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1. INTRODUCTION 

Let N 0 G, where G is a finite group, so that G acts on Irr(N), the set of 
irreducible ordinary (complex) characters of N. Suppose 8 E Irr(N) is 
G-invariant and write Irr(G 10) to denote the set of those x E Irr(G) such 
that x,~ involves (and hence is a multiple of) 8. How large is Irr(G IO)? 

The answer’ to this question is well known, and not very hard to prove. 
Analogously to the fact that lIrr(G)I is equal to the number of conjugacy 
classes of G, it turns out that IIrr(GJB)l is equal to the number of certain 
“good” classes in the group G/N. There are two equivalent descriptions of 
which classes of G/N these are. One characterization depends on a certain 
complex twisted group algebra of G/N, and in this formulation, the result 
which counts Irr(G 1 t9) is due to I. Schur [S]. The other formulation of this 
result, due to P. X. Gallagher [Z], defines “goodness” internally to G; it 
depends on the character theory of G and its subgroups. Specifically, 
Gallagher defines an element of 2 E G/N to be O-good if some extension of 8 
to (N, g) is invariant in C, where C/N= C, ,Jg). The property of being 
Q-good is preserved by conjugacy in GIN and Gallagher shows that 
lIrr(G I 13)l is equal to the number of classes of G:IN which consist of &good 
elements. 

Somewhat less well known is the corresponding result for irreducible 
Brauer characters with respect to some prime p. If 8 E IBr(N) is G-in- 
variant, we intend to count the elements of IBr(G ( t9), i.e., the irreducible 
Brauer characters of G whose restrictions to N are multiples of 8. In view of 
the fact that IIBr(G)( equals the number of p-regular classes of G, it is 
reasonable to guess that IIBr(Gl f?)l is the number of e-good p-regular 
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classes in G/N, where “e-good” is defined as it was by Gallagher for 
ordinary characters. This guess is correct. 

The modular version of Schur’s count of Irr(Gle), working with twisted 
group algebras, was proved by K. Asano, M. Osima, and M. Takahasi [l] 
(see Chap. 3.6 of [4] for an exposition). It is not hard to translate this 
result into the character theoretic form mentioned above. 

We are interested in generalizing further. Suppose rc is any set of primes 
and write cf’(G) to denote the vector space of complex valued functions 
defined on the set of n-elements of G and constant on conjugacy classes. In 
the cases where rr is all primes or 7c = p’ (all primes but p), the functions Irr 
and IBr, respectively, pick out particular bases for cf’(G). 

Suppose for some arbitrary rc we have a “basis-selection function” Z, 
defined on the collection of all subgroups of G, such that Z(H) is a basis for 
cf”( Z-Z) for all H c G. Assuming that I behaves more or less like Irr or IBr, 
we intend to show that lZ(Gl f3)l is equal to the number of ‘V-good” 
rr-classes in G/N, where 0 E Z(N) is G-invariant. (We shall, of course, make 
precise the phrase “more or less” in the previous sentence.) 

The point here is that there are interesting cases of well behaved basis- 
selection functions for all 7~. For instance, for rc-separable and in particular 
solvable groups, there always exists such a function, called I,. (We 
shall define this in Chapter 4.) The real purpose of this paper is to 
prove the analog of Gallagher’s theorem for Z, for r-separable groups. By 
axiomatizing well behaved rc-class-function basis-selection functions (which 
we call “character selectors”) our proof also will work for Irr, reproving 
Gallagher’s theorem, and for IBr, proving the character theoretic version of 
the Asano-Osima-Takahasi theorem. 

Of course, we cannot hope to work with modular twisted group algebras 
in this generality, and so we have had to devise a new approach which is 
rather more in the spirit of Gallagher’s paper than those of Schur and 
Asano et al. 

2. ORTHOGONALITY 

In this section we prove a very general sort of “character” orthogonality 
which includes for Brauer characters, the standard orthogonality between 
IBr(G) and the characters that Brauer denoted DV for cp E IBr(G). 

