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1. Introduction

For simplicity we take our ground field to be the field C of complex numbers. Much work has been
done in the context of more general fields (see, for example, [Flo08,JLY02,Led07,KM08]). In [Löt08] our
results are extended to this context. (See the remarks at the end of this section.)

Let G be a finite group. All G-modules that we consider will be finite dimensional. A covariant
of G is an equivariant morphism (= polynomial map) ϕ : V → W where V and W are G-modules.
The dimension of ϕ is defined to be the dimension of the image of ϕ:

dimϕ := dimϕ(V ).

The covariant ϕ is faithful if the group G acts faithfully on the image ϕ(V ). Equivalently, there is a
point w ∈ ϕ(V ) with trivial isotropy group G w . The covariant dimension covdim G of G is defined to be
the minimum of dimϕ where ϕ : V → W runs over all faithful covariants of G . If dimϕ = covdim G
we say that ϕ is a minimal covariant. In [KS07, Proposition 2.1] we show that there is a minimal
covariant ϕ : V → W if V and W are faithful. In particular, if V is a faithful G-module, then there is
a minimal faithful covariant ϕ : V → V .

Suppose that ϕ : V → W is a rational map which is G-equivariant. We call ϕ a rational covariant.
Then one can define the notion of ϕ being faithful and the dimension of ϕ as in the case of ordinary
covariants. The essential dimension edim G of G is the minimum dimension of all its faithful rational
covariants. It is easy to see that

edim G � covdim G � edim G + 1

(see [Rei04] or the proof of Theorem 2.6 below).
Our results in [KS07] were largely based upon finding homogeneous minimal covariants. Unfortu-

nately, this is not always possible [KS07, Remark 4.1]. In this paper, however, we are able to show
that there are always multihomogeneous minimal covariants. This allows us to improve upon the re-
sults of [KS07]. In particular, we are able to obtain the exact relation between covariant and essential
dimension (Theorem 3.1):

covdim G =
{

edim G + 1 if the center of G is trivial,

edim G otherwise.

In certain cases we are able to describe the image of a covariant (Proposition 4.1) and deduce that
for a faithful group G (i.e., G admits an irreducible faithful module) we have covdim(G × Z/pZ) =
covdim G + 1 if and only if the prime p divides the order |Z(G)| of the center of G . This com-
pletes the analysis of [KS07, §5–6]. In the process we repair the proofs of Corollaries 6.1 and 6.2
of [KS07]. They are supposed to be corollaries of Proposition 6.1, but the hypotheses of the proposi-
tion are not fulfilled. In Section 5 we give some examples of covariant dimensions of groups, in part
generalizing [KS07, Proposition 6.2]. In Sections 6 and 7 we repair two proofs, one concerning a char-
acterization of faithful groups and their subgroups, and one about the classification of non-faithful
groups of covariant dimension 2. In Section 8 we list some minor errata from [KS07].

In the case of a general field k, our considerations must be limited to groups admitting a com-
pletely reducible faithful k-representation. We also need k to contain a primitive root of unity of
order equal to the exponent of Z(G) for every group G appearing in our arguments. In [Löt08] this
last restriction can sometimes be avoided. If k is finite, some arguments do not go through since there
may exist no k-rational points with trivial stabilizer in the image of a faithful covariant.
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2. Multihomogeneous covariants

Let V = ⊕n
i=1 V i and W = ⊕m

j=1 W j be direct sums of vector spaces and let ϕ = (ϕ1, . . . ,

ϕm) : V → W be a morphism where none of the ϕ j are zero. We say that ϕ is multihomogeneous
of degree A = (α ji) ∈ Mm×n(Z) if, for an indeterminate s, we have

ϕ j(v1, . . . , svi, . . . , vn) = sα ji ϕ j(v1, . . . , vn) for all j = 1, . . . ,m, i = 1, . . . ,n.

Whenever we consider the degree matrix A of some ϕ , we are always tacitly assuming that ϕ j �= 0
for all j.

We now give a way to pass from a general ϕ to the multihomogeneous case. For indetermi-
nates s1, . . . , sn , we have ϕ j(s1 v1, . . . , sn vn) = ∑

α ϕ
(α)
j sα for each j, where α = (α1, . . . ,αn) ∈ Nn

and sα = sα1
1 · · · sαn

n . If β ∈ Rn , let α · β denote the usual inner product. Now suppose for illustration
that m = 1 and dim W1 = dim V i = 1, i = 1, . . . ,n. Then ϕ = ϕ1 is just a polynomial in n variables. If
the entries of β are linearly independent over Q, then we can assign to any polynomial ϕ its initial
term (corresponding to the monomial ϕ(α) with the highest value of α · β .) In the yoga of Gröbner
basis theory [CLO07,Stu96] we are assigning to each ϕ its initial term with respect to the weighted
monomial ordering given by β . This initial term is well-defined for any ϕ . In our situation, we only
need the initial terms to be well-defined for a finite collection of polynomials and we can choose
β ∈ Nn .

Returning to the general case, let β ∈ Nn and set h j = max{α · β | ϕ
(α)
j �= 0}, j = 1, . . . ,m. For

r ∈ N set ϕ
(r)
j = ∑

α·β=r ϕ
(α)
j . Now we fix a β such that, for each r ∈ N and each j, {α | α · β = r and

ϕ
(α)
j �= 0} has cardinality at most 1. Thus ϕ

(r)
j is zero or consists of one non-zero term ϕ

(α)
j . Moreover,

ϕ
(h j)

j �= 0 for all j and ϕmax := (ϕ
(h1)
1 , . . . , ϕ

(hm)
m ) is multihomogeneous. Note that the h j and so ϕmax

depend upon our choice of β .

