JOURNAL OF ALGEBRA 117, 419-433 (1988)

Counting Objects Which Behave Like Irreducible Brauer Characters of Finite Groups

I. M. ISAACS*

Mathematics Department, University of Wisconsin, Madison, Wisconsin 53706

Communicated by Walter Feit

Received February 17, 1987

1. INTRODUCTION

Let $N \triangleleft G$, where G is a finite group, so that G acts on Irr(N), the set of irreducible ordinary (complex) characters of N. Suppose $\theta \in Irr(N)$ is G-invariant and write $Irr(G|\theta)$ to denote the set of those $\chi \in Irr(G)$ such that χ_N involves (and hence is a multiple of) θ . How large is $Irr(G|\theta)$?

The answer to this question is well known, and not very hard to prove. Analogously to the fact that $|\operatorname{Irr}(G)|$ is equal to the number of conjugacy classes of G, it turns out that $|\operatorname{Irr}(G|\theta)|$ is equal to the number of certain "good" classes in the group G/N. There are two equivalent descriptions of which classes of G/N these are. One characterization depends on a certain complex twisted group algebra of G/N, and in this formulation, the result which counts $\operatorname{Irr}(G|\theta)$ is due to I. Schur [5]. The other formulation of this result, due to P. X. Gallagher [2], defines "goodness" internally to G; it depends on the character theory of G and its subgroups. Specifically, Gallagher defines an element of $\overline{g} \in G/N$ to be θ -good if some extension of θ to $\langle N, g \rangle$ is invariant in C, where $C/N = \mathbb{C}_{G,N}(\overline{g})$. The property of being θ -good is preserved by conjugacy in G/N and Gallagher shows that $|\operatorname{Irr}(G|\theta)|$ is equal to the number of classes of G/N which consist of θ -good elements.

Somewhat less well known is the corresponding result for irreducible Brauer characters with respect to some prime p. If $\theta \in IBr(N)$ is G-invariant, we intend to count the elements of $IBr(G|\theta)$, i.e., the irreducible Brauer characters of G whose restrictions to N are multiples of θ . In view of the fact that |IBr(G)| equals the number of p-regular classes of G, it is reasonable to guess that $|IBr(G|\theta)|$ is the number of θ -good p-regular

^{*} Research partially supported by a grant from the NSF.

classes in G/N, where " θ -good" is defined as it was by Gallagher for ordinary characters. This guess is correct.

The modular version of Schur's count of $Irr(G|\theta)$, working with twisted group algebras, was proved by K. Asano, M. Osima, and M. Takahasi [1] (see Chap. 3.6 of [4] for an exposition). It is not hard to translate this result into the character theoretic form mentioned above.

We are interested in generalizing further. Suppose π is any set of primes and write $cf^{0}(G)$ to denote the vector space of complex valued functions defined on the set of π -elements of G and constant on conjugacy classes. In the cases where π is all primes or $\pi = p'$ (all primes but p), the functions Irr and IBr, respectively, pick out particular bases for $cf^{0}(G)$.

Suppose for some arbitrary π we have a "basis-selection function" *I*, defined on the collection of all subgroups of *G*, such that I(H) is a basis for $cf^{0}(H)$ for all $H \subseteq G$. Assuming that *I* behaves more or less like Irr or IBr, we intend to show that $|I(G|\theta)|$ is equal to the number of " θ -good" π -classes in G/N, where $\theta \in I(N)$ is *G*-invariant. (We shall, of course, make precise the phrase "more or less" in the previous sentence.)

The point here is that there are interesting cases of well behaved basisselection functions for all π . For instance, for π -separable and in particular solvable groups, there always exists such a function, called I_{π} . (We shall define this in Chapter 4.) The real purpose of this paper is to prove the analog of Gallagher's theorem for I_{π} for π -separable groups. By axiomatizing well behaved π -class-function basis-selection functions (which we call "character selectors") our proof also will work for Irr, reproving Gallagher's theorem, and for IBr, proving the character theoretic version of the Asano-Osima-Takahasi theorem.

Of course, we cannot hope to work with modular twisted group algebras in this generality, and so we have had to devise a new approach which is rather more in the spirit of Gallagher's paper than those of Schur and Asano *et al.*

2. Orthogonality

In this section we prove a very general sort of "character" orthogonality which includes for Brauer characters, the standard orthogonality between IBr(G) and the characters that Brauer denoted Φ_{α} for $\phi \in IBr(G)$.

Let G be a finite group and fix an arbitrary nonempty normal subset $S \subseteq G$. As usual, cf(G) will denote the vector space of \mathbb{C} -valued class functions on G and we write $cf^{0}(G)$ for the space of complex functions on S, constant on G-classes. Also, for $\alpha \in cf(G)$, we write $\alpha^{0} \in cf^{0}(G)$ to denote the restriction of α to S.

Let \mathscr{B} be an arbitrary \mathbb{C} -basis for $cf^0(G)$. For each $\chi \in Irr(G)$, therefore, there is a unique expression of the form

$$\chi^0 = \sum_{\varphi \in \mathscr{B}} d_{\chi\varphi} \varphi,$$

where the coefficients $d_{\chi\varphi} \in \mathbb{C}$ are the *decomposition numbers*. In this generality, of course, they need not be integers.