Let G be a finite group and fix an arbitrary nonempty normal subset 
S c G. As usual, cf(G) will denote the vector space of @-valued class 
functions on G and we write cf’(G) for the space of complex functions on 
S, constant on G-classes. Also, for x ~cf(G), we write a’~cf’(G) to denote 
the restriction of 2 to S. 
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Let 9 be an arbitrary C-basis for cf’(G). For each x E Irr(G), therefore, 
there is a unique expression of the form 

where the coefticients dzv E @ are the decomposition numbers. In this 
generality, of course, they need not be integers. 

For cp E 3, we define @J E cf( G) by 

(2.1) LEMMA. With the aboce notation, let cp, I3 E B. Then 

(a) $(g)=O ifgeG-S, and 

(b) $, C 8(x)8(-~)={; 
if (p=e 

x c s otherwise. 

Proof By the second orthogonality relation for ordinary characters, we 
have for .UES and gEG-S that 

By the linear independence of the functions cp E 3, this shows that q(g) = 0 
for all cp, proving (a). 

For (b), define f,: cf’(G) + C by 

and note that for XE Irr(G), we have 

using part (a), the first orthogonality relation and the definition of @. 
Now~~ is a C-linear functional on cf’(G). On vectors of the form x0, this 

functional agrees with the functional g, which picks out the coefficient of cp 
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in the expansion of a vector in terms of the basis 29. Since the x0 span 
cf’(G), it follows that fV = g, and so 

f,(e) = &(N = b&a, 

the Kronecker symbol, as required. 1 

3. CHARACTER SELECTORS 

We fix the following notation: I- is an arbitrary group, rc is a set of prime 
numbers, and Z is the set of n-elements of ZY (In other words, x E C iff o(x) 
is finite and involves only primes in rr.) For each finite subgroup G s r we 
have the vector space cf”( G) of G-class functions defined on S = G n Z. 

Suppose that for each finite G c r we have fixed a particular C-basis 
Z(G) for cf’(G). We refer to I as a basis-selection function for (r, n). In this 
situation, if r E cf’(G), we say that cp E I(G) is an I-constituent of r if q 
occurs with nonzero coefficient in the expansion of r with respect to the 
basis Z(G). 

We write C(G) to denote the set of all sums of elements of Z(G). In other 
words, r E C(G) iff a is a non-negative integer linear combination of 1(G), 
and r # 0. (Thus C(G) is related to 1(G) as Char(G) is to Irr( G). ) Finally, if 
t E r and r E cf’(G), we write a’ E cf’(G’) to denote the function given by 
a’(~‘) = a(x) for x E G n Z. 

With all of this notation established, we are now ready for our principal 
definition. 

(3.1) DEFINITION. Let I be a basis-selection function for (r, K). Then I 
is a character selector provided that the following hold for all finite GE r 
and all cp E I(G). 

(a) If HcG, then (P”EC(H). 

(b) If G is a x-group, then cp~Irr(G). 
(c) If tET, then ~‘EZ(G’). 
(d) If Na G, then all Z-constituents of (Pi are G-conjugate. 
(e) If i.EIrr(G) with 1(l)= 1, then A’~EZ(G). 
(f) If x E Irr(G), then x0 E C(G). 

Observe that if 7c is the set of all primes, then Irr is a character selector 
and that if X= p’, then IBr is a character selector provided that we are 
consistent in lifting modular roots of unity to complex roots of unity when 
constructing Brauer characters. 
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There is some redundancy in conditions (a)-(f) since we have not 
attempted to construct a “minimal” set of axioms. For example, in (a) we 
could drop the implicit assumption (included within the definition of 
“C(G)“), that qH is nonzero. To see this, observe that the weakened form 
of (a) together with (b) implies that if KsG is a n-subgroup, then qK is 
either zero or a character of K. Therefore, if cp( 1) = 0, we have (pK = 0 for 
every rr-subgroup K and thus q(x) =0 for every n-element x. In other 
words, cp = 0, which is a contradiction. Thus cp( 1) # 0 and hence qH # 0 
and we recover the full strength of (a). 

