is triangular, then the center of h is one point in Fix (h) stabilied by α.) Suppose $Z=T$. Then J fixes Z. Suppose that L does not fix Z. Then $q=3$ and $G=\Omega_{\dot{n}}(3)$. Furthermore h is triangular. Let $L=J^{n} X$. Then we may assume $h^{8} \in X$. Thus $\operatorname{Fix}(h)=\operatorname{Fix}\left(h^{g}\right)$. Now $\langle L J, g\rangle$ normalizes $\operatorname{Fix}(h)$. By (1.14). $\langle L J, g\rangle=G$, a contradiction. So we have proved that $L J$ fixes Z if $Z=T$.

Suppose $Z \neq T$. Let a be the axis of h. Then $T \in a$. Suppose that all conjugates of h contained in L have the same center. Then as there is and $g \in G$ such that $J^{g} \leqslant L$, all conjugates of h contained in J have the same center Z. Thus J fixes Z and so $L J$ fixes Z too.

Suppose now that there are two conjugates h_{1}, h_{2} of h contained in L with different centers. Then the axis a of h is fix under $L J$.

As α fixes the axis of h we may assume by duality that $L J$ fixes the center of h. Then $\langle L J, \alpha\rangle$ fixes the center of h. Suppose that $\langle L J, \alpha\rangle \cap G \leqslant C_{G}(t)$. Then by (1.14) we get $G=L_{4}(q)$ and $\langle L J, \alpha\rangle \cap G \cong P S p_{4}(q)$ or $G=L_{n}(q)$ and $\langle J L, \alpha\rangle \cap G$ is contained in the stabilizer of a 2 -space in the natural representation of G.

Let $G=L_{4}(q),\langle L J, \alpha\rangle \cap G \cong \operatorname{PSp}_{4}(q)$. As $\alpha \notin C(t)$ we have $o(\alpha) \neq 2$. Thus α induces an automorphism on $P S p_{4}(q)$. Suppose $\langle L J, \alpha\rangle \leqslant G$. If $o(\alpha)$ divides $q^{2}+1$, then α is conjugate in a subgroup S of $P S p_{4}(q), S \simeq L_{2}\left(q^{2}\right)$.

Application of [21] yields now that there are involutions in G which are perspectivities. By [15] there is an involution contained in the center of a Sylow 2-subgroup of G, which is a perspectivity. By conjugation we get now that t is a perspectivity.

Let $o(\alpha)$ divide $q^{2}-1$. Then α is conjugate in a subgroup of $P S p_{4}(q)$ isomorphic to $S L_{2}(q) * S L_{2}(q)$. As in [21, Satz 1] we get that the involution in the center of this group has to be a perspectivity.

Let $o(\alpha)=p$. As $q>3$ we may assume by $[15,(2.5)]$ that $\alpha \in Z(U)=V$. But this contradicts (2.2). Thus we have $\alpha \notin G$. Then $q=t^{r}$. If $r \nmid|P S p(4, q)|$, then by conjugation we may assume that α acts on V, contradicting (2.2). Thus $r \| P S p_{4}(q) \mid$. Furthermore we may assume that $P S p_{4}(q)$ contains no perspectivities of order r. If $r=p$, we get a contradiction with $[15,(2.5)]$. If $r \mid q^{2}+1$, then a Sylow r-subgroup of $\langle L J, a\rangle$ has to be abelian. Thus $t^{2} \equiv-1(r)$. Then r divides $\left(q^{2}+1\right) /\left(t^{2}+1\right)$ and so a field automorphism of $P S p_{4}(q)$ cannot centralize a Sylow r-subgroup. Thus $r \mid q^{2}-1$. Let r^{a} the cxact divisor of $q^{2}-1$. Then a Sylow r-subgroup of $P S p_{4}(q)$ is abelian of type (r^{a}, r^{a}). Thus a Sylow r-subgroup of $\langle L J, \alpha\rangle$ has to be abelian, or $r=3$ by $[15,(2.5)]$. In the former case we get a contradiction as above. Thus suppose $r=3$ and Sylow r-subgroups of $\langle L J, \alpha\rangle$ not to be abelian. The action of a field automorphism yields now $a=1$. But always 9 divides $t^{6}-1$, a contradiction.

Let now $\langle J L, \alpha\rangle \cap G$ be contained in the stabilizer of a 2 -space. Set $N=O_{p}(\langle J L, \alpha\rangle \cap G)$. Then α acts on N and so, by (2.2), $[\alpha, N]=1$. As $\lceil\alpha, t\rceil \neq 1$, we get $r=p$. As a field automorphism cannot centralize N, we get $\alpha \in N$. But then $\left\langle V, V^{\alpha}\right\rangle$ is a p-group, contradicting the choice of V and α. Thus we have shown that $[\alpha, t]=1$.