For $\varphi \in \mathcal{B}$, we define $\tilde{\varphi} \in cf(G)$ by

$$\tilde{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \bar{d}_{\chi \varphi} \chi$$

(2.1) LEMMA. With the above notation, let $\varphi, \theta \in \mathcal{B}$. Then

- (a) $\tilde{\varphi}(g) = 0$ if $g \in G S$, and
- (b) $\frac{1}{|G|} \sum_{x \in S} \tilde{\varphi}(x) \overline{\theta(x)} = \begin{cases} 1 & \text{if } \varphi = \theta \\ 0 & \text{otherwise.} \end{cases}$

Proof. By the second orthogonality relation for ordinary characters, we have for $x \in S$ and $g \in G - S$ that

$$0 = \sum_{\chi \in \operatorname{Irr}(G)} \overline{\chi(x)} \, \chi(g) = \sum_{\chi \in \operatorname{Irr}(G)} \overline{d}_{\chi \varphi} \, \overline{\varphi(x)} \, \chi(g)$$
$$= \sum_{\varphi \in \mathscr{B}} \tilde{\varphi}(g) \, \overline{\varphi(x)}.$$

By the linear independence of the functions $\varphi \in \mathcal{B}$, this shows that $\tilde{\varphi}(g) = 0$ for all φ , proving (a).

For (b), define f_{φ} : cf⁰(G) $\rightarrow \mathbb{C}$ by

$$f_{\varphi}(\alpha) = \frac{1}{|G|} \sum_{x \in S} \tilde{\varphi}(x) \,\overline{\alpha(x)}$$

and note that for $\chi \in Irr(G)$, we have

$$f_{\varphi}(\chi^{0}) = \frac{1}{|G|} \sum_{g \in G} \tilde{\varphi}(g) \,\overline{\chi(g)} = d_{\chi\varphi}$$

using part (a), the first orthogonality relation and the definition of $\tilde{\varphi}$.

Now f_{φ} is a C-linear functional on $cf^0(G)$. On vectors of the form χ^0 , this functional agrees with the functional g_{φ} which picks out the coefficient of φ

in the expansion of a vector in terms of the basis \mathscr{B} . Since the χ^0 span $cf^0(G)$, it follows that $f_{\varphi} = g_{\varphi}$ and so

$$f_{\varphi}(\theta) = \bar{g}_{\varphi}(\theta) = \delta_{\varphi\theta},$$

the Kronecker symbol, as required.

3. CHARACTER SELECTORS

We fix the following notation: Γ is an arbitrary group, π is a set of prime numbers, and Σ is the set of π -elements of Γ . (In other words, $x \in \Sigma$ iff o(x)is finite and involves only primes in π .) For each finite subgroup $G \subseteq \Gamma$ we have the vector space $cf^{0}(G)$ of G-class functions defined on $S = G \cap \Sigma$.

Suppose that for each finite $G \subseteq \Gamma$ we have fixed a particular \mathbb{C} -basis I(G) for $cf^0(G)$. We refer to I as a basis-selection function for (Γ, π) . In this situation, if $\alpha \in cf^0(G)$, we say that $\varphi \in I(G)$ is an *I*-constituent of α if φ occurs with nonzero coefficient in the expansion of α with respect to the basis I(G).

We write C(G) to denote the set of all sums of elements of I(G). In other words, $\alpha \in C(G)$ iff α is a non-negative integer linear combination of I(G), and $\alpha \neq 0$. (Thus C(G) is related to I(G) as Char(G) is to Irr(G).) Finally, if $t \in \Gamma$ and $\alpha \in cf^0(G)$, we write $\alpha' \in cf^0(G')$ to denote the function given by $\alpha'(x') = \alpha(x)$ for $x \in G \cap \Sigma$.

With all of this notation established, we are now ready for our principal definition.

(3.1) DEFINITION. Let I be a basis-selection function for (Γ, π) . Then I is a character selector provided that the following hold for all finite $G \subseteq \Gamma$ and all $\varphi \in I(G)$.

- (a) If $H \subseteq G$, then $\varphi_H \in C(H)$.
- (b) If G is a π -group, then $\varphi \in Irr(G)$.
- (c) If $t \in \Gamma$, then $\varphi' \in I(G')$.
- (d) If $N \triangleleft G$, then all *I*-constituents of φ_N are *G*-conjugate.
- (e) If $\lambda \in Irr(G)$ with $\lambda(1) = 1$, then $\lambda^0 \varphi \in I(G)$.
- (f) If $\chi \in Irr(G)$, then $\chi^0 \in C(G)$.

Observe that if π is the set of all primes, then Irr is a character selector and that if $\pi = p'$, then IBr is a character selector provided that we are consistent in lifting modular roots of unity to complex roots of unity when constructing Brauer characters.

422

There is some redundancy in conditions (a)-(f) since we have not attempted to construct a "minimal" set of axioms. For example, in (a) we could drop the implicit assumption (included within the definition of "C(G)"), that φ_H is nonzero. To see this, observe that the weakened form of (a) together with (b) implies that if $K \subseteq G$ is a π -subgroup, then φ_K is either zero or a character of K. Therefore, if $\varphi(1)=0$, we have $\varphi_K=0$ for every π -subgroup K and thus $\varphi(x)=0$ for every π -element x. In other words, $\varphi=0$, which is a contradiction. Thus $\varphi(1)\neq 0$ and hence $\varphi_H\neq 0$ and we recover the full strength of (a).

Other examples of redundancy in (a)–(f) are that in (b), it would be sufficient to assume that $\varphi \in \operatorname{Char}(H)$; the irreducibility would then follow using (f). Similarly, in (c), it would suffice to have $\varphi' \in C(G')$ and in (e), the assumption that $\lambda^0 \varphi \in C(G)$ would be enough, since the operations "conjugate by t" and "multiply by λ^0 " are invertible.