Other examples of redundancy in (a)-(f) are that in (b), it would be suf- 
ficient to assume that cp l Char(H); the irreducibility would then follow 
using (f). Similarly, in (c), it would suffice to have cp’ E C(G’) and in (e), 
the assumption that i”q E C(G) would be enough, since the operations 
“conjugate by t” and “multiply by 1.“’ are invertible. 

We mention that by (a) applied with H= 1 and (b) with G = 1, we see 
that cp( 1) is a positive integer for all cp E I(G). 

We close this section with two easy genera1 lemmas about character 
selectors. 

(3.2) LEMMA. Let I be a character selector for (r. x) and let cp E f(G) 
where G c I- is finite. Dclfne 4 E cf( G) b? 

@(g) = cp(g,h 

where g = g,g,, is lhe usual decomposition of g E G into commuting TC- and 
x’-elements. Then q3 is a generalized character. 

Proof Certainly cp is a class function and so by Brauer’s charac- 
terization of characters, it is enough to show that oE is a generalized 
character of E whenever E E G is Brauer elementary. 

Write E = P x Q where P is a n-group and Q is a rr’-group. If x E P and 
JEQ, then @(q)=cp(x) and so qjE=(pPx 1,. However, by 3.1(a) and (b), 
‘pP E Char(P) and thus ~YJ~ E Char(E). 1 

If HsGGTand ~EI(H), we write [(GlfI) to denote the set of qEI(G) 
such that 6 is an Z-constituent of qH. (There is actually a slight notational 
problem here which we will ignore. The difficulty is that it may not be 
possible to recover H from a knowledge of t?, which is defined as a function 
with domain H n Z. ) 

(3.4) LEMMA. Let 9 E I(H) where HE GE I- and I is a character selec- 
torfor (r,~r). Then Z(GlO)#Q(. 

Proof: Since Irr( H) spans cf( H), the functions I,$” span cf’(H) as $ 
runs over Irr( H). We can therefore choose II/ E Irr(H) such that 8 is an 
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Z-constituent of $“. Now choose XE Irr(GI #) and observe that 0 is an 
Z-constituent of (x0)“. (This uses 3.1(f) applied in H.) It follows that 0 is an 
Z-constituent of (P” for some Z-constituent cp ofX”. 1 

4. X-SEPARABLE GROUPS 

In this section we discuss Z,(G) when G is n-separable and we observe 
that I, is a character selector for (Z, n) if Z is n-separable. We use the 
notation established previously so that, for instance, 2’ is the restriction of 
x E cf(G) to the set S of K-elements of G. 

(4.1) THEOREM. Let G be finite and x-separable. Then there exists a 
unique basis Z,(G) for cf’(G) which satisfies: 

(DP) Zf x E Irr(G), then x0 is a non-negative integer linear combination 
of In(G). 

(FS ) If cp E Z,(G), then cp = x0 for some )! E Irr( G). 

In the case where 7c = p’ (and so G is p-solvable) we have Z,(G) = IBr(G). 
That IBr(G) satisfies (DP) is just the fact that the Brauer decomposition 
numbers are non-negative integers. (The initials “DP” stand for “decom- 
position property”.) That IBr(G) satisfies (FS) for p-solvable groups is 
exactly the Fong-Swan theorem. 

Proof of 4.1. That a basis satisfying (DP) and (FS) actually exists is 
most of the content of [3]. The uniqueness, on the other hand, is easy to 
see. In fact, conditions (FS) and (DP) yield that 

Z,(G) = {x0 Ix E Irr(G) and x0 # a0 + /?’ for any a, b E Char(G)}. 