By (1.9) and $J=\left\langle V, V^{\alpha}\right\rangle$ we get $\alpha \in N_{G}(J)$. Set $\alpha=\beta \delta$ with $\beta \in \operatorname{Aut}(J)$ and $\delta \in C_{G}(J)$. Obviously $r \neq 2$. Thus $\beta=j \gamma$ with $j \in J$ and γ a field automorphism of J. Suppose now $\beta \notin J$. By (2.2) we have $r \neq p$. If $r=3$, then a Sylow 3 -subgroup of $J\langle\alpha\rangle$ has exactly one elementary abelian subgroup of order 9. Let $\langle x, \alpha\rangle$ be this subgroup. Then $\alpha \sim \alpha x \sim \alpha x^{2}$. Thus there is a subgroup $F\langle\alpha\rangle$ of $J\langle\alpha\rangle$ such that $F\langle\alpha\rangle \cong S L_{2}(3)$. By [10, (2.5)] we get that t is a perspectivity. Thus we may assume $r \neq 3$. If $r \nmid|J|$ then α acts on a Sylow p-subgroup of J by the Frattini argument. But this contradicts (2.2). Thus $r||J|$. As a Sylow r-subgroup of $J\langle\alpha\rangle$ is nonabelian, we get by [15, (2.5)] a perspectivity η inside of J. Application of [21, Satz 1] yields now the assertion.

Thus we may assume $\beta=j \in J$. By [21, Satz 1] we may assume $\delta \neq 1$ and $j \neq 1$. If $r \neq p$, then there is a conjugate j^{g} of j in J such that $o\left(j j^{g}\right)=4[21$, Lemma 3). As $r \neq p$ we have $j^{-1} \sim j$ in J. Thus there is an element $k \in J$ such that $o\left(j^{k} j^{-1}\right)=4=o\left(\alpha^{k} \alpha^{-1}\right)$. As in [21, Satz 1] we het that t is a perspectivity.

So we may assume $r=p$. Let $Y \in \operatorname{Syl}_{p}(J), \quad j \in Y$. Choose
$k \in N_{J}(Y)-C_{J}(Y)$. Then $\left(\alpha^{-1}\right)^{k} \alpha$ is a generalized perspectivity contained in Y. But this contradicts (2.2). Thus the proposition is proved.
(2.6) Proposition. Let α be a perspectivity, $o(\alpha)=r, r$ a prime. Then q is odd.

Proof. Let q be even. By (2.4) we may assume $J=\left\langle V, V^{\alpha}\right\rangle$. Let L be the Levifactor of $N_{G}(V)$ and $h=v^{-1} v^{\alpha}$ for some $v \in V^{*}$. Then h is a generalized perspectivity. If h is a perspectivity we may choose α as h. So assume h not to be a perspectivity. Then α fixes the center and the axis of h. By (1.9) there is an element $h^{g} \in L$. Let Z the center of h and T the center of h^{g}. If $T=Z$, then J fixes Z or $q=2$ and h is triangular.

Suppose that J fixes Z, then L fixes Z or $q=2$ and h is triangular. Thus assume h to be triangular. Then $L J$ normalizes Fix (h). Furthermore we may assume $\operatorname{Fix}\left(h^{g}\right)=\operatorname{Fix}(h)$ and so g normalizes $\operatorname{Fix}(h)$. As $\langle J L, g\rangle \neq G$ we get, by (1.15), $G=F_{4}(2)$ and $\langle J L, g\rangle \cong P S p_{8}(2)$. But then $J L$ fixes the center of h. Thus we have that $J L$ fixes the center of h if there is a conjugate of h contained in L, X respectively, with the same center.

Suppose now $T \neq Z$. Then $T \in a$, the axis of h. If all the conjugates of h contained in L, X, respectively, have the same center T, then we get that all the cnjugates of h contained in J have the same center. Thus Z is fixed under $J L$. Thus there are conjugates h_{1}, h_{2} with different centers. Then a is fixed under $L J$. As a summary we get by duality that Z is fixed under $\langle L J, \alpha\rangle$.

Suppose $\alpha \notin N(J L)$. Set $N=\langle I J, \alpha\rangle \cap G$. By (1.15) we get $G=F_{4}(q)$ and $N \cong P S p_{8}(q), G=L_{4}(q)$ and $N \cong P S p_{4}(q)$, or $G=L_{n}(q)$ and N is contained in the stabilizer of a 2 -space in the natural representation of G.