We mention that by (a) applied with H = 1 and (b) with G = 1, we see that $\varphi(1)$ is a positive integer for all $\varphi \in I(G)$.

We close this section with two casy general lemmas about character selectors.

(3.2) LEMMA. Let I be a character selector for (Γ, π) and let $\varphi \in I(G)$ where $G \subseteq \Gamma$ is finite. Define $\hat{\varphi} \in cf(G)$ by

$$\hat{\varphi}(g) = \varphi(g_{\pi}),$$

where $g = g_{\pi}g_{\pi}$, is the usual decomposition of $g \in G$ into commuting π - and π '-elements. Then $\hat{\phi}$ is a generalized character.

Proof. Certainly φ is a class function and so by Brauer's characterization of characters, it is enough to show that $\hat{\varphi}_E$ is a generalized character of E whenever $E \subseteq G$ is Brauer elementary.

Write $E = P \times Q$ where P is a π -group and Q is a π' -group. If $x \in P$ and $y \in Q$, then $\hat{\varphi}(xy) = \varphi(x)$ and so $\hat{\varphi}_E = \varphi_P \times 1_Q$. However, by 3.1(a) and (b), $\varphi_P \in \operatorname{Char}(P)$ and thus $\hat{\varphi}_E \in \operatorname{Char}(E)$.

If $H \subseteq G \subseteq \Gamma$ and $\theta \in I(H)$, we write $I(G|\theta)$ to denote the set of $\varphi \in I(G)$ such that θ is an *I*-constituent of φ_{H} . (There is actually a slight notational problem here which we will ignore. The difficulty is that it may not be possible to recover *H* from a knowledge of θ , which is defined as a function with domain $H \cap \Sigma$.)

(3.4) LEMMA. Let $\theta \in I(H)$ where $H \subseteq G \subseteq \Gamma$ and I is a character selector for (Γ, π) . Then $I(G|\theta) \neq \emptyset$.

Proof. Since Irr(H) spans cf(H), the functions ψ^0 span $cf^0(H)$ as ψ runs over Irr(H). We can therefore choose $\psi \in Irr(H)$ such that θ is an

I. M. ISAACS

I-constituent of ψ^0 . Now choose $\chi \in Irr(G|\psi)$ and observe that θ is an *I*-constituent of $(\chi^0)_{H^{-1}}$. (This uses 3.1(f) applied in *H*.) It follows that θ is an *I*-constituent of φ_H for some *I*-constituent φ of χ^0 .

4. π -Separable Groups

In this section we discuss $I_{\pi}(G)$ when G is π -separable and we observe that I_{π} is a character selector for (Γ, π) if Γ is π -separable. We use the notation established previously so that, for instance, α^0 is the restriction of $\alpha \in cf(G)$ to the set S of π -elements of G.

(4.1) THEOREM. Let G be finite and π -separable. Then there exists a unique basis $I_{\pi}(G)$ for cf⁰(G) which satisfies:

(DP) If $\chi \in Irr(G)$, then χ^0 is a non-negative integer linear combination of $I_{\pi}(G)$.

(FS) If $\varphi \in I_{\pi}(G)$, then $\varphi = \chi^0$ for some $\chi \in Irr(G)$.

In the case where $\pi = p'$ (and so G is p-solvable) we have $I_{\pi}(G) = IBr(G)$. That IBr(G) satisfies (DP) is just the fact that the Brauer decomposition numbers are non-negative integers. (The initials "DP" stand for "decomposition property".) That IBr(G) satisfies (FS) for p-solvable groups is exactly the Fong-Swan theorem.

Proof of 4.1. That a basis satisfying (DP) and (FS) actually exists is most of the content of [3]. The uniqueness, on the other hand, is easy to see. In fact, conditions (FS) and (DP) yield that

$$I_{\pi}(G) = \{\chi^0 \mid \chi \in \operatorname{Irr}(G) \text{ and } \chi^0 \neq \alpha^0 + \beta^0 \text{ for any } \alpha, \beta \in \operatorname{Char}(G) \}.$$

This gives the uniqueness.

Note that the above proof gives a relatively simple formula for $I_{\pi}(G)$ and it is a triviality that the subset of $cf^{0}(G)$ defined by that formula spans $cf^{0}(G)$. What seems far from easy to prove is the fact that this subset is linearly independent.

(4.2) **PROPOSITION.** Let Γ be π -separable. Then $I = I_{\pi}$ is a character selector for (Γ, π) .

Proof. Let $G \subseteq \Gamma$ be finite and let $\varphi \in I_{\pi}(G)$. By (FS), choose $\psi \in Irr(G)$ with $\psi^0 = \varphi$. If $H \subseteq G$, then $\varphi_H = (\psi_H)^0$ and this lies in C(H) by (DP) applied in H and the fact that $\varphi_H \neq 0$ since $\varphi(1) = \psi(1) \neq 0$. This proves 3.1(a).

If G is a π -group, then $\varphi = \psi$, proving 3.1(b). For 3.1(c), observe that $\varphi' = (\psi^0)' = (\psi')^0$ and this lies in C(G') by (DP) and the fact that $\varphi' \neq 0$. We remarked in Chapter 3 that it suffices to show $\varphi' \in C(G')$ in order to prove (c).