This gives the uniqueness. 1 

Note that the above proof gives a relatively simple formula for Z,(G) and 
it is a triviality that the subset of cf’(G) defined by that formula spans 
cf’(G). What seems far from easy to prove is the fact that this subset is 
linearly independent. 

(4.2) PROPOSITION. Let r be x-separable. Then I= Z, is a character 
selector for (r, rt). 

Proof: Let GE Z be finite and let cp E Z,(G). By (FS), choose $ E Irr(G) 
with $“=cp. If HsG, then qH= (ll/“)’ and this lies in C(H) by (DP) 
applied in Zf and the fact that (P” #O since cp( 1) = +( 1) #O. This proves 
3.1(a). 
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If G is a x-group, then cp = $, proving 3.1(b). For 3.1(c), observe that 
cp’ = (11/O)’ = (Ic/‘)’ and this lies in C(G’) by (DP) and the fact that cp’ # 0. 
We remarked in Chapter 3 that it suffices to show cp’ E C(G’) in order to 
prove (c). 

Putting (d) aside for the moment, let in Irr(G) with i.(l) = 1. Then 
i.Oq = (Q)‘E C(G) by (DP). This suffices to prove 3.1(e). Note that 3.1(f) 
is essentially just property (DP). 

Finally, to prove 3.1(d), let N Q G. Since (P,~E C(N), we can use (FS) in 
N to choose 8 E Char(N) with e”= (P% and such that POE Z(N) for each 
irreducible constituent p of 0. Let p be the regular character of G/N 
(viewed in Char(G)) and observe that (eG)O = (Ii/p)‘. (This is because both 
functions vanish on (G - N) n ,Y and both equal (G : N( 8’ = 1G: Nl (P,~ on 
Nn C.) 

Now ($p)‘= 11/O + ((p - I,)+ j” and since the second term lies in C(G) 
(or is zero) by (DP), it follows that cp = $” is an Z-constituent of (0”)‘. We 
conclude that cp is an Z-constituent of 5’ for some irreducible constituent s’ 
of 8’. Therefore, all Z-constituents of qN are in fact Z-constituents of 50,. 
(This uses 3.1(a).) However, <,$, has some irreducible constituent p which is 
a constituent of 8 and so p” E Z(N). It follows that all Z-constituents of (P,~ 
are of the form (~‘)“EZ(N) (by 3.1(c)) and we are done. m 

5. ABELIAN AND CYCLIC FACTORS 

We now fix the character selector Z for (f, 7~). Also, fix N Q G G f and 
8 E Z(N) and assume that 8 is G-invariant. We intend to count the elements 
of Z(Gle), the “characters” FEZ such that 0 is an Z-constituent of ~p,~. 
(By 3.1 (d), this means that cp,,, = a0 for some positive integer a. ) 

(5.1) LEMMA. Suppose G/N is abeliun and let cp E I( G ItI). Then 

Z(G(e)= {~“~(itiEIrr(G/N)}. 

Proof. Let p be the regular character of G/N, viewed as a character of 
G. If r~ E Z(G 1 e), then q( 1) p”q = cp( I) p”q and 4 is an Z-constituent of the 
right side. Since p is a sum of linear characters and using 3.1(e), the fact 
that r~ is an Z-constituent of p”q yields that r) = i”q for some irreducible 
constituent i. of p. Conversely, for any such 2, we have (i”q)&, = (Pi and so 
i.“qEZ(GIe), again using 3.1(e). 1 

Next, we need an easy lemma about ordinary characters. 

(5.2) LEMMA. Suppose that GIN is cyclic. Zf Z-E Char(N) is G-invariant, 
then .7 extends to a character of G. 
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Proof: We may assume without loss that z is an orbit sum for the 
action of G on Irr(N). Let + be an irreducible constituent of 6 and let T be 
the inertia group of $ in G. Since r/N is cyclic, we know that the invariant 
(in T) irreducible character tj extends to some F] E Irr( T). Also, x = qG is 
irreducible and [x,%,, $1 = [q,,,, t/l= 1. It follows that xN=E. 1 

We now return to our study of the situation where 0~ Z(N) and 19 is 
invariant in G. 