Suppose $G=L_{4}(q)$ and $N \cong P S p_{4}(q)$. As $\alpha \notin N_{G}(J)$ we get $o(\alpha) \neq 2$. Then α induces an automorphism on N. Suppose $\alpha \in N$. If $r q^{2}+1$, then α is conjugate in a subgroup of $P S p_{4}(q)$ isomorphic to $L_{2}\left(q^{2}\right)$. Application of (1.16) yields now that there are involutory perspectivities in N. Then 115 , (2.5)] yields that there are perspectivities in V, contradicting (2.2). Thus $r \mid q^{2}-1$. Then α is conjugate into $J L$ in N. But $J L$ is contained in the stabilizer of a 2 -space. Thus α normalizes an elementary abelian 2 -subgroup in G. By (2.2), α centralizes this 2 -subgroup. As $r \neq 2$ this contradicts the structure of $L_{4}(q)$. Thus we have that α induces an outer automorphism on N. As in (2.5) we get a contradiction.

Let N be contained in the stabilizer of a 2 -space. Set $P=O_{2}(N)$. Then α acts on P. By (2.2), $[\alpha, P]=1$. This yields $o(\alpha)=2$. Now application of $\{15$, (2.5)] yields that V contains nontrivial perspectivities, contradicting (2.2).

Assume finally $G=F_{4}(q), N \cong P S p_{8}(q)$. Let U_{s} be a rootsubgroup of G, s a short root, and $U_{s} \leqslant N$. Let $u \in U_{s}^{*}$. By $\{23\}, u u^{\alpha}$ is of order $1,2,4$ or odd. If $o\left(u u^{\alpha}\right)=4$, then $\left(u u^{\alpha}\right)^{2}$ is conjugate to u in G. By (2.2), u cannot be a
perspectivity. Thus $u u^{\alpha}$ is a generalized perspectivity and the center and the axis of $u u^{\alpha}$ is fixed under α. As all axes of N-conjugates of α intersect in one point we get that the center of $t=u u^{\alpha}$ is a fix point of N. Furthermore the axis is fixed under N. As all involution of G are planar we get $o(t)=4$ or odd. Suppose $o(t)$ to be odd. Then an argument like in (1.10) yields that $\left\langle U_{s},\left(U_{s}\right)^{\alpha}\right\rangle$ is conjugate to $\left\langle U_{s}, U_{-s}\right\rangle$ in G. Thus t is centralized by a subgroup $T \cong P S p_{6}(q)$ of G. Obviously this subgroup is not contained in N and so the center of t is fixed under $T_{1}=\langle T, N\rangle$. By (1.15) we have $T_{1}=G$, a contradiction. Thus $o(t)=4$. Set $z=t^{2}$. Let $\pi_{2}=\operatorname{Fix}(z)$. Then t acts as a perspectivity on π_{2}. Let t be in $O_{2}\left(C_{G}(z)\right)$. Then $T=\left\langle t^{c} G^{(z)}\right\rangle\langle\langle z\rangle$ is generated by perspectivities. Now by $[15,(2.7)]$ we may assume that all these perspectivities have the same center Z. Thus Z is fixed under $C_{6}(z)$ and N. Application of (1.2) yields that Z is fixed under G, a contradiction. Thus $t \notin O_{2}\left(C_{G}(z)\right)$. Then $\left|\left|t, O_{2}\left(C_{G}(z)\right) /\langle z\rangle\right|\right| \geqslant 4$. By $|15|$ all elements in $\langle t\langle z\rangle$, $\left.\left|t, O_{2}\left(C_{G}(z)\right) /\langle z\rangle\right|\right\rangle$ are perspectivities on π_{2} with the same center Z. Then $O_{2}\left(C_{G}(z)\right)$ fixes Z and so $\left\langle N, O_{2}\left(C_{G}(z)\right)\right\rangle$ fixes Z. It is easy to see that $O_{2}\left(C_{G}(z)\right) \nsubseteq N$. Thus by (1.15) we have Z is fixed under G, a contradiction. So we have shown that $\alpha \in N(J L)$.

As $V^{\alpha} \leqslant J$, we have $\alpha \in N(J)$. Thus $\alpha=\beta \delta, \delta \in C_{G}(J), \beta \in \operatorname{Aut}(J)$. Further $\beta=j \gamma, j \in J$. Suppose $\gamma \neq 1$. Then γ induces a field automorphism of order r on J. If $r \nmid|J|$, than α normalizes a Sylow 2 -subgroup of J. But this contradicts (2.2). Thus $r||J|$. If $r \neq 3$, then we may assume by [15, (2.5) \} that α centralizes a Sylow r-subgroup of J. But this contradicts the structure of $\operatorname{Aut}\left(L_{2}(q)\right)$. Thus $r=3$ and for a Sylow 3 -subgroup R of J we have $\left|R: C_{R}(\alpha)\right|=3$. But then all elements of order three in $J\langle\alpha\rangle-J$ are conjugate under J. Thus α acts nontrivial on a Sylow 2 -subgroup of J, a contradiction to (2.2) as this Sylow 2 -subgroup is conjugate to V in J.