Remarks 2.1.

(1) If the V i and W j are G-modules and ϕ is equivariant, so are all the ϕ
(α)
j and ϕmax. Note that no

entry in ϕmax is zero since the same is true of ϕ .
(2) If ϕ : V → W is multihomogeneous of degree A = (α ji) and ψ : W → U = ⊕�

k=1 U� is multiho-
mogeneous of degree B = (βkj) and all components of ψ ◦ ϕ are non-zero, then the composition
ψ ◦ ϕ : V → U is multihomogeneous of degree B A.

Concerning ϕmax there is the following main result.

Lemma 2.2. Let ϕ : V → W be a morphism where no ϕ j is zero. Then dimϕmax � dimϕ .

Proof. Let β and h1, . . . ,hm be as above. We have an action λ of C∗ on W where λ(t)(w) =
(th1 w1, . . . , thm wm) for w ∈ W and t ∈ C∗ . We also have an action μ of C∗ on V by μ(t)(v1, . . . , vn) =
(tβ1 v1, . . . , tβn vn) where t ∈ C∗ and v ∈ V . Let tϕ(v) denote λ(t)(ϕ(μ(t−1)(v))) for t ∈ C∗ and v ∈ V .
Then tϕ(v) = ϕmax(v) + tψ(t, v) for some morphism ψ : C × V → W . Consider the morphism

Φ : C × V → C × W , (t, v) �→ (
t, tϕ(v)

)

where 0ϕ := ϕmax. Let Y denote Im Φ . Let p : Ȳ → C be the morphism induced by the projection
C × W → C where Ȳ denotes the closure of Y . Clearly, we have Y ∩ ({t} × W ) = {t} × Im tϕ for t ∈ C.
Then

Ȳ ∩ (
C∗ × W

) =
⋃
t �=0

{t} × λ(t)X
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where X := Imϕ , because the right-hand side is closed in C∗ × W . As a consequence, we get

Ȳ = Φ
(
C∗ × W

)
,

hence p−1(t) = {t} × Im tϕ for t �= 0 and p−1(0) ⊃ {0} × Imϕmax. Since Ȳ is irreducible, it follows that
dimϕmax � dimϕ . �
Corollary 2.3. Let p : Ȳ → C be as in the proof above. If dimϕ = dimϕmax and Imϕ is C∗-stable, then p−1(0)

is C∗-stable.

Proof. The hypotheses imply that {0} × Imϕmax is an irreducible component of p−1(0). Since Imϕ is
C∗-stable, then so is Im tϕ for all t �= 0 which implies that Ȳ is stable under the C∗-action λ · (t, w) :=
(t, λw) on C × W . It follows that p−1(0) is C∗-stable. �
Theorem 2.4. Let G be a finite group and let V = ⊕n

i=1 V i and W = ⊕m
j=1 W j be faithful G-modules where

the V i and W j are irreducible submodules. Then there is a minimal multihomogeneous covariant ϕ : V → W
all of whose components are non-zero.

Proof. Let ϕ : V → W be a minimal covariant. We can always arrange that for given v ∈ V and
w ∈ W , both with trivial stabilizer in G , we have ϕ(v) = w . (See [KS07, Proposition 2.1]. This is
also proved in [Pop94, Theorem 7.1.12], cf. [BR97, Lemma 3.2a]). Thus we can assume that all com-
ponents of ϕ are non-zero. Then ϕmax : V → W is a multihomogeneous covariant, dimϕmax � dimϕ
and ϕmax is faithful since all its components are non-zero [KS07, Lemma 4.1]. �
Corollary 2.5. Let V i be a faithful irreducible module of the group Gi , i = 1, . . . ,n. Then V = ⊕n

i=1 V i is a
faithful G-module where G := G1 ×· · ·× Gn, and there is a minimal multihomogeneous covariant ϕ : V → V .

We want to prove similar results for a rational covariant ψ : V → W . It is obvious how to extend
the definitions of minimal and multihomogeneous of degree A to rational covariants where in this case
the matrix A might contain negative entries.

Theorem 2.6. Let G be a finite group and let V = ⊕n
i=1 V i and W = ⊕m

j=1 W j be faithful G-modules where
the V i and W j are irreducible submodules. Then there is a minimal rational multihomogeneous covariant
ψ : V → W all of whose components are non-zero and which is of the form ψ = h−1ϕ where h is a multiho-
mogeneous invariant and ϕ : V → W a multihomogeneous minimal regular covariant.

Proof. Let ψ : V → W be a minimal rational covariant. We can assume that all components of ψ

are non-zero. There is a non-zero invariant f ∈ O(V )G such that f ψ is regular. Define the regular
covariant

ϕ := ( f ψ, f ) : V → W ⊕ C, v �→ (
f ψ(v), f (v)

)

which is faithful since ψ is. Moreover, either dimϕ = dimψ or dimϕ = dimψ + 1, where the second
case takes place if and only if ϕ(V ) is stable under scalar multiplication with C∗ . This follows from
the fact that the composition of rational maps V → W ⊕ C → P(W ⊕ C) → W is ψ .