(5.3) LEMMA. Suppose GIN is cyclic. Then every element of I(G ( 13) is an 
extension of 6. Furthermore, if G/N is a K-group, and we fix cp E Z(G ( O), then 
all i.‘q~ are distinct for 1 E Irr(G/N) and hence jZ(G( O)( = IG: NI. 

Proof: By Lemma 3.2, 0 uniquely determines some generalized charac- 
ter 4 of N which is necessarily G-invariant and so is a Z-linear combination 
of G-orbit sums on Irr(N), each of which extends to B by 5.2. Therefore, 
8 = n N for some generalized character n of G. 

We also know that 4” = 8 by 3.2 and thus (JI’),~ = 0. Now write /1’= 
a + B where r is a Z-linear combination of elements of Z(G 10) and where no 
Z-constituent of p lies in this set. Since u,%, is a multiple of 8 and 8 is not an 
Z-constituent of pN, we conclude that 0 = SI,~, + /IN = aN. 

Now let q E Z(G 10). By 5.1, all elements of Z( G ) 0) have equal restrictions 
to N, and therefore, 8 = a,,, is an integer multiple of (P.,,. On the other hand, 
(POE C(N), and this forces (P,~ = 0 and proves the first assertion. 

Now assume G/N is a x-group. If we can show that the i”q are distinct 
for E.EIrr(G/N), it will follow by 5.1 that lZ(Gltl)l = (G:NI. To complete 
the proof, therefore, it will suffice to assume that R”q = cp and prove 2 = 1,. 

Let K = ker L. We have N s K E G and we need to show that K = G. Let 
(P~=,D and note that PE Z(K) since p,%, = eEZ(N). Let ji be as in the 
notation of Chapter 2 and note that j E Char(K) since the decomposition 
numbers d,, are non-negative integers by 3.1(f). Since p is G-invariant and 
uniquely determines ,E, it follows that ,E is G-invariant and thus extends to 
A E Char(G) by 5.2. 

Now let @ be the generalized character of G corresponding to cp as in 3.2. 
Then [A, @] is an integer which we proceed to compute. 

If g E G - K, we write g = g, g,. where g, and g,, are respectively the a 
and n/-parts of g. Since GIK is a n-group, we have g,, E K and thus g, $ K 
and 3.( g,) # 1. We have, however, cp( g,) = J,(g,) cp(g,) since cp = J”q, and 
this implies that cp( g,) = 0. Thus @(g) = 0 for all g E G - K and we have 

CA, @I = ,G:K, L [AK, OKI = 
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By 2.1(a), ji vanishes on all non-n-elements of K. If I E K is a n-element, 
then @(x) = V(X) = P(X) and so 

by 2.1(b). This yields that [A, @] = l,!(G:KI and since this must be an 
integer, we conclude that K = G as required. 1 

We investigate further the situation where G/N is a cyclic n-group. 

(5.4) LEMMA. Assume G = (Iv, g ) where g is a n-element. Let cp E 
Z(Gl0) and$EI(G). Then $EI(GI~) &f 

where c+? is as in 2.1. 

Proof. Define the function z: G/N+ @ by 

4Nu) = c @j(x) Ii/(x). 
.\’ E xu n z 

Since G/N is an abelian group, r is certainly a class function and we can 
write 

~=;..,~G:V)aiL 

for some choice of complex numbers a;.. Then 

and by 2.1(b), this is nonzero iff I.‘$ = cp. By 5.1, therefore, all a;. = 0 if 
rj $ I(G ( 0) and thus x = 0 in this case. If, on the other hand, JI E I(G I e), 
then cp = no+ for some unique i by 5.3 and thus u = aj.A for that 3. and 3: 
never takes on the value zero. The result now follows. 1 

(5.5) COROLLARY. Let cp E I(G 10) and suppose cp extends 6. If g E GIN is 
a x-element, then we can choose a n-element x E Ng such that q(x) # 0. 
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Proof: Without loss, we may assume G = (N, g) and apply 5.4 to 
conclude that 

The result follows. 1 

6. GOOD ELEMEXTS 

We continue to hold fixed f and 7c, the character selector Z, the sub- 
groups N 4 G c Z’, and a G-invariant “character” 0 E Z(N). 