Thus we may assume $\alpha=j \delta, \delta \subset C(J)$. Furthermore $j \neq 1$. By (2.3), α centralizes no conjugate of V. According to (1.9) let Y be a conjugate of V contained in L. Then $\left\langle Y, Y^{a}\right\rangle \cong L_{2}(q)$ by (2.4). Furthermore α normalizes $\left\langle Y, Y^{a}\right\rangle$; otherwise we get a contradiction as above. Let $y \in Y^{*}$ an element fixing the axis or the center of α. Then $y^{-1} y^{\alpha}$ is a perspectivity contained in $\left\langle Y, Y^{\alpha}\right\rangle$, contradicting (2.2) and (2.3). Thus $y^{-1} y^{\alpha}$ is a generalized perspectively with center $a \cap b$ where a is the axis of α and b the axis of α^{y}. Hence the center of $y^{-1} y^{\alpha}$ is the center Z of h. As J conjugate to $\left\langle Y, Y^{\alpha}\right\rangle$ we get that the Levifactor L_{1} of $C_{G}(Y)$ stabilizes Z. Thus Z is stabilized by $\left\langle J L, \alpha, L_{1}\right\rangle$. If L_{1} is not contained in $L J$, then by (1.15), $G=F_{4}(q)$ and $\left\langle J L, \alpha, L_{1}\right\rangle \cap G \cong S p_{8}(q)$. But then we get a contradiction as above. Thus we may assume $L_{1} \leqslant J L$, yielding $G=\Omega_{\dot{6}}(q)$ or $\Omega_{\dot{8}}(q)$. If $G \neq \Omega_{\dot{8}}(q)$, then $J L=L_{2}(q) \times L_{2}(q)$. Now as above we get $\alpha=j_{1} j_{2} \varepsilon$ with $j_{1} \in J$, $j_{2} \in\left\langle Y, T^{\alpha}\right\rangle$ and $\varepsilon \in C_{G}(L J)$. But $C_{6 i}(L J)=1$. Now (1.16) yields that an involution in $L J$ has to be a perspectivity or $o(\alpha)=3 \mid q+1$. In the former case we get that all the involutions in V are perspectivities contradicting
(2.2). Let $G=\Omega_{8}^{+}(q)$, then $L J \cong L_{2}(q) \times L_{2}(q) \times L_{2}(q) \times L_{2}(q)$. With the same argument as above we get $o(\alpha)=3$ and $3 \mid q+1$.

Suppose $G \neq \Omega_{\mathrm{g}}^{-}(q), o(\alpha)=3 \mid q+1$. If $G=\Omega_{6}^{\perp}(q) \cong L_{4}(q)$, then $L J$ acts on a 2 -group. Thus there are involutory perspectivities in G. Now [15, (2.5)] yields that there are perspectivities in V, a contradiction to (2.2). If $G=\Omega_{\sigma}^{-}(q)$ or $\Omega_{8}^{+}(q)$, then (1.17) yields that there is a 2 -group T in G such that α acts on $O_{2}\left(C_{G}(T)\right)$. As α cannot centralize this group an easy argument and (2.1) yield that there are involutory involution inside of G. Now [15. (2.5)] yields that there are perspectivities in V^{*}, contradicting (2.2).

Thus $G=\Omega_{8}^{-}(q)$ and $L J=J \times J^{w} \times X, X \cong L_{2}\left(q^{2}\right)$. Furthermore we have $\alpha=j_{1} j_{2} x$, with $j_{1} \in J, j_{2} \in J^{w}$ and $x \in X$. Application of (1.16) yields that there are involutory perspectivities in G or $o(\alpha)=3$. In the former case we get that there are perspectivities in V^{*} with $[15,(2.5)]$ and so we have a contradiction. In the latter case we have as $3 \mid q^{2}-1$, that α normalizes a Sylow 2 -subgroup T of X. Thus there are involutory perspecitivities in G again. This final contradiction proves the proposition.

3. The Proof of the Main Theorem

In this section we assume the hypothesis of the theorem with $m>3$. Then we have shown in Section 2 that $G=\Omega_{n}^{\prime}(2)$ or $\Omega_{n}^{\prime}(3), n \leqslant 8$, or $G=G(q)$ is a Chevalley-group of odd characteristic, and the involution t in J is a perspectivity.
(3.1) Lemma. Let $G \neq \Omega_{n}^{\dot{n}}(q), q=2,3, n \leqslant 8$. Then $t \in J$ is planar.

