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ABSTRACT 

It is shown how structured and weighted total least squares and L, approximation 

problems lead to a “nonlinear” generalized singular value decomposition. An inverse 

iteration scheme to find a (local) minimum is proposed. The emphasis of the paper is 

not on the convergence analysis of the algorithm; rather the purpose is to illustrate its 

use in numerous applications in systems and control, including total least squares with 

relative errors and/or fved elements, inverse singular value problems, an errors- 

in-variables variant of the Kalman filter, impulse response realization from noisy data, 

H, model reduction, H, system identification, and calculating the largest stability 

radius of uncertain linear systems. Several numerical examples are given. 
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1. INTRODUCTION 

Let B(b) = B, + b,B, + **a +b, B, E [wPx4 be an affine matrix func- 
tion of the components bi of the parameter vector b E R”, where Bi, 
i = 0, 1, , n, a a data w 
be a given A problem 

a rank-deficient 
a given 

beR”, 

structured total least- squares (STLS) 

subject to B(b) y = 0, ~~9 = 1. (I) 

Examples of affine matrix functions are structured matrices such as Toeplitz, 
Hankel, and Brownian matrices or matrices with certain zero patterns. An 
example of a matrix function which is nonaffine in its parameters is a 
Vandermonde matrix. 

The main motive of this paper is to show that many signal processing, 
system identification, and control system design and analysis problems reduce 
to the solution of an STLS problem. 

In Section 2, we present an easy derivation for the unstructured total least 
squares problem. Our main result is Theorem 1 in Section 3, which states 
that the solution to the STLS problem follows from that of a nonlinear 
generalized SVD problem. The derivation parallels the one for the unstruc- 
tured case. In Section 4, we present several examples of STLS problems, 
including relative error TLS, TLS with arbitrarily fured elements, TLS for 
linearly structured matrices such as Hankel and Toeplitz (including noisy 
realization and model reduction), and an example from system identification. 
We also show how one can do an errors-m-variables variation of the Kalman 
filter and the calculation of the stability margin of an uncertain linear system. 
In Section 5, we derive a straightforward algorithm that is inspired by inverse 
iteration to find the smallest singular value and corresponding singular 
vectors of a matrix. Numerical experiments suggest that it is linearly conver- 
gent, although a further theoretical analysis is definitely required. Several 
numerical examples are given in Section 6. 

We will confine ourselves to real data and real STLS problems, although 
all results can be generalized to the complex field. Our notation is fairly 
standard. 
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2. AN EASY DERIVATION OF TOTAL LINEAR LEAST SQUARES 

The purpose of this section is to take the simplest total least squares 
problem, for which the solution is known: it is given in terms of a singular 
value decomposition (SVD). The idea is that the steps used in this derivation 
will be exactly the same ones as in the solution of the general problem. 

The total least squares problem reduces to finding a rank-deficient matrix 
approximation B in Frobenius norm to a given matrix A. This can be 
formulated as 

min IIA - Bll”F 
BEIWP’~, yeU%q 

subject to By = 0, yfy = 1 

Obviously, due to the rank deficiency constraint on B, this is not a convex 
optimization problem. Let 1 E R Px ’ be a vector of Lagrange multipliers, and 
h E 08 a Lagrange multiplier; then the Lagrangian can be written as 

_!T( B, y, 1, A) = i 5 (aij - b,,)’ + ZtBy + A(1 - y”y). 
i=l j=l 

Let us now show how we can arrive at the well-known SVD solution. 

Derivatives 

Setting all derivatives equal to zero results in the set of equations’ 

A - B = Zyt, B’l = yh, By = 0, yty = 1. 

Note that the error A - B is a rank one matrix. Also, it is straightforward to 
show that A = 0 from ZtBy = 0. 

Elimination of B 

By postmultiplying A - B with y and (A - Bjt with Z we find 

Ay = 1, A”z = y(Z’l), yty = 1. 

‘We absorb all irrelevant constant factors 2 in the Lagrange multipliers. 
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Nordization 
Next normalize 1 as x = Z/llZll, where we call u = 11111. Then we find 

Ay = xu, x’x = 1, 

A’x = ya, yty = 1, 

which im 
P 

lies that (x, u, y) must be a singular triplet of A. Observe that 
IlA - BIIF = u2, so that we need the singular triplet corresponding to the 
smallest singular value. 

An Orthogonality Property 
It is straightforward to derive that 

Bt(A-B) =0 and (A-B)Bt=O. 

Construction of B 
B can be constructed as B = A - x u yt and hence is a rank one 

modification of A. 
The approximation in Frobenius norm of a given matrix by one of lower 

rank has an long history, with its roots going back to Adcock [2,3] and 
continuing through Pearson [23], Eckart and Young [12], and Young and 
Householder [20,27]. Golub and Van Loan [17,18] formulate the problem as 
a generalization of solving Ay = b in a least squares sense for the case where 
all data A and b (and not only the right hand side b as in least squares) are 
corrupted by noise. More details (geometric, algebraic, and statistical) on the 
(unstructured) total least squares problem can be found in [17,24]. 

3. STLS AS A “NONLINEAR” GENERALIZED EIGENVALUE 
PROBLEM 

Let us now consider in detail the STLS problem cl), with m = n. We 
take the quadratic criterion 

[a, b,w]i = 2 (ai - bi)‘, 
i=l 
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in which, for the moment, we do not consider weights w (the general case 
with weights is treated in Section 4 and is a straightforward extension of the 
results obtained in this section). In order to solve the minimization problem, 
we follow the same path as outlined in Section 2 for the unstructured case. 
The Lagrangian is given by 

Lqb, y,z, A) = E (Ui - biy + zt( B, + b,B, + *** +bmB,) y 
i=l 

+ A(1 - y’y), 

where 1 E R P is a vector of Lagrange multipliers and A E [w is a scalar 
Lagrange multiplier. 

Derivatives 

Setting all derivatives equal to zero gives’ 

Qk: ak - bk = Z ‘Bk y, (B, + b,B, + *** +b,B,)y=O, 

( B; + b,B; + .a* +b,B:,)Z = yh, yfy=l. (2) 

From Z’B(b)y = 0, it follows directly that A = 0. 

Elimination of b 

Next we eliminate the parameters b by using bk = al - Z’B, y to find 

(a,B, + a** +a,B,)y = [(Z’Bly)B, + *-* +(~‘B,,Y)B,]Y, (3) 

Observe that terms with B, have canceled out. Looking at the right hand 
sides, we observe that the first right hand side (3) is quadratic in y and linear 
in 1, while the second right hand side (4) is quadratic in 1 and linear in y. 

‘Again irrelevant constants are absorbed in the Lagrange multipliers 
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Let’s now concentrate on one term in the right hand side of (3). Without 
loss of generality, we can take the first one. Define fiij as element (i, j) of 
B,, and let $i be the ith row of II,. Then 

Hence 

‘Y’h 
qyp+y) = 