Putting (d) aside for the moment, let $\lambda \in Irr(G)$ with $\lambda(1) = 1$. Then $\lambda^0 \varphi = (\lambda \psi)^0 \in C(G)$ by (DP). This suffices to prove 3.1(e). Note that 3.1(f) is essentially just property (DP).

Finally, to prove 3.1(d), let $N \lhd G$. Since $\varphi_N \in C(N)$, we can use (FS) in N to choose $\theta \in \operatorname{Char}(N)$ with $\theta^0 = \varphi_N$ and such that $\mu^0 \in I(N)$ for each irreducible constituent μ of θ . Let ρ be the regular character of G/N (viewed in $\operatorname{Char}(G)$) and observe that $(\theta^G)^0 = (\psi\rho)^0$. (This is because both functions vanish on $(G - N) \cap \Sigma$ and both equal $|G:N| \theta^0 = |G:N| \varphi_N$ on $N \cap \Sigma$.)

Now $(\psi \rho)^0 = \psi^0 + ((\rho - 1_G)\psi)^0$ and since the second term lies in C(G)(or is zero) by (DP), it follows that $\varphi = \psi^0$ is an *I*-constituent of $(\theta^G)^0$. We conclude that φ is an *I*-constituent of ξ^0 for some irreducible constituent ξ of θ^G . Therefore, all *I*-constituents of φ_N are in fact *I*-constituents of ξ_N^0 . (This uses 3.1(a).) However, ξ_N has some irreducible constituent μ which is a constituent of θ and so $\mu^0 \in I(N)$. It follows that all *I*-constituents of φ_N are of the form $(\mu^0)^s \in I(N)$ (by 3.1(c)) and we are done.

5. Abelian and Cyclic Factors

We now fix the character selector I for (Γ, π) . Also, fix $N \lhd G \subseteq \Gamma$ and $\theta \in I(N)$ and assume that θ is G-invariant. We intend to count the elements of $I(G|\theta)$, the "characters" $\varphi \in I(G)$ such that θ is an I-constituent of φ_N . (By 3.1(d), this means that $\varphi_N = a\theta$ for some positive integer a.)

(5.1) LEMMA. Suppose G/N is abelian and let $\varphi \in I(G | \theta)$. Then

$$I(G | \theta) = \{ \lambda^0 \varphi | \lambda \in Irr(G/N) \}.$$

Proof. Let ρ be the regular character of G/N, viewed as a character of G. If $\eta \in I(G | \theta)$, then $\eta(1) \rho^0 \varphi = \varphi(1) \rho^0 \eta$ and η is an *I*-constituent of the right side. Since ρ is a sum of linear characters and using 3.1(e), the fact that η is an *I*-constituent of $\rho^0 \varphi$ yields that $\eta = \lambda^0 \varphi$ for some irreducible constituent λ of ρ . Conversely, for any such λ , we have $(\lambda^0 \varphi)_N = \varphi_N$ and so $\lambda^0 \varphi \in I(G | \theta)$, again using 3.1(e).

Next, we need an easy lemma about ordinary characters.

(5.2) LEMMA. Suppose that G/N is cyclic. If $\Xi \in Char(N)$ is G-invariant, then Ξ extends to a character of G.

Proof. We may assume without loss that Ξ is an orbit sum for the action of G on Irr(N). Let ψ be an irreducible constituent of Ξ and let T be the inertia group of ψ in G. Since T/N is cyclic, we know that the invariant (in T) irreducible character ψ extends to some $\eta \in \text{Irr}(T)$. Also, $\chi = \eta^G$ is irreducible and $[\chi_N, \psi] = [\eta_N, \psi] = 1$. It follows that $\chi_N = \Xi$.

We now return to our study of the situation where $\theta \in I(N)$ and θ is invariant in G.

(5.3) LEMMA. Suppose G/N is cyclic. Then every element of $I(G|\theta)$ is an extension of θ . Furthermore, if G/N is a π -group, and we fix $\varphi \in I(G|\theta)$, then all $\lambda^0 \varphi$ are distinct for $\lambda \in Irr(G/N)$ and hence $|I(G|\theta)| = |G:N|$.

Proof. By Lemma 3.2, θ uniquely determines some generalized character $\hat{\theta}$ of N which is necessarily G-invariant and so is a Z-linear combination of G-orbit sums on Irr(N), each of which extends to B by 5.2. Therefore, $\hat{\theta} = A_N$ for some generalized character Λ of G.

We also know that $\hat{\theta}^0 = \theta$ by 3.2 and thus $(\Lambda^0)_N = \theta$. Now write $\Lambda^0 = \alpha + \beta$ where α is a \mathbb{Z} -linear combination of elements of $I(G|\theta)$ and where no *I*-constituent of β lies in this set. Since α_N is a multiple of θ and θ is not an *I*-constituent of β_N , we conclude that $\theta = \alpha_N + \beta_N = \alpha_N$.

Now let $\varphi \in I(G|\theta)$. By 5.1, all elements of $I(G|\theta)$ have equal restrictions to N, and therefore, $\theta = \alpha_N$ is an integer multiple of φ_N . On the other hand, $\varphi_N \in C(N)$, and this forces $\varphi_N = \theta$ and proves the first assertion.

Now assume G/N is a π -group. If we can show that the $\lambda^0 \varphi$ are distinct for $\lambda \in Irr(G/N)$, it will follow by 5.1 that $|I(G|\theta)| = |G:N|$. To complete the proof, therefore, it will suffice to assume that $\lambda^0 \varphi = \varphi$ and prove $\lambda = 1_G$.