Proof. By (1.9), $t \in H$ and so t acts on U. We have $U=O_{p}\left(C_{G}(V)\right) U_{1}$, with $\left[U_{1}, t\right]=1$ and $\left.\mid O_{p}\left(C_{G}(V)\right) / V, t\right\}=O_{p}\left(C_{G}(V)\right) / V$. According to (1.9) choose $Y \sim V$ in $G, Y \leqslant U_{1}$. Then $|Y, t|=1$. As $\left|Y, O_{p}\left(C_{G}(V)\right)\right| \neq 1$, we have a conjugate Y_{1} with $O_{p}\left(C_{G}(V)\right) Y=O_{p}\left(C_{G}(V)\right) Y_{1}$ and $\left|Y_{1}, t\right| \neq 1$. But this contradicts (2.4).
(3.2) Lemma. We have $G \neq \Omega_{n}^{*}(2), n \leqslant 8$.

Proof. Suppose $G=\Omega_{n}^{\prime}(2), n \leqslant 8$. If $G \cong L_{4}(2)$ and no involution in K is a perspectivity, we get a perspectivity α of order 3,5 , or 7 . As $L_{2}(5)$ and $L_{2}(7)$ are subgroups of G we get with $\mid 21$, Satz $2 \mid$ that $o(\alpha)=3$. But a Sylow 3 -subgroup of G acts nontrivially on a 2 -group, as can be seen from $A_{4} \times A_{4} \subseteq G L_{4}(2) \cong A_{8}$. But then there are involutory perspectivities in G. Thus we may assume that K contains involutory perspectivities. Application of $[15,(2.5)\}$ yields now that the involution in the center of a Sylow 2-
subgroup of G is a perspectivity. But then all involutions of G are perspectivities. Application of $|12|$ yields a contradiction.

Assume now $G \cong U_{4}(2)$. Suppose that there is no involutory perspectivity in K. Then $o(\alpha)=3$ or 5 . As $L_{2}(5)$ is contained in G we get with [21, Satz 2] that $o(\alpha)=3$. As $G=\Omega_{6}^{-}(2)$ we get that α centralizes a 2 -group T by application of (1.17). But then (2.1) yields a contradiction. Thus there are involutory perspectivities in K and so by [15] there are involutory perspectivities in $Z(S), S$ a Sylow 2-subgroup of G. Now the stabilizer N of a maximal isotropic subspace of the natural module of G is an extension of an elementary abelian subgroup of order 16 by $L_{2}(4)$. Thus by $[15,(2.7)]$ all involutions in the elementary abelian subgroup E are perspectivities with the same center Z. Then $\left\langle\left\langle C_{G}(e) \mid e \in E^{*}\right\rangle, N\right\rangle$ stabilizes Z. But then application of (1.2) yields that G stabilizes Z, a contradiction.

Suppose now $G=\Omega_{8}^{+}(2)$. If there are no involutory perspectivities in K, then $o(\alpha)=3,5$ or 7 . As $L_{2}(7)$ is contained in G we get by [21, Satz 2] that $o(\alpha) \neq 7$. As $L_{2}(4) \times L_{2}(4) \cong \Omega_{4}^{-}(2) \times \Omega_{4}^{-}(2)$ is contained in G we get with (1.16) that $o(\alpha)=3$. Application of (2.1) and (1.17) yields $\alpha \notin G$. Let S be a Sylow 3-subgroup of K containing α. Set $S_{1}=S \cap G$. Then $S_{1}=Z_{3} \times$ $Z_{3} \backslash Z_{3}$. Let E be the elementary abelian subgroup of order 81 in S_{1}. Then $S \leqslant N_{K}(E)$. Furthermore $N_{G}(E) / E \cong E_{8} \Sigma_{4}$ as can be easy seen by inspection of the action of $N_{G}(E)$ on the natural module of G. By $[15,(2.5)]$ we may assume that $\left|E: C_{E}(\alpha)\right| \leqslant 3$. Suppose $[\alpha, E]=1$. Then $\left[\alpha, N_{G}(E)\right] \leqslant E$. Thus there is an involution i in $N_{G}(E)$ such that $[\alpha, i]=1$. Now α acts on $O_{2}\left(C_{G}(i)\right)$. As $O_{2}\left(C_{G}(i)\right)$ is extraspecial or elementary abelian, (2.1) yields a contradiction. Thus $C_{K}(E)=E$. Now $N_{G}(E)$ induces on the subgroups of order 3 of E orbits of length $4,8,12$ and 16 . Thus α leaves all these orbits invariant. Thus there is an orbit $\left\langle e_{1}\right\rangle \sim\left\langle e_{2}\right\rangle \sim\left\langle e_{3}\right\rangle \sim\left\langle e_{4}\right\rangle$ of $N_{G}(E)$ invariant under α such that $E=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$. But as $[E, \alpha] \neq 1$ we get $\left|E: C_{E}(\alpha)\right| \geqslant 9$, contradicting [15, (2.5)]. Thus we have proved that there are involutory perspectivities in K, and so by [15] there are involutory perspectivities i in the center of a Sylow 2-subgroup of G. Let N be the stabilizer of a singular point in the natural representation of G. Then $N / O_{2}(N) \cong \Omega_{6}^{+}(2)$ and $O_{2}(N)$ is elementary abelian of order 2^{6}. Application of [15, (2.7)] yields that all involutions of $O_{2}(N)$ are perspectivities with the same center Z. Now $\left\langle N, C_{G}(i) \mid i \in O_{2}(N)^{*}\right\rangle$ fixes Z. By (1.2) this group is equal to G, a contradiction.