As above we obtain a multihomogeneous covariant ϕmax : V → W ⊕ C which has the form ϕmax =
(ϕ1, . . . , ϕm,h). Now define the multihomogeneous rational covariant

ψmax :=
(

ϕ1

h
, . . . ,

ϕm

h

)
: V → W

which is again faithful. Moreover, dimψmax � dimϕmax � dimϕ . So if dimϕ = dimψ then ψmax is a
minimal multihomogeneous rational covariant and we are done.
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Now assume that dimϕ = dimψ + 1 so that ϕ(V ) is C∗-stable. If ϕ is not minimal then there
is a minimal multihomogeneous regular covariant ϕ̃ of dimension � dimψ and we are again done.
Therefore we can assume that ϕ is minimal, hence dimϕmax = dimϕ . Since tϕ(V ) is C∗-stable for all
t �= 0 it follows from Corollary 2.3 that ϕmax(V ) is C∗-stable, too, and so

dimψmax � dimϕmax − 1 = dimϕ − 1 = dimψ.

Hence, ψmax is a minimal multihomogeneous rational covariant. �
3. Covariant dimension and essential dimension

In this section we extend [KS07, Corollary 4.2] to arbitrary groups and give the exact relation
between covariant and essential dimension of finite groups.

Theorem 3.1. Let G be a non-trivial finite group. Then covdim G = edim G if and only if G has a non-trivial
center.

The proof is given in Corollary 3.5 and Proposition 3.6 below. We need some preparation. In this
section we have faithful G-modules V = ⊕n

i=1 V i and W = ⊕m
j=1 W j where the V i and W j are

irreducible submodules. We have a natural action of the tori C∗n on V and C∗m on W . These actions
are free on the open sets V ′ := {v = (v1, . . . , vn) | vi �= 0 for all i} ⊂ V and W ′ ⊂ W defined similarly.
If ϕ : V → W is multihomogeneous of degree A = (α ji) then ϕ is equivariant with respect to the
homomorphism

T (A) : C∗n → C∗m
, s = (s1, . . . , sn) �→ (

sα1 , sα2 , . . . , sαm
)

where α j := (α j1,α j2, . . . ,α jn) and sα j = s
α j1
1 s

α j2
2 · · · s

α jn
n , as before. This implies that the (closure of

the) image of ϕ is stable under the subtorus Im T (A) ⊂ C∗m . The actions of G and C∗n commute and
since each V i is irreducible, considered as subgroups of GL(V ), we have C∗n ∩ G = Z(G).

Remark 3.2. Let ϕ : V → W be a multihomogeneous covariant of degree A. If μ ∈ AQn ∩ Zm , then
ϕ(V ) ⊂ W is stable under the C∗-action ρ(t)(w1, . . . , wm) := (tμ1 w1, . . . , tμm wm). It follows that for
any invariant f ∈ O(V )G the morphism

ϕ̃ : v = (v1, . . . , vn) �→ (
f (v)μ1ϕ1(v), . . . , f (v)μmϕm(v)

)
(1)

is a rational covariant with ϕ̃(V ) ⊂ ϕ(V ), hence dim ϕ̃ � dimϕ . Moreover, if ϕ is faithful and f
multihomogeneous, then ϕ̃ is faithful and multihomogeneous of degree Ã := μdeg f + A, i.e., α̃ ji =
μ j degV i

f + α ji . Clearly φ̃ is regular if μ ∈ Nm .
This has the following application which will be used later in the proof of Corollary 4.4: Let p

be a prime which does not divide the order of the center of a non-trivial group G. Then there is a minimal
multihomogeneous covariant ϕ : V → V of degree A �≡ 0 mod p. (Start with a minimal multihomogeneous
covariant ϕ : V → V of degree A and assume that A ≡ 0 mod p. Since A is non-zero and has only non-
negative entries we can choose a μ ∈ AQn ∩Nn such that μ j0 �≡ 0 mod p for at least one j0. Moreover,
there is a multihomogeneous invariant f of total degree �≡ 0 mod p (see [KS07, Lemma 4.3]). But then
μdeg f �≡ 0 mod p, and so the covariant ϕ̃ given in (1) is minimal and has degree μdeg f + A �≡
0 mod p.)

For the next results we need some preparation. Let ϕ : V → W be a multihomogeneous faithful co-
variant of degree A = (α ji) where all components ϕ j are non-zero. Define W ′ := {(w1, . . . , wm) ∈ W |
wi �= 0 for all i} = ∏m

j=1(W j \ {0}). The group C∗m acts freely on W ′ and W ′ → ∏m
j=1 P(W j) is the

geometric quotient. Let X := ϕ(V ) and P(X) ⊂ ∏m
j=1 P(W j) the image of X , and set X ′ := X ∩ W ′ .
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Finally, denote by S ⊂ C∗m the image of the homomorphism T (A) : C∗n → C∗m . Then we have the
following.

Lemma 3.3.

(1) dim P(X) � dim X − dim S � dim X − rank Z(G).
(2) The kernel of the action of G on P(X) is equal to Z(G).

Proof. We may regard G as a subgroup of
∏m

i=1 GL(V i) and of
∏m

j=1 GL(W j), and so Z(G) = G ∩ C∗n

and Z(G) = G ∩ C∗m .
(1) The first inequality is clear because X is stable under S . For the second we remark that

Z(G) ⊂ S since ϕ is G-equivariant and so T (A)z = z for all z ∈ Z(G).
(2) Let g ∈ G act trivially on P(X). Then every x ∈ X j := prW j

(X) is an eigenvector of g|W j . But
X j is irreducible and therefore contained in a fixed eigenspace of g on W j . Since W j is a simple
G-module this implies that g|W j is a scalar. �
Proposition 3.4. Let ϕ : V → W be a multihomogeneous faithful covariant of degree A = (α ji) where all
components ϕ j are non-zero. Assume that G has a trivial center. Then

edim G � dimϕ − rank A and covdim G � dimϕ − rank A + 1.