(6.1) DEFINITION. A r-element g E G/N is O-good if every element of 
Z( (N, g) 18) is invariant in C, where C/N = CG:,( g). 

Note that by 5.3, all of the elements of Z( (N, g) ( 19) are in fact extensions 
of 19. Also, by 5.1, they can all be obtained from any one of them by mul- 
tiplication by the various i” for 1. E Irr( (N, g)/N). Since these linear 
characters are certainly C-invariant, it follows that in order to show that 2 
is O-good, it suffices to check that some particular extension of 0 to (N, g) 
is C-invariant. 

It should be clear, and we will use the fact without proof, that @“good- 
ness” is preserved by conjugacy in G/N. We can now formally state our 
main result. 

(6.2) THEOREM. Let I he a character selector for (f, z) and let 
N 4 G E r with G finite. If 8 E Z(N) is G-invariant, then IZ( G ) 0)l is equal to 
the number of conjugacy classes of &good n-elements in G/N. 

Perhaps it is worth observing that in the case that G/N is a cyclic 
z-group, we essentially know Theorem 6.2 already. By 5.3, (Z(G( 6)l = 
JG: NI in this case, and so we need to check that every element g E G/N is 
O-good. Note that C = G. Choose cp E Z(G 1 B)and let p = cp <N,g). By 5.3, we 
have (P,~ = 8 and thus p extends 6 and ~1 is G-invariant. As we remarked 
earlier, this suffices to establish that g is B-good. 

We now begin work toward a proof of Theorem 6.2. 

(6.3) LEMMA. Let $ E Z(G 119) and suppose x E G is a x-element such that 
-f = XNE G/N is not e-good. Then $(x) = 0. 

Proof: By 5.3, choose an extension cp of 9 to (N, x). Every 
Z-constituent of IJQ<~,~) lies over 8 and hence is of the form 13’~ for 
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some iE Irr( (N, X)/N). It follows that Il/clV,r, = ,4’~ for some 4 E 
Char( (N, X)/N). 

Because ?c is not &good, there exists c E G with xc E NX such that cpc # cp. 
Now (4~~)~~ = 8”= 19 and thus @= p”(p for some nontrivial ALE 
Irr( (N, X)/N). Since c centralizes 2, we have 4’ = 4 and so it follows that 
$&+ =~~tiq~~,~) and we have 

Since +(cxc~ ‘) = Ii/(x) because II/ is a class function, and since p(x) # 1, it 
follows that #(.Y) = 0. 1 

Our next step is to fix a set T of coset representatives for those cosets of 
N in G which are n-elements of G/N. We also want to fix for each t E T a 
“character” 0, E Z( (N, r )) extending t?. The extensions 0, exist by 5.3 and 
by 5.5 we czn arrange that each t E T is a n-element and that e,(t) # 0. Of 
course, the choices of T and { 8,I t E T) are not unique and so objects we 
define in terms of them may not be canonical. 

We define a function u on the set C n G of n-elements of G by o(x) = 
0,(x)/0,(t) where t is the unique element of Nx n T. Although r~ need not be 
a class function, we can get some information about how a(xg) is related to 
a(x). 

(6.4) hMMA. Let x, g E G tchere x is a x-element. Then in the notation 
established aboce, we hate 

a(x”) = u(x) o(P), 

where t E Nx n T. 