Suppose now $G=\Omega_{8}^{-}$(2). Assume further that no involution in K is a perspectivity. Then $o(\alpha)=3,5,7,17$. As $L_{2}(7)$ and $L_{2}(5)$ are contained in G we get, with $[21], o(\alpha) \neq 5$ and 7. By $\left[4\right.$, Satz 5] $L_{2}(16) \cong \Omega_{4}(4)$ is contained in G. Thus (1.16) yields that $o(\alpha) \neq 17$. As a Sylow 3-subgroup of G is contained in a subgroup isomorphic to $\Omega_{6}^{-}(2)$, we get a contradiction with (1.17). Thus there are involutory perspectivities in G. Let N be the stabilizer of a singular point in the natural representation of G. Then $O_{2}(N)$
is elementary abelian and $N / O_{2}(N) \cong \Omega_{6}^{-}$(2). Thus all involutions in $O_{2}(N)$ are perspectivities with the same center Z. Application of (1.2) yields now the contradiction that Z is a fixpoint of G.
(3.3) Lemma. There is no counterexample to the main theorem.

Proof. By Section 2, (3.1) and (3.2), it is enough to show that $G \neq \Omega_{n}^{e}(3), n \leqslant 8$.

Let $G=\Omega_{6}^{+}(3) \cong L_{4}(3)$. Suppose that there is no involutory perspectivity in K. Then $o(\alpha)=3,5,13$. It is $\Omega_{4}^{-}(3) \cong L_{2}(9)$ contained in G. Thus by [21, Satz 2|, $O(\alpha) \neq 5$. The stabilizer N of a point in the natural representation of G is an extension of an elementary abelian group E of order 27 by $S L_{3}(3)$. Thus we may assume $\alpha \in N$. Then $O_{3}(N)$ contains a generalized perspectivity β. Application of $[10,(3.13)]$ yields that the center Z of β is a fixpoint of $O_{3}(N)$ and then of N. Let M be a complement of $O_{3}(N)$ in N. Then M contains perspectivities. As Z is a fix point of M, Z is contained in the axes of all perspectivities of M. Let N_{1} be the stabilizer of a hyperplane in the natural representation of G. We may assume $M \leqslant N_{1}$. Then Z is a fix point of N_{1}. As $\left\langle N, N_{1}\right\rangle=G$, we get a contradiction. So we have proved that K and then G contains involutory perspectivities.

Let $G=\Omega_{6}^{-}(3) \cong U_{4}(3)$. Suppose that K contains no involutory perspectivities. Then $o(\alpha)=3,5,7$. As $U_{3}(3) \subseteq U_{4}(3)$ we get that $L_{2}(7)$ is a subgroup of G. Furthermore $[14], L_{2}(5)$ is a subgroup of G. Thus by [21], $o(\alpha)=3$. There is a subgroup N of G such that $O_{3}(N)$ is elementary abelian of order 81 and $N / O_{3}(N) \cong A_{6}$. By $[15,(2.5)]$ we may assume $\alpha \in O_{3}(N)$. Then all nontrivial elements of $O_{3}(N)$ are perspectivities with the same center. Application of (1.2) and $|14|$ yields $G=\left\langle N, C_{G}(t) \mid t \in O_{3}(N)^{*}\right\rangle$ fixes the center of α, a contradiction. Thus K and then G contains involutory perspectivities.