Let $K = \ker \lambda$. We have $N \subseteq K \subseteq G$ and we need to show that K = G. Let $\varphi_K = \mu$ and note that $\mu \in I(K)$ since $\mu_N = \theta \in I(N)$. Let $\tilde{\mu}$ be as in the notation of Chapter 2 and note that $\tilde{\mu} \in \operatorname{Char}(K)$ since the decomposition numbers $d_{\chi\mu}$ are non-negative integers by 3.1(f). Since μ is G-invariant and uniquely determines $\tilde{\mu}$, it follows that $\tilde{\mu}$ is G-invariant and thus extends to $\Delta \in \operatorname{Char}(G)$ by 5.2.

Now let $\hat{\varphi}$ be the generalized character of G corresponding to φ as in 3.2. Then $[\Delta, \hat{\varphi}]$ is an integer which we proceed to compute.

If $g \in G - K$, we write $g = g_{\pi} g_{\pi'}$ where g_{π} and $g_{\pi'}$ are respectively the π and π' -parts of g. Since G/K is a π -group, we have $g_{\pi'} \in K$ and thus $g_{\pi} \notin K$ and $\lambda(g_{\pi}) \neq 1$. We have, however, $\varphi(g_{\pi}) = \lambda(g_{\pi}) \varphi(g_{\pi})$ since $\varphi = \lambda^0 \varphi$, and this implies that $\varphi(g_{\pi}) = 0$. Thus $\hat{\varphi}(g) = 0$ for all $g \in G - K$ and we have

$$[\varDelta, \hat{\varphi}] = \frac{1}{|G:K|} [\varDelta_K, \hat{\varphi}_K] = \frac{1}{|G:K|} [\tilde{\mu}, \hat{\varphi}_K].$$

By 2.1(a), $\tilde{\mu}$ vanishes on all non- π -elements of K. If $x \in K$ is a π -element, then $\hat{\varphi}(x) = \varphi(x) = \mu(x)$ and so

$$\left[\tilde{\mu}, \, \hat{\varphi}_K\right] = \frac{1}{|K|} \sum_{x \in K \cap \Sigma} \tilde{\mu}(x) \, \overline{\mu(x)} = 1$$

by 2.1(b). This yields that $[\varDelta, \hat{\varphi}] = 1/|G:K|$ and since this must be an integer, we conclude that K = G as required.

We investigate further the situation where G/N is a cyclic π -group.

(5.4) LEMMA. Assume $G = \langle N, g \rangle$ where g is a π -element. Let $\varphi \in I(G|\theta)$ and $\psi \in I(G)$. Then $\psi \in I(G|\theta)$ iff

$$0 \neq \sum_{x \in Ng \cap \Sigma} \hat{\varphi}(x) \, \overline{\psi(x)}.$$

where $\tilde{\phi}$ is as in 2.1.

Proof. Define the function $\alpha: G/N \to \mathbb{C}$ by

$$\alpha(Nu) = \sum_{x \in Nu \cap \Sigma} \tilde{\varphi}(x) \, \overline{\psi(x)}.$$

Since G/N is an abelian group, α is certainly a class function and we can write

$$\alpha = \sum_{\lambda \in \operatorname{Irr}(G|N)} a_{\lambda} \lambda$$

for some choice of complex numbers a_{λ} . Then

$$a_{\lambda} = [\alpha, \lambda] = \frac{1}{|G/N|} \sum_{\bar{u} \in G} \chi(\bar{u}) \overline{\lambda(\bar{u})}$$
$$= \frac{1}{|G/N|} \sum_{\bar{u}} \sum_{x \in N u \cap \Sigma} \tilde{\varphi}(x) \overline{\psi(x)} \overline{\lambda(x)}$$
$$= \frac{1}{|G:N|} \sum_{x \in G \cap \Sigma} \tilde{\varphi}(x) \overline{(\lambda^{0} \psi)(x)}$$

and by 2.1(b), this is nonzero iff $\lambda^0 \psi = \varphi$. By 5.1, therefore, all $a_{\lambda} = 0$ if $\psi \notin I(G | \theta)$ and thus $\alpha = 0$ in this case. If, on the other hand, $\psi \in I(G | \theta)$, then $\varphi = \lambda^0 \psi$ for some unique λ by 5.3 and thus $\alpha = a_{\lambda} \lambda$ for that λ and α never takes on the value zero. The result now follows.

(5.5) COROLLARY. Let $\varphi \in I(G | \theta)$ and suppose φ extends θ . If $\overline{g} \in G/N$ is a π -element, then we can choose a π -element $x \in Ng$ such that $\varphi(x) \neq 0$.

Proof. Without loss, we may assume $G = \langle N, g \rangle$ and apply 5.4 to conclude that

$$0\neq \sum_{x\in Ng \cap \Sigma} \tilde{\varphi}(x) \ \overline{\varphi(x)}.$$

The result follows.

6. GOOD ELEMENTS

We continue to hold fixed Γ and π , the character selector *I*, the subgroups $N \lhd G \subseteq \Gamma$, and a *G*-invariant "character" $\theta \in I(N)$.

(6.1) DEFINITION. A π -element $\bar{g} \in G/N$ is θ -good if every element of $I(\langle N, g \rangle | \theta)$ is invariant in C, where $C/N = C_{G/N}(\bar{g})$.