In particular, if ϕ is a minimal regular covariant, then rank A = 1, and if ϕ is a minimal rational covariant,
then A = 0.

Proof. Let X := ϕ(V ), let P(X) ⊂ ∏m
j=1 P(W j) denote the image of X and set X ′ := X ∩ W ′ . Finally, let

S denote the image of T (A) : C∗n → C∗m . The torus S has dimension rank A and acts generically freely
on X := ϕ(V ) since all components of ϕ are non-zero. Composing ϕ with the projection p : W →
P(W1) × · · · × P(Wm) we obtain a rational G-equivariant map ϕ′ : V → P(W1) × · · · × P(Wm) such
that ϕ′(V ) = P(X). Since Z(G) is trivial, G acts faithfully on P(X), and dim P(X) � dim X − dim S , by
Lemma 3.3. Thus p ◦ ϕ′ is a rational faithful covariant of dimension � dim X − rank A, proving the
first claim. The second follows since covdim G � edim G + 1. �
Corollary 3.5. If G is a (non-trivial) group with trivial center, then

covdim G = edim G + 1.

Proof. Let ϕ : V → V be a minimal multihomogeneous regular covariant of degree A. By Propo-
sition 3.4, rank A = 1 and ϕ is not minimal as a multihomogeneous rational covariant. Hence
edim G < dimϕ = covdim G and the claim follows. �
Proposition 3.6. If G has a non-trivial center, then covdim G = edim G.

Proof. Let ψ : V → V be a multihomogeneous minimal rational covariant of degree A = (α ji) which
is of the form h−1ϕ where h ∈ O(V )G is a multihomogeneous invariant and ϕ : V → V a multihomo-
geneous regular minimal covariant (Theorem 2.6).

(a) If there is a β ∈ Zn such that all entries of γ := Aβ are > 0, then the covariant ϕ :=
(hγ1ψ1, . . . ,hγn ψn) : V → V is regular and faithful. Moreover, ϕ(V ) ⊂ ψ(V ) because the latter is stable
under T (A)(C∗n). Hence covdim G � dimϕ � dimψ = edim G and we are done.

(b) In general, A �= 0, since otherwise the center of G would act trivially on the image ψ(V ). If
α j0 i0 �= 0, choose a homogeneous invariant f ∈ O(V j0) ⊂ O(V ) which does not vanish on ψ(V ). For
any r ∈ Z the composition ψ ′ := ( f r · Id) ◦ ψ is still faithful and rational, and dim ψ ′ � dimψ . More-
over, we get ψ ′

j(v) = f r(ψ j0 (v)) · ψ j(v). Therefore the degree of ψ ′
j in V i0 is r · deg f · α j0 i0 + α ji0 for

j = 1, . . . ,n. Hence, for a suitable r, all these degrees are > 0, and we are in case (a) with β := ei0 . �
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In some of our applications we will need the following result.

Corollary 3.7. Assume that the center Z(G) is cyclic (and non-trivial) and that Z(G)∩ (G, G) = {e}. If G/Z(G)

is faithful, then G is faithful, too, and

edim G = covdim G = covdim G/Z(G) = edim G/Z(G) + 1.

Proof. It easily follows from the assumption Z(G) ∩ (G, G) = {e} that the center of G/Z(G) is trivial
and that every character of Z(G) can be lifted to a character of G . Now let V be an irreducible faithful
G/Z(G)-module and let ϕ : V → V be a homogeneous minimal covariant. Since G/Z(G) has a trivial
center we may assume that the degree of ϕ is ≡ 1 mod |Z(G)| (see Remark 3.2). If χ : G → C∗ is a
character which is faithful on Z(G) then V ⊗ χ is an irreducible faithful G-module and ϕ : V ⊗ χ →
V ⊗χ is G-equivariant and faithful. Hence covdim G = covdim G/Z(G). The other two equalities follow
from Proposition 3.6 and Corollary 3.5. �
4. The image of a covariant

In certain cases one can get a handle on the ideal of Imϕ .

Proposition 4.1. Let V := ⊕n
i=1 V i and let ϕ = (ϕ1, . . . , ϕn) : V → V be a multihomogeneous morphism of

degree A = (α ji). Assume that det A �= 0. Then the ideal I(ϕ(V )) of the image of ϕ is generated by multiho-
mogeneous polynomials.

Proof. For v = (v1, . . . , vn) ∈ V we have

ϕ(s1 v1, . . . , sn vn) = (
sα1ϕ1, . . . , sαnϕn

)
(v)

where sα j = s
α j1
1 · · · s

α jn
n . Choose coordinates in each V i and let M be a monomial in these coordinates.

Let β = β(M) denote the multidegree of M , so we have M(s1 v1, . . . , sn vn) = sβ M(v1, . . . , vn). Then
M(ϕ(s1 v1, . . . , sn vn)) is M(ϕ(v)) multiplied by

(
sα1 , . . . , sαn

)β = sβ1α11+···+βnαn1
1 · · · sβ1α1n+···+βnαnn

n = sβ A

where β A is the matrix product of β and A. If F ∈ I(ϕ(V )), we may write F = ∑
M cM M where

the cM are constants and M varies over all monomials in the coordinates of the V i . We have
F (ϕ(s1 v1, . . . , sn vn)) = ∑

M cM sβ(M)A M(ϕ(v)). Hence, for any γ ∈ Nn , we obtain

∑
β(M)A=γ

cM M ∈ I
(
ϕ(V )

)
.