Let $G=\Omega_{7}(3)$. Suppose that G contains no involutory perspectivities. Then $O(\alpha)=3,5,7$ or 13. As $L_{2}(7)$ and $L_{2}(5)$ are contained in G we get $o(\alpha)=3$ or 13 . By $\{8], G$ is generated by a class i^{G} of 3 -transpositions. Thus we may assume $i i^{\alpha}=j$ is of order 3. Then $\left[8\right.$, sect. 15] yields $N_{G}(\langle j\rangle) \cong$ $\Sigma_{3} \times E_{81} \Sigma_{6}$. Set $R=O_{3}\left(N_{G}(\langle j\rangle)\right)$. Then $N_{G}(R) / R$ contains $\Omega_{5}(3) \cong P S p_{4}(3)$. As j is a generalized perspectivity we get with [10, (3.13)] that $N_{6}(R)$ fixes the center Z of j. As $N_{G}(R)$ is a maximal subgroup of G by (1.2) we get $\alpha \in N_{G}(R)$ and so $o(\alpha)=3$. Let N be the stabilizer of a maximal isotropic subspace in the natural representation of G. Then $O_{3}(N)$ is of order 3^{6} and $N / O_{3}(N) \cong S L_{3}(3)$. Thus we may assume $\alpha \in N$. By $[15$, (2.5)] we may assume $\alpha \in O_{3}(N)$. But then the center of α is a fix point of N. Thus a Sylow 3-subgroup P of G fixes the center of α. We may assume $P \leqslant N_{G}(R)$. Set $M=\left\langle\alpha^{\rho}\right\rangle$. Then $M \unlhd P$ and so $Z(P) \cap M \neq 1$. Thus we may assume
$\alpha \in Z(P)$. But then $\alpha \in R$ and so Z is the center of α. Now $G=\left\langle N_{G}(R), N\right\rangle$ fixes Z, a contradiction. Thus there are involutory perspectivities in G.

Let $G=\Omega_{8}^{+}(3)$. Suppose that there are no involutory perspectivities in G. Then $o(\alpha)=3,5,7$ or 13 . As $L_{2}(7)$ and $\Omega_{4}^{-}(3) \times \Omega_{4}^{-}(3) \cong L_{2}(9) \times L_{2}(9)$ are contained in G we get $o(\alpha)=3$ or 13 . Let N be the stabilizer of an isotropic point in the natural representation of G. Then $\mathrm{O}_{3}(\mathrm{~N})$ is elementary abelian of order 3^{6} and $N / O_{3}(N)$ is isomorphic to $\mathrm{SO}_{6}^{+}(3)$. Thus we may assume $\alpha \in N$, if $\alpha \in G$. If $\alpha \notin G$, then $o(\alpha)=3$. But then $\mid 15$, (2.5)| yields that there are perspectivities in G. Thus we may assume $\alpha \in G$. Suppose $o(\alpha)=3$. By $[15,(2.5)]$ we may assume $\alpha \in O_{3}(N)$. Then N stabilizes the center of α. Thus $G=\left\langle N, C_{G}(\alpha)\right\rangle$ stabilizes the center of α, a contradiction. Thus $o(\alpha)=13$. Then there is a generalized perspectivity $j=\beta^{-1} \beta^{\alpha} \in O_{3}(N)$. Application of $[10$, (3.13)] yields that N fixes the center Z of j. Thus Z is the intersection of the axes of perspectivities contained in N. Let $M \leqslant G$, $M \cong \Omega,(3)$, and $\alpha \in M$. As above we get that M fixes a point Y. Thus Y is the intersection of the axes of the perspectivities in M. As $M \cap N \nsubseteq N_{G}(\langle\alpha\rangle)$ we get $Z=Y$. But then (1.2) yields that G fixes Z, a contradiction. Thus there are involutory perspectivities in G.

Let $G=\Omega_{8}^{-}(3)$. Suppose that there are no involutory perspectivities in G. Then $o(\alpha)=3,5,7,13$ or 41. As $L_{2}(7), L_{2}(5)$ and $L_{2}\left(3^{4}\right) \cong \Omega_{4}^{-}\left(3^{2}\right)$ are involved in G we get, with [21], $o(\alpha)=3$ or 13. Suppose $o(\alpha)=3$. Let N be the stabilizer of an isotropic point in the natural representation of G. Then $N / O_{3}(N) \cong S O_{6}^{-}(3)$. We may assume $a \in N$. By $[15$, (2.5)], we get $\alpha \in O_{3}(N)$. But then N stabilizes the center Z of α. Thus $G=\left\langle N, C_{G}(\alpha)\right\rangle$ fixes Z, a contradiction. Now $o(\alpha)=13$. Let M be a subgroup of G isomorphic to $\Omega_{7}(3)$. As above we get that M fixes the intersection Z of the axes of the perspectivities contained in M. Let $g \in G-N_{G}(M)$. Then an easy counting argument shows that $M \cap M^{g} \nless N_{G}(\langle\alpha\rangle)$. Thus $\left\langle M, M^{g}\right\rangle$ fixes Z. Now a Sylow argument and application of $\lfloor 3,20]$ yield $G=\left\langle M, M^{g}\right\rangle$, a contradiction. Thus there are involutory perspectivities in G.