Proof We have e,EZ((iV, t)) and we write q=(B,)gEZ((N, t)“) so 
that (p,,, = @ = 8. Let s E Ntg n T. Then 8, and cp are both extensions of 8 to 
(N, s) and we can write 8, = i”p for some E. E Irr( (ZV, s)/N). 

Now 

4w7 
eg) =B,o= 

w) mg) = wg) e,(x) 
us) e,(s) . 

Similarly, 

and so 

wg) e,(t) 
4tb) = e,(s) 

e,(x) w e,(t)= w) e,(x) u(x) a(P) =-. e,(t) us) e,(s) . 
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Since Nx = Nl, we have Nx* = Nf” and thus j(xg) = R(rg) and the result 
follows. 1 

We can use the function (T to characterize the complex vector subspace of 
cf’(G) spanned by Z(G( 0). We shall denote this space by cf’(GI 0). 

(6.5) LEMMA. Let I+$ E cf’(G). Then the following are equitlalent: 

(i) $Ecf”(GIO). 
(ii) @(g)=a(g)$(t) rvhenevergEGnZandtENgnT. 

Proof: Suppose $ satisfies (i) and let g E G n L and t E Ng n T. Every 
Z-constituent of Ic/ <,,,, g) lies over 8 and thus has the form Loo, for some 1 E 
Irr((N, g)/N). It follows that Ic/<,V,,) = A’@, for some A E cf(G/N). (Note 
that since Nt = Ng, we have /l(g) = A(t).) We have 

4w = 4g) e,(g) = /i(t) e,(t) z= Ii/(t) a) 
f 

and + satisfies (ii). 
Conversely, assume Ic/ satisfies (ii). Write II/ = u + /I where every 

Z-constituent of !x lies in Z(G 10) and no Z-constituent of B lies in this set. 
Our object is to show that fi = 0. 

By the first part of the proof, z satisfies (ii) and it follows that B = $ -a 
does too, since condition (ii) is linear in IJ. 

For each t E T, we have by 5.4 that 

o= c %(x) lI(x) ,E Yrnt -- = c %b) 4x) P(t) 

= m/w) c k4 e,(x). 
The sum in the last expression is nonzero by 5.4 and we conclude that 
#?(r) = 0 for all t E T. Since fi( g) = fi( t) 6(g) = 0 for g E Nr n L, we see that /3 
is identically zero, as required. i 

Now choose a subset To E T such that cosets Nt E G/N for t E To form a 
set of representatives for the conjugacy classes of e-good n-elements of G/N. 

(6.6) THEOREM. Restriction defines a C-vector space isomorphism from 
cf’(G ItI) onto the space of all complex functions on To. 

Since Z(G 119) is a basis for cf’(G IO), Theorem 6.6 tells us that IZ(G Ie)l = 
( ToI and thereby proves Theorem 6.2. 
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Proof of Theorem 6.6. Suppose $ l cf’(G\ 0) is in the kernel of the 
restriction map so that e(t) = 0 for all t E r,. We want to show that $ = 0; 
in other words, we need to establish that I,+(X) = 0 for all XE G n ,?I. By 
Lemma 6.3, $(x) = 0 if 2 is not Q-good and so we may assume that .? is 
l&good and thus .P = i for some g E G and t E To. 

Now 

l&x) = I(/(xg) = 0(x”) l)(t) = 0 

where we have used that fact that (i) 3 (ii) in Lemma 6.5. This proves that 
the restriction map is injective. 

Now let r be any complex function detined on To. To complete the 
proof, we must find $ E cf’(G 10) such that Ii/(t) = r(t) for all t E To. 

Let .X E G n ,?I. Define 

if ?c is not O-good 

if .U is O-good, 

where g E G and t E r, are chosen so that ig = i in the latter case. Note that 
the f&good element ,U uniquely determines I but does not uniquely deter- 
mine g and so we need to show that if also hE G and .lCh = i, then 
a(.~“) = o(.xh). In other words, we need 8,(.~~) = 0,(x”). 