Since det A �= 0, for any γ there is at most one β such that β A = γ . It follows that every sum
of the form

∑
β(M)=β cM M belongs to I(ϕ(V )). Thus I(ϕ(V )) is generated by multihomogeneous

polynomials. �
Corollary 4.2. Suppose that ϕ is as above and that there is a k, 1 � k < n, such that dim Vk+1 = · · · =
dim Vn = 1. Then dimϕ = dim(ϕ1, . . . , ϕk) + (n − k).

Proof. Since the degree matrix A = (α ji) exists, no ϕ j is zero. Let m = dim V 1 + · · · + dim Vk . By
Proposition 4.1 the ideal of ϕ(V ) is generated by functions of the form F (y1, . . . , ym)t

rk+1
k+1 · · · trn

n where
F is multihomogeneous. Such a function vanishes on Imϕ if and only if F (y1, . . . , ym) vanishes on
the image of (ϕ1, . . . , ϕk). Thus the ideal I(ϕ(V )) is generated by functions not involving tk+1, . . . , tn .
As a consequence, ϕ(V ) = (ϕ1, . . . , ϕk)(V ) × Vk+1 × · · · × Vn . �
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In order to apply Proposition 4.1 and Corollary 4.2 we need a version of [KS07, Lemma 5.2].

Corollary 4.3. Let G = G1 × · · · × Gn and V = V 1 ⊕ · · · ⊕ Vn where each V i is an irreducible Gi -module,
i = 1, . . . ,n. Let ϕ : V → V be a multihomogeneous covariant of degree A and suppose that the prime p
divides |Z(Gi)| for all i. Then det A �= 0, and the ideal I(ϕ(V )) is generated by multihomogeneous elements.

Proof. Let ξ be a primitive pth root of unity. Then we have ϕ j(v1, . . . , ξ vi, . . . , vn) = ξα ji ϕ j(v1,

. . . , vn). There is an element of G j which acts as ξ on V j and trivially on V i if i �= j. Hence ξα ji = 1
for i �= j. If i = j, one similarly shows that ξα j j = ξ by equivariance relative to G j . This implies that

α ji ≡
{

1 mod p for i = j,

0 mod p otherwise,

and so det(αi j) �= 0. Now apply Proposition 4.1. �
We say that G is faithful if it admits a faithful irreducible representation. We now get the following

result which extends Corollaries 6.1 and 6.2 of [KS07].

Corollary 4.4. Let G = G1 × · · · × Gn be a product of non-trivial faithful groups and let p be a prime.

(1) If p is coprime to |Z(G)|, then covdim(G × Z/p) = covdim G.
(2) If p divides all |Z(Gi)|, then covdim(G × (Z/p)m) = covdim G + m.

In particular, if H is a non-trivial faithful group and m � 1, then

covdim
(

H × (Z/p)m) =
{

covdim H + m if p divides |Z(H)|,
covdim H + (m − 1) otherwise.

Proof. Let V i be a faithful irreducible Gi -module. Then V := V 1 ⊕ · · · ⊕ Vn is a faithful G-module.
By Corollary 2.5 there is a minimal multihomogeneous faithful covariant ϕ = (ϕ1, . . . , ϕk) : V → V of
degree A. For any δ = (δ1, . . . , δn) ∈ Zn there is a linear action of Z/p on V where the generator
1̄ ∈ Z/p acts by

v = (v1, . . . , vn) �→ (
ζ δ1 v1, . . . , ζ

δn vn
)
, ζ := e

2π i
p .

This action commutes with the G-action and defines a (G × Z/p)-module structure on V which will
be denoted by V δ . It follows that for μ = Aδ the multihomogeneous map ϕ is a (G ×Z/p)-equivariant
morphism from V δ to Vμ . If p is coprime to |Z(G)| we can assume that A �≡ 0 mod p (Remark 3.2).
Then there is a δ such that μ = Aδ �≡ 0 mod p and so ϕ is a faithful covariant for the group G × Z/p,
proving (1).

Assume now that p divides all |Z(Gi)|. There is a minimal multihomogeneous covariant ψ : V ⊕
Cm → V ⊕Cm for G × (Z/p)m where (Z/p)m acts in the obvious way on Cm . Clearly, no entry of ψ is
zero and by Corollaries 4.3 and 4.2, we get dim ψ = dimϕ + m where ϕ : V ⊕ Cm → V is ψ followed
by projection to V . Since each component of ϕ is non-zero, ϕ is faithful for G [KS07, Lemma 4.1].
Thus dimϕ � covdim G . But clearly, covdim(G × (Z/p)m) � covdim G + m, hence we have equality,
proving (2). �

As an immediate consequence we get the following result.

Corollary 4.5. Let G be abelian of rank r. Then covdim G = r.
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Remark 4.6. The corollary is Theorem 3.1 of [KS07]. The proof in [KS07] uses a lemma whose proof
is incorrect. The problem is that the quotient ring R/pR constructed there may have zero divisors.
However, one can give a correct proof of the lemma by paying attention to the powers of the variables
that occur in the determinant det(∂ f i/∂x j). We omit this proof since the lemma is no longer needed.

The following strengthens [KS07, Proposition 6.1], which in turn then simplifies other proofs in the
paper, e.g., the proof of Proposition 6.2.

Corollary 4.7. Let V = W ⊕ Cχ be a faithful G-module where W is irreducible and χ is a character of G. Let
H denote the kernel of G → GL(W ). Assume that there is a prime p which divides the order of H and such that
the following two equivalent conditions hold:

(i) There is a subgroup of kerχ acting as scalar multiplication by Z/p on W ;
(ii) There is a subgroup of G acting as scalar multiplication by Z/p on V .