So we have proved that in all cases there are involutory perspectivities in G. By $[15 \mid$ the involution in the center of a Sylow 2-subgroup of G is a perspectivity. Thus t, where t means the involution in (1.9), is a perspectivity. As $L_{4}(3)$ contains a subgroup $N \cong E_{16} \Sigma_{5},[13]$, and $U_{4}(3)$ a subgroup $N \cong E_{16} A_{6},|14|$, and $\Omega_{7}(3)$ a subgroup $N \cong E_{64} A_{7},|17|$, with $t \in O_{2}(N)$, we get that N fixes the center of t. As $\Omega_{7}(3)$ is a subgroup of Ω_{8}^{-}(3) we get in all cases that $\left\langle C_{G}(t), N\right\rangle$ fixes the center of t. Now application of $[1$, Corollary II \mid yields that $F^{*}\left(\left\langle C_{G}(t), N\right\rangle\right)$ is a Chevalley-group of odd characteristic. A careful checking of the possible orders yields $G=L_{4}(3)$ and $F^{*}\left(\left\langle C_{G}(t), N\right\rangle\right) \cong P S p_{4}(3)$. But then there are only two classes of involutions in G, both contained in $O_{2}(N)$. Thus all involutions of G are perspectivities. Application of $[12 \mid$ yields now the contradiction.

References

1. M. Aschbacher, A characterization of Chevalley groups over fields of odd order 1, II, Ann. of Math. 106 (1977), 353-468. Correction: Ann. of Math. 111(1980). 411-414.
2. M. Aschbacher and G. Seitz, On groups with standard components of known typc. Osaka J. Math. 13 (1976), 439482.
3. B. Beisiegel, Über endliche einfache Gruppen mit Sylow 2-Gruppen der Ordnung höchstens 2^{11}. Comm. Algebra 5 (1977), 113-170.
4. B. Beisiegel, Semiextraspezielie p Gruppen, Math. Z. 156 (1977), 247-254.
5. N. Bolrbaki, "Élèments de mathématique, Fasc. XXXIV, Groupes et algèbre de Lie," Chaps. 4, 5, et 6, Actualités Sci. Indust. No. 1337, Hermann, Paris, 1968.
6. R. Carifr, "Simple Groups of Lie Type." Wiley, London/New York/Sydney/Toronto, 1972.
7. C. Curtis. W. Kantor, and G. Seitz, The 2 -transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
8. B. Fischfr. Finite groups generated by 3-transpositions, University of Warwick, lecture notes.
9. D. Gorenstein, "Finite groups," Harper and Row, New York, 1968.
10. C. Hering, On the structure of finite collineation groups of projective planes. Abh. Math. Sem. Hamburg 49 (1979), 155-182.
11. C. Hering and M. Walker, Perspectivities in irreducible collineation groups of projective planes, II. J. Statist. Plann. Inference 3 (1979). 151-177.
12. W. Kantor, On the structure of collineation groups of finite projective planes, Proc. London Math. Soc. 32 (1976). 385-402.
13. K. W. Phan, A characterization of the finite simple group $L_{4}(3)$, J. Austr. Math. Soc. 10 (1969), 51-76.
14. K. W. Phan, A characterization of the finite simple group $U_{4}(3)$, J. Austr. Math. Soc. 10 (1969), 77-94.
15. A. Reifart and G. Stroth, On finite simple groups containing perspectivitics. Geom. Dedicata, in press.
16. G. Serrz. Flag transitive subgroups of Chevalley groups. Ann. of Math. 97 (1973), 27-56.
17. R. Solomon, Finite groups with Sylow 2 -subgroups of type A_{12}, J. Algebra 24 (1973). 346-378.
18. R. Steinberg, Variations on a theme of Chevalley, Pacific. J. Math. 9 (1959). 875-891.
19. R. Steinberg, Lectures on Chevalley groups, lecture notes, Yale Lniversity, 1967.
20. V. Stingl. Endliche einfache component-type Gruppen, deren Ordnung nicht durch 2^{11} teilbar ist, Thesis, Mainz, 1976.
21. G. Stroth, Zur Operation von $S L_{2}(q)$ und $P S L_{2}(q)$ auf projektiven Ebenen. Geom. Dedicata. in press.
22. F. Timmesfeld. A characterization of Chevalley and Steinberg groups over F_{2}. Gcom. Dedicata 1 (1973), 269-321.
23. F. Thmmesfeld, Groups generated by root involutions I, II, J. Algebra 33 (1975). 75-134; J. Algebra 35 (1975), 367-441.
24. F. Timmesfeld, Finite simple groups in which the generalized Fitting group of the contralizer of some involution is extraspecial, Ann. of Math. 107 (1978), 297-369.

[^0]: ${ }^{a}$ Arrows denote the short roots, if there are roots of different length.