Now h ‘g E C where C/N= C,,,(Q and since i is e-good, we have 
ep-‘x = 8, and hence 0)-’ = (!I;-‘. Thus 

e,py = ef+) = e;-‘(x) = e,(.dy 

and $ is well defined. 
If t E To, then iis e-good and so to evaluate $(t) we can take g= 1. This 

gives $(t) = a(t) a(t). Since a(t) = 1 by the definition of CT, we have 
$(t) = r(t). To complete the proof, it suffices to show that $ E cf’(G ) 0). 

First, we show that II/ is a class function. Let x, J E G n Z with y = xg for 
some g E G. If neither 2 nor j is &good, then $(x) = 0 = G(y) as required. 
The remaining possibility is that both ?c and j are B-good. Choose h E G 
and t E T such that Jh = i Then .fgh = i and we have 

l/G(x) = a(xgh) a(t) and NV) = ah) 4t) 

and these, of course, are equal since +xgh = yh. 
To show that $ E cf’(G 1 O), it suffices to show that IJ satisfies 6S(ii). Let 

x E G n E and s E NX n T. We need to check that I/I(X) = a(x) $(s) and so 
we must compute $(x) and $(s). Now X=3 and if this element is not 
e-good, then tJ(x) = 0 = I&) and the condition is satisfied. 
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Suppose X = S is O-good and choose g E G and t E T,, with Xg = i Then 

$(x) = 0(x”) a(t) = o(x) a(9) cc(t) = c(x) i)(s), 

where the second equality follows by Lemma 6.4. This completes the 
proof. 1 

7. FURTHER REMARKS 

We continue with our usual notation so that N 4 G c r and 8 E I(N) is 
G-invariant where I is a character selector for (r, K). The following result 
provides a slight shortcut to establishing that an element is B-good. 

(7.1) LEMMA. Let g be a n-element of G/N and let C/N= CGIN( 2). Let 
cp E Z( (N, g) IfI). Then g is e-good tff cpc = cp for every n-element of C. 

Proof: The “only if” part is trivial and so we assume that cpc = cp when 
c E C is a z-element. If c E C is arbitrary, we can write c = c,c,,, the 7c - rc’- 
decomposition in C, and since cpcK = q, it suffices to show that cp is 
invariant under all n’-elements of C. 

Let CEC be a &-element. Then $~I((N,g)18) and so cpc=iop for 
some j. E Irr(G/N). Now i is C-invariant, and it follows that 

for every integer m. Taking m = o(c) and appealing to Lemma 5.3, we con- 
clude that i,” = 1 The multiplicative order of 1, however, is a n-number 
since (N, g)/N :s a n-group. It follows that 3. = 1, and cp’= cp, as 
required. m 

(7.2) COROLLARY. The n-element g E G/N is &good iff 8 is extendible to 
every group H where ( N, g ) c HE r and H/N is abelian and H/( N, g ) is a 
cyclic z-group. 

Proof By 7.1, g is e-good iff for every choice of H as in the statement of 
the corollary, some extension cp of 8 to (N, g) is H-invariant. By 5.3, 
however, 4p is H-invariant iff cp extends to H. Therefore, g is O-good iff for 
each H, some extension of 8 to (N, g) further extends to H. In other 
words, g is O-good iff 0 extends to H for each choice of H. 1 

Using 7.2, we can state a useful application of our main theorem. 
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(7.3) COROLLARY. Let I, and I2 be character selectors for (f,, n) and 
( r2, J-C). Let Ni 4 Gi & fi with G,finite and let Oi E Ii be G,-inoariant. Let 

be an isomorphism. Assume for euery two-generator abelian n-subgroup 
H/N, E GJN, that 8, extends to H iff t12 extends to K, where K/N, = 
f(WN,). Then II,(G, le,)l = I12(G21&)l. 

Proof. By 7.2, we see that if g is a x-element of G,/N,, then g is O,-good 
iff f (g) is &-good. The result then follows by Theorem 6.2. 1 
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