Then covdim G = covdim G/H + 1.

Proof. It is easy to see that the two conditions are equivalent, because χ |H : H → C∗ is injective.
Since G embeds into G/H × χ(G), we have covdim G � covdim G/H + 1.

To prove the reverse inequality let (ϕ,h) : W ⊕ Cχ → W ⊕ Cχ be a minimal faithful multihomo-
geneous covariant of degree (α ji). Since H is non-trivial, h cannot be zero. By assumption, H contains
a subgroup of order p which is mapped injectively into C∗ by χ . Thus the subgroup acts trivially on
W and by scalar multiplication on Cχ . Therefore,

α22 ≡ 1 and α12 ≡ 0 mod p.

Similarly, condition (i) implies that

α11 ≡ 1 and α21 ≡ 0 mod p.

Thus det(αi j) �= 0, and so dim(ϕ,h) = dimϕ + 1 by Corollary 4.2. The equivariant morphism ϕ : W ⊕
Cχ → W factors through the quotient (W ⊕ Cχ )/H which is isomorphic to the G/H-module W ⊕ C,
and defines a faithful G/H-covariant ϕ̄ : W ⊕ C → W . Hence, dimϕ � covdim G/H , and our result
follows. �

Now consider the following commutative diagram with exact rows where � > m � 0, μN ⊂ C∗
denotes the Nth roots of unity and π is the canonical homomorphism ξ �→ ξ p�−m

:

1 K G
χ

μp�

π

1

1 K G ′ χ ′
μpm 1.

Corollary 4.8. In the diagram above assume that G ′ is faithful and that the prime p divides |Z(G ′) ∩ K |. Then
covdim G = covdim G ′ + 1.

Proof. Let ρ : G ′ → GL(W ) be a faithful irreducible G ′-module. Then V := W ⊕ Cχ is a faithful G-
module. Fix a pth root of unity ζ ∈ C∗ and let z′ ∈ Z(G ′) ∩ K be such that ρ(z′) = ζ · Id. We have

G = {
(g′, ξ) ∈ G ′ × μp�

∣∣ χ ′(g′) = π(ξ)
}
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and so z := (z′, ζ ) ∈ Z(G) acts as scalar multiplication with ζ on V . Now the claim follows from
Corollary 4.7. �
5. Some examples

We consider the covariant dimension of some products and semidirect products of groups. We
denote by Cn a cyclic group of order n.

Example 5.1. Consider the group G := C3 � C4 where a generator of C4 acts on C3 by sending each
element to its inverse. Then Z(G) ⊂ C4 is of order 2, (G, G) = C3 and G/Z(G) � S3. Hence edim G =
covdim G = covdim S3 = 2, by Corollary 3.7.

Example 5.2. Let H := S3 × S3. Since covdim S3 = 2 = edim S3 + 1, we have covdim H = edim H + 1 �
2 edim S3 + 1 � 3. We claim that covdim H = 3. Let G denote H × (Z/2Z)2. By Corollary 4.4,
covdim G = covdim H + 1. Since G contains a copy of (Z/2Z)4, its covariant dimension is at
least 4, hence it is 4, and so the covariant dimension of H is 3. The same reasoning shows that
covdim S3 × S4 = 4 and covdim S4 × S4 = 5.

Example 5.3. Let G := A4 � C4 where a generator x of C4 acts on A4 by conjugation with a 4-cycle
σ ∈ S4. We get

Z(G) = 〈
x2σ 2〉 � C2, (G, G) = A4, G/Z(G) � S4.

Thus edim G = covdim G = covdim S4 = 3, by Corollary 3.7. Moreover, G has a 3-dimensional faithful
representation—the standard representation of A4 lifts to a faithful representation of G—and G con-
tains a subgroup isomorphic to C2 × C2 × C2.

Example 5.4. Let σ ∈ Sn \ An be of (even) order m where n � 4, and consider the group G := An � Cm

where a generator of Cm acts on An by conjugation with σ . Again, we can apply Corollary 3.7 and get
edim G = covdim G = covdim Sn .

Example 5.5. Let G := (C3 × C3) � (C4 × C8) where a generator x of C4 acts on C3 × C3 by sending
each element to its inverse, and a generator y of C8 acts by sending the first component to its inverse
and leaving the second component invariant. Then Z(G) = 〈x2, y2〉 � C2 × C4, (G, G) = C3 × C3 and
G/Z(G) � S3 × S3. Since the center is not cyclic we cannot apply Corollary 3.7 directly, but have to
pass through the intermediate group Ḡ := G/〈x2〉 which has a cyclic center, namely 〈y2〉. Thus we
obtain edim Ḡ = covdim Ḡ = covdim Ḡ/Z(Ḡ) = covdim S3 × S3 = 3 by Example 5.2. Since Ḡ is faithful
we can apply Corollary 4.7: Take H := 〈x2〉 and choose for χ a lift of the character χ̄ on Z(G) =
〈x2, y2〉 given by χ̄ (x2) = −1 and χ̄ (y2) = 1. We finally get edim G = covdim G = covdim Ḡ + 1 = 4.

Example 5.6. A recent general theorem due to Karpenko and Merkurjev [KM08] is the following. For
any finite p-group G the essential dimension edim G equals the minimal dimension of a faithful representa-
tion of G. Using this, Meyer and Reichstein [MR08] have found formulas for the essential dimension
of all p-groups. Here we give a simple formula for the essential dimension of semidirect products
G p(k, �,α) := Z/pk �Z/p� where the generator 1̄ of Z/pk induces the automorphism α on A := Z/p� .
Our results generalize [KS07, Proposition 6.2]. We have

covdim G p(k, �,α) =
{

pk if α has order pk ,

pd + 1 if α has order pd , d < k.