Note that by 5.3, all of the elements of $I(\langle N, g \rangle | \theta)$ are in fact extensions of θ . Also, by 5.1, they can all be obtained from any one of them by multiplication by the various λ^0 for $\lambda \in Irr(\langle N, g \rangle / N)$. Since these linear characters are certainly *C*-invariant, it follows that in order to show that \overline{g} is θ -good, it suffices to check that some particular extension of θ to $\langle N, g \rangle$ is *C*-invariant.

It should be clear, and we will use the fact without proof, that θ -"good-ness" is preserved by conjugacy in G/N. We can now formally state our main result.

(6.2) THEOREM. Let I be a character selector for (Γ, π) and let $N \lhd G \subseteq \Gamma$ with G finite. If $\theta \in I(N)$ is G-invariant, then $|I(G|\theta)|$ is equal to the number of conjugacy classes of θ -good π -elements in G/N.

Perhaps it is worth observing that in the case that G/N is a cyclic π -group, we essentially know Theorem 6.2 already. By 5.3, $|I(G|\theta)| = |G:N|$ in this case, and so we need to check that every element $\bar{g} \in G/N$ is θ -good. Note that C = G. Choose $\varphi \in I(G|\theta)$ and let $\mu = \varphi_{\langle N, g \rangle}$. By 5.3, we have $\varphi_N = \theta$ and thus μ extends θ and μ is G-invariant. As we remarked earlier, this suffices to establish that \bar{g} is θ -good.

We now begin work toward a proof of Theorem 6.2.

(6.3) LEMMA. Let $\psi \in I(G | \theta)$ and suppose $x \in G$ is a π -element such that $\bar{x} = xN \in G/N$ is not θ -good. Then $\psi(x) = 0$.

Proof. By 5.3, choose an extension φ of θ to $\langle N, x \rangle$. Every *I*-constituent of $\psi_{\langle N, x \rangle}$ lies over θ and hence is of the form $\lambda^0 \varphi$ for

428

some $\lambda \in Irr(\langle N, x \rangle / N)$. It follows that $\psi_{\langle N, x \rangle} = \Lambda^0 \varphi$ for some $\Lambda \in Char(\langle N, x \rangle / N)$.

Because \bar{x} is not θ -good, there exists $c \in G$ with $x^c \in Nx$ such that $\varphi^c \neq \varphi$. Now $(\varphi^c)_N = \theta^c = \theta$ and thus $\varphi^c = \mu^0 \varphi$ for some nontrivial $\mu \in Irr(\langle N, x \rangle/N)$. Since c centralizes \bar{x} , we have $\Lambda^c = \Lambda$ and so it follows that $\psi_{\langle N, x \rangle}^c = \mu^0 \psi_{\langle N, x \rangle}$ and we have

$$\psi(cxc^{-1}) = \psi^{c}(x) = \mu(x) \psi(x).$$

Since $\psi(cxc^{-1}) = \psi(x)$ because ψ is a class function, and since $\mu(x) \neq 1$, it follows that $\psi(x) = 0$.

Our next step is to fix a set T of coset representatives for those cosets of N in G which are π -elements of G/N. We also want to fix for each $t \in T$ a "character" $\theta_i \in I(\langle N, t \rangle)$ extending θ . The extensions θ_i exist by 5.3 and by 5.5 we can arrange that each $t \in T$ is a π -element and that $\theta_i(t) \neq 0$. Of course, the choices of T and $\{\theta_i | t \in T\}$ are not unique and so objects we define in terms of them may not be canonical.

We define a function σ on the set $\Sigma \cap G$ of π -elements of G by $\sigma(x) = \theta_t(x)/\theta_t(t)$ where t is the unique element of $Nx \cap T$. Although σ need not be a class function, we can get some information about how $\sigma(x^g)$ is related to $\sigma(x)$.

(6.4) LEMMA. Let x, $g \in G$ where x is a π -element. Then in the notation established above, we have

$$\sigma(x^g) = \sigma(x) \ \sigma(t^g),$$

where $t \in Nx \cap T$.

Proof. We have $\theta_t \in I(\langle N, t \rangle)$ and we write $\varphi = (\theta_t)^g \in I(\langle N, t \rangle^g)$ so that $\varphi_N = \theta^g = \theta$. Let $s \in Nt^g \cap T$. Then θ_s and φ are both extensions of θ to $\langle N, s \rangle$ and we can write $\theta_s = \lambda^0 \varphi$ for some $\lambda \in Irr(\langle N, s \rangle/N)$.

Now

$$\sigma(x^g) = \frac{\theta_s(x^g)}{\theta_s(s)} = \frac{\lambda(x^g) \, \varphi(x^g)}{\theta_s(s)} = \frac{\lambda(x^g) \, \theta_t(x)}{\theta_s(s)} \,.$$

Similarly,

$$\sigma(t^g) = \frac{\lambda(t^g) \,\theta_t(t)}{\theta_s(s)}$$

and so

$$\sigma(x) \sigma(t^g) = \frac{\theta_i(x)}{\theta_i(t)} \cdot \frac{\lambda(t^g) \theta_i(t)}{\theta_s(s)} = \frac{\lambda(t^g) \theta_i(x)}{\theta_s(s)}$$

I. M. ISAACS

Since Nx = Nt, we have $Nx^g = Nt^g$ and thus $\lambda(x^g) = \lambda(t^g)$ and the result follows.

We can use the function σ to characterize the complex vector subspace of $cf^{0}(G)$ spanned by $I(G|\theta)$. We shall denote this space by $cf^{0}(G|\theta)$.