Note that C := p�−1 A lies in the center of G := G p(k, �,α), so that the covariant dimension and
essential dimension are the same.
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The second case follows from the first using Corollary 4.8. So we assume that α has order pk . Let
V be a faithful G-module. Then the (cyclic) center of G acts faithfully on an irreducible component W
of V , and Ker(G → GL(W )) is trivial since any non-trivial normal subgroup of G intersects the center.
Thus G is faithful. (One could also use Proposition 6.1 below.)

Let V be an irreducible faithful G-module. Then, since G is supersolvable, V is induced by a char-
acter of a proper subgroup H . We claim that H is abelian. If not, then (H, H) ⊂ (G, G) ⊂ A contains
C , so C acts trivially on V , a contradiction. If H is an abelian subgroup, we may consider a character
of H which is faithful on H intersected with the (cyclic) center. Then the induced representation is
faithful of dimension [G : H]. Thus we only need to show that any abelian subgroup H of G has order
at most p� .

Let γ generate the canonical projection of H to Z/pk and let y generate H ∩ A. We may assume
that γ �= e and that y �= e. Now H is generated by x and y where x ∈ H has image γ in Z/pk .
Choose a generator z of A such that y = zpr

for some r where 1 � r < l. We have γ (z) = zs+1 where
0 < s < pl − 1. Since H is abelian, the commutator (x, y) = (x, zpr

) is trivial. It follows that γ (z)pr =
zpr = zspr+pr

, so that p� divides spr and p�−r divides s. Hence γ has order at most pr . It follows that
H has order at most p� .

6. Faithful groups

Let NG ⊂ G denote the subgroup generated by the minimal subgroups (under set inclusion) among
the non-trivial normal abelian subgroups of G . Our work in [KS07] used the following criterion of
Gaschütz.

Proposition 6.1. (See [Gas54].) Let G be a finite group. Then G is faithful if and only if NG is generated by the
conjugacy class of one of its elements.

We have the following corollary [KS07, Corollary 4.1], which we need in the next section.

Corollary 6.2. Let G be a non-faithful group and H ⊂ G a subgroup containing NG . Then H is non-faithful,
too.

The proof given in [KS07] claims that NG ⊂ NH . But this is false. For example, let G = S4 ⊃ D4.
Then NG is the Klein 4-group, while NH = Z(D4) � Z/2Z. Here is a correct proof.

Lemma 6.3. Let N1, . . . , Nk be the minimal non-trivial normal abelian subgroups of a finite group G. Then:

(1) Each Ni is isomorphic to (Z/pZ)n for some n ∈ N and prime p.
(2) Let L be a G-normal subgroup of NG . There is a direct product M of a subset of {N1, . . . , Nk} such that

NG is the direct product LM.

Proof. By minimality, for any prime p and i, pNi is zero or Ni . Thus Ni � (Z/pZ)n for some p and n
giving (1). For (2), inductively assume that we have found a G-normal subgroup M j of NG which is a
direct product of a subset of {N1, . . . , N j} such that LM j is a direct product containing N1, . . . , N j . We
start the induction with M0 = {e}. If LM j contains N j+1, then set M j+1 = M j . If not, then N j+1 ∩ LM j
must be trivial, so that the products M j+1 := M j N j+1 and LM j+1 are direct where N j+1 ⊂ LM j+1. Set
M = Mk . Then LM is a direct product containing all the generators of NG , hence equals NG . �
Corollary 6.4. NG is a direct product of a subset of {N1, . . . , Nk}, hence NG is abelian.

Proof of Corollary 6.2. The subgroup NG ∩ NH ⊂ NH is normal in H . By Lemma 6.3 it has a
complement M . Now assume that H is faithful. Then by Proposition 6.1 there exists an element
(c,d) ∈ NH = (NG ∩ NH ) × M whose H-conjugacy class generates NH . Then the H-conjugacy class
of c generates NG ∩ NH . Now let Ni be one of the minimal non-trivial normal abelian subgroups of G .
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By hypothesis, Ni ⊂ H , hence Ni contains a minimal non-trivial H-submodule N ′ . Then N ′ ⊂ NG ∩ NH .
The smallest G-stable subspace of NG containing N ′ is Ni , hence Ni lies in the G-submodule of NG
generated by the conjugacy class of c. Since Ni is arbitrary, we see that G is faithful. �
Remark 6.5. Let G1, G2, . . . , Gm be faithful groups. Then the product G1 ×· · ·× Gm is faithful if and only if
the orders of the centers Z(Gi) are pairwise coprime. In fact, the center of the product is cyclic if and
only if the orders |Z(Gi)| are pairwise coprime, and in this case the tensor product of irreducible
faithful representations V i of Gi is irreducible and faithful.

7. Groups of covariant dimension 2

In [Led07] it is shown that G has essential dimension one if and only if admits an embedding
into GL2 such that the only scalar matrix in the image is the identity. In [KS07] we showed that a
finite group of covariant dimension 2 is a subgroup of GL2 and thus admits a faithful 2-dimensional
representation. In particular, we have the following result (cf. [KS07, Theorem 10.3]).

Theorem 7.1. If G is a non-faithful finite group of covariant dimension 2, then G is abelian of rank 2.

Unfortunately, there is a gap in the proof of Lemma 10.3 in [KS07] which is used in the proof
of the theorem. So we give a new proof here which avoids this lemma. We start with the following
result.

Lemma 7.2. If G is a non-commutative finite group of covariant dimension 2, then G/Z(G) is isomorphic to a
subgroup of PGL2 .

Proof. We use the notation of Section 3. Let ϕ : V → W be a multihomogeneous minimal covariant of
degree A. Set X := ϕ(V ) ⊂ W and let S denote the image of the homomorphism T (A) : C∗n → C∗m .
Since S is non-trivial, Lemma 3.3 shows that dim P(X) � 1 and that G/Z(G) acts faithfully on P(X).
Thus dim P(X) = 1 and G/Z(G) acts faithfully on the normalization P1 of P(X). The lemma fol-
lows. �
Proof of Theorem 7.1. Let G be a minimal counterexample, i.e., G is non-faithful and non-commutative
of covariant dimension 2, and every strict subgroup is either commutative or faithful. By the lemma
above, G/Z(G) is isomorphic to A5, S4, A4, or D2n , and the image of NG in G/Z(G) is a normal
abelian subgroup.

Claim 1. There are no surjective homomorphisms from G to A5 , S4 , or A4 .

If ρ is a surjective homomorphism from G to A5 then ρ(NG) is trivial. If ρ is a surjective ho-
momorphism from G to S4 then ρ(NG) ⊂ K where K ⊂ S4 is the Klein 4-group. In both cases
ρ−1(A4) � G is neither faithful (by Corollary 6.2) nor commutative, contradicting the minimality as-
sumption.

Now assume that there is a surjective homomorphism ρ : G → A4, and let g3 ∈ G be the preim-
age of an element of A4 of order 3. We may assume that the order of g3 is a power 3� . Since
ρ(NG) ⊂ K , the strict subgroup S := ρ−1(K ) � G is commutative. Denote by S2 the 2-torsion of S .
Since ρ(S2) = K we see that S2 has rank 2. Moreover, S2 is normalized by g3, but not centralized,
and so covdim〈g3, S2〉 � 3 by [KS07, Corollary 4.4]. This contradiction proves Claim 1.

Claim 2. For every prime p > 2 the p-Sylow-subgroup G p ⊂ G is normal and commutative of rank � 2. Hence
G is a semidirect product G2 � G ′ where G ′ := ∏

p>2 G p and G2 is a 2-Sylow subgroup.

From Claim 1 we know that G/Z(G) � D2n . Then Claim 2 follows, because every p-Sylow-subgroup
of D2n for p �= 2 is normal and cyclic.
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Now we can finish the proof. The case that G = G2 is handled in [KS07, Lemma 10.2], so we can
assume that G ′ is non-trivial. If G2 commutes with G ′ , then G2 is non-commutative and faithful.
Moreover, no G p can be of rank 2, else we have a subgroup which is a product H := G2 × (Z/p)2,
and we have covdim H � 3 by Corollary 4.4. So G ′ has rank 1. Then G ′ is cyclic, hence G is faithful by
Remark 6.5, which is a contradiction. Hence we may assume that G2 acts non-trivially on G ′ .

It is clear that NG = N2 × N ′ where N2 = NG ∩ G2 and N ′ := NG ∩ G ′ . Since G2 acts non-trivially
on G ′ , there is a g ∈ G2 which induces an order 2 automorphism of some G p �= {e}. Then one can
see that g acts non-trivially on NG p . Since G is not faithful, NG is not generated by a conjugacy
class (Proposition 6.1) and the same holds for the subgroup H := 〈g, N2〉 � N ′ (Corollary 6.2). Thus
H is neither faithful nor commutative, so that it must equal G by minimality. It follows that each
non-trivial G p , for p �= 2, is isomorphic to either Z/p or (Z/p)2.

Suppose that G p = (Z/p)2 for some p. If g acts trivially on G p , then it must act non-trivially on
some Gq , and then we have the subgroup (〈g〉� Gq)× (Z/p)2 which by Corollary 4.4(2) has covariant
dimension at least 3. If g acts by sending each element of G p to its inverse, then, by Corollary 4.4(1)
and Corollary 4.5,

covdim〈g〉 � G p = covdim
(〈g〉 � G p

) × Z/p � covdim(Z/p)3 = 3.

So we can assume that g acts on G p fixing one generator and sending the other to its inverse for
every G p of rank 2. Thus G ′ is generated by the conjugacy class of a single element. It follows that N2
must have rank 2 and g must commute with N2, else N2 × G ′ is generated by the conjugacy class of
a single element. Suppose that 〈g〉∩ N2 � Z/2. If g acts non-trivially on Z/p ⊂ G ′ , then 〈g, N2〉� Z/p
contains a subgroup (〈g〉 � Z/p) × Z/2 which has covariant dimension 3, again by Corollary 4.4(2). If
〈g〉 ∩ N2 = {e}, then we have the subgroup (〈g〉 � Z/p)× (Z/2)2 which has covariant dimension three
by Corollary 4.4(1). This finishes the proof of the theorem. �
8. Errata to [KS07]

First sentence after Definition 4.1. Replace “simple groups.” by “non-abelian simple groups.”
Proof of Proposition 4.3, second paragraph. Replace “is divisible by m” with “is congruent to

1 mod m.”
Proof of Corollary 5.1 last sentence. Replace “Corollary 4.3” by “Proposition 4.3.”
Proof of Proposition 6.1 second paragraph. Change “ϕ|W ” to F |W .”
Proof of Proposition 6.1 first displayed formula. Replace “F (w, t)” and “F0(w, t)” by “F (w, tm)” and

“F0(w, tm).”
Top of page 282. Change “trivial stabilizer” to “trivial stabilizer or stabilizer ±I .”
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