(6.5) LEMMA. Let $\psi \in cf^0(G)$. Then the following are equivalent:

- (i) $\psi \in \mathrm{cf}^0(G \mid \theta)$.
- (ii) $\psi(g) = \sigma(g) \psi(t)$ whenever $g \in G \cap \Sigma$ and $t \in Ng \cap T$.

Proof. Suppose ψ satisfies (i) and let $g \in G \cap \Sigma$ and $t \in Ng \cap T$. Every *I*-constituent of $\psi_{\langle N, g \rangle}$ lies over θ and thus has the form $\lambda^0 \theta_t$ for some $\lambda \in Irr(\langle N, g \rangle/N)$. It follows that $\psi_{\langle N, g \rangle} = \Lambda^0 \theta_t$ for some $\Lambda \in cf(G/N)$. (Note that since Nt = Ng, we have $\Lambda(g) = \Lambda(t)$.) We have

$$\psi(g) = \Lambda(g) \,\theta_t(g) = \Lambda(t) \,\theta_t(t) \frac{\theta_t(g)}{\theta_t(t)} = \psi(t) \,\sigma(g)$$

and ψ satisfies (ii).

Conversely, assume ψ satisfies (ii). Write $\psi = \alpha + \beta$ where every *I*-constituent of α lies in $I(G|\theta)$ and no *I*-constituent of β lies in this set. Our object is to show that $\beta = 0$.

By the first part of the proof, α satisfies (ii) and it follows that $\beta = \psi - \alpha$ does too, since condition (ii) is linear in ψ .

For each $t \in T$, we have by 5.4 that

$$0 = \sum_{x \in Nt \cap \Sigma} \tilde{\theta}_t(x) \overline{\beta(x)}$$
$$= \sum_x \tilde{\theta}_t(x) \overline{\sigma(x)} \overline{\beta(t)}$$
$$= \overline{\beta(t)/\theta_t(t)} \sum_x \tilde{\theta}_t(x) \theta_t(x).$$

The sum in the last expression is nonzero by 5.4 and we conclude that $\beta(t) = 0$ for all $t \in T$. Since $\beta(g) = \beta(t) \sigma(g) = 0$ for $g \in Nt \cap \Sigma$, we see that β is identically zero, as required.

Now choose a subset $T_0 \subseteq T$ such that cosets $Nt \in G/N$ for $t \in T_0$ form a set of representatives for the conjugacy classes of θ -good π -elements of G/N.

(6.6) THEOREM. Restriction defines a \mathbb{C} -vector space isomorphism from $cf^{0}(G|\theta)$ onto the space of all complex functions on T_{0} .

Since $I(G|\theta)$ is a basis for $cf^0(G|\theta)$, Theorem 6.6 tells us that $|I(G|\theta)| = |T_0|$ and thereby proves Theorem 6.2.

Proof of Theorem 6.6. Suppose $\psi \in cf^0(G|\theta)$ is in the kernel of the restriction map so that $\psi(t) = 0$ for all $t \in T_0$. We want to show that $\psi = 0$; in other words, we need to establish that $\psi(x) = 0$ for all $x \in G \cap \Sigma$. By Lemma 6.3, $\psi(x) = 0$ if \bar{x} is not θ -good and so we may assume that \bar{x} is θ -good and thus $\bar{x}^g = \bar{t}$ for some $g \in G$ and $t \in T_0$.

Now

$$\psi(x) = \psi(x^g) = \sigma(x^g) \psi(t) = 0$$

where we have used that fact that $(i) \Rightarrow (ii)$ in Lemma 6.5. This proves that the restriction map is injective.

Now let α be any complex function defined on T_0 . To complete the proof, we must find $\psi \in cf^0(G | \theta)$ such that $\psi(t) = \alpha(t)$ for all $t \in T_0$.

Let $x \in G \cap \Sigma$. Define

$$\psi(x) = \begin{cases} 0 & \text{if } \bar{x} \text{ is not } \theta \text{-good} \\ \sigma(x^g) \, \alpha(t) & \text{if } \bar{x} \text{ is } \theta \text{-good}, \end{cases}$$

where $g \in G$ and $t \in T_0$ are chosen so that $\bar{x}^g = \bar{t}$ in the latter case. Note that the θ -good element \bar{x} uniquely determines t but does not uniquely determine g and so we need to show that if also $h \in G$ and $\bar{x}^h = \bar{t}$, then $\sigma(x^g) = \sigma(x^h)$. In other words, we need $\theta_t(x^g) = \theta_t(x^h)$.

Now $h^{-1}g \in C$ where $C/N = \mathbb{C}_{G,N}(\bar{t})$ and since \bar{t} is θ -good, we have $\theta_t^{h^{-1}g} = \theta_t$ and hence $\theta_t^{h^{-1}} = \theta_t^{g^{-1}}$. Thus

$$\theta_t(x^g) = \theta_t^{g^{-1}}(x) = \theta_t^{h^{-1}}(x) = \theta_t(x^h)$$

and ψ is well defined.

If $t \in T_0$, then \bar{t} is θ -good and so to evaluate $\psi(t)$ we can take g = 1. This gives $\psi(t) = \sigma(t) \alpha(t)$. Since $\sigma(t) = 1$ by the definition of σ , we have $\psi(t) = \alpha(t)$. To complete the proof, it suffices to show that $\psi \in cf^0(G|\theta)$.

First, we show that ψ is a class function. Let $x, y \in G \cap \Sigma$ with $y = x^g$ for some $g \in G$. If neither \bar{x} nor \bar{y} is θ -good, then $\psi(x) = 0 = \psi(y)$ as required. The remaining possibility is that both \bar{x} and \bar{y} are θ -good. Choose $h \in G$ and $t \in T$ such that $\bar{y}^h = \bar{t}$. Then $\bar{x}^{gh} = \bar{t}$ and we have

$$\psi(x) = \sigma(x^{gh}) \alpha(t)$$
 and $\psi(y) = \sigma(y^h) \alpha(t)$

and these, of course, are equal since $x^{gh} = y^h$.

To show that $\psi \in cf^0(G | \theta)$, it suffices to show that ψ satisfies 6.5(ii). Let $x \in G \cap \Sigma$ and $s \in Nx \cap T$. We need to check that $\psi(x) = \sigma(x) \psi(s)$ and so we must compute $\psi(x)$ and $\psi(s)$. Now $\bar{x} = \bar{s}$ and if this element is not θ -good, then $\psi(x) = 0 = \psi(s)$ and the condition is satisfied.

Suppose $\bar{x} = \bar{s}$ is θ -good and choose $g \in G$ and $t \in T_0$ with $\bar{x}^g = \bar{t}$. Then

$$\psi(x) = \sigma(x^g) \, \alpha(t) = \sigma(x) \, \sigma(s^g) \, \alpha(t) = \sigma(x) \, \psi(s),$$

where the second equality follows by Lemma 6.4. This completes the proof. \blacksquare

7. FURTHER REMARKS

We continue with our usual notation so that $N \lhd G \subseteq \Gamma$ and $\theta \in I(N)$ is G-invariant where I is a character selector for (Γ, π) . The following result provides a slight shortcut to establishing that an element is θ -good.

(7.1) LEMMA. Let \bar{g} be a π -element of G/N and let $C/N = \mathbb{C}_{G/N}(\bar{g})$. Let $\varphi \in I(\langle N, g \rangle | \theta)$. Then \tilde{g} is θ -good iff $\varphi^c = \varphi$ for every π -element of C.

Proof. The "only if" part is trivial and so we assume that $\varphi^c = \varphi$ when $c \in C$ is a π -element. If $c \in C$ is arbitrary, we can write $c = c_{\pi}c_{\pi'}$, the $\pi - \pi'$ -decomposition in C, and since $\varphi^{c_{\pi}} = \varphi$, it suffices to show that φ is invariant under all π' -elements of C.

Let $c \in C$ be a π' -element. Then $\varphi^c \in I(\langle N, g \rangle | \theta)$ and so $\varphi^c = \lambda^0 \varphi$ for some $\lambda \in Irr(G/N)$. Now λ is C-invariant, and it follows that

$$\varphi^{c^m} = (\lambda^m)^0 \varphi$$

for every integer *m*. Taking m = o(c) and appealing to Lemma 5.3, we conclude that $\lambda^m = 1_G$. The multiplicative order of λ , however, is a π -number since $\langle N, g \rangle / N$ is a π -group. It follows that $\lambda = 1_G$ and $\varphi^c = \varphi$, as required.

(7.2) COROLLARY. The π -element $\bar{g} \in G/N$ is θ -good iff θ is extendible to every group H where $\langle N, g \rangle \subseteq H \subseteq \Gamma$ and H/N is abelian and $H/\langle N, g \rangle$ is a cyclic π -group.

Proof. By 7.1, \bar{g} is θ -good iff for every choice of H as in the statement of the corollary, some extension φ of θ to $\langle N, g \rangle$ is H-invariant. By 5.3, however, φ is H-invariant iff φ extends to H. Therefore, \bar{g} is θ -good iff for each H, some extension of θ to $\langle N, g \rangle$ further extends to H. In other words, \bar{g} is θ -good iff θ extends to H for each choice of H.

Using 7.2, we can state a useful application of our main theorem.

432

(7.3) COROLLARY. Let I_1 and I_2 be character selectors for (Γ_1, π) and (Γ_2, π) . Let $N_i \triangleleft G_i \subseteq \Gamma_i$ with G_i finite and let $\theta_i \in I_i(N_i)$ be G_i -invariant. Let

$$f: G_1/N_1 \rightarrow G_2/N_2$$

be an isomorphism. Assume for every two-generator abelian π -subgroup $H/N_1 \subseteq G_1/N_1$ that θ_1 extends to H iff θ_2 extends to K, where $K/N_2 = f(H/N_1)$. Then $|I_1(G_1|\theta_1)| = |I_2(G_2|\theta_2)|$.

Proof. By 7.2, we see that if \bar{g} is a π -element of G_1/N_1 , then \bar{g} is θ_1 -good iff $f(\bar{g})$ is θ_2 -good. The result then follows by Theorem 6.2.

REFERENCES

- K. ASANO, M. OSIMA, AND M. TAKAHASI, Über die Darstellung von Gruppen durch Kollineationen in Körpern der Characteristic p, Proc. Phys. Math. Soc. Japan 19 (1937), 199-209.
- 2. P. X. GALLAGHER, The number of conjugacy classes in a finite group, *Math. Z.* 118 (1970), 175-179.
- 3. I. M. ISAACS, Characters of π-separable groups, J. Algebra 86 (1984), 98-128.
- 4. G. KARPILOVSKY, "Projective Representations of Finite Groups," Dekker, New York, 1985.
- 5. I. SCHUR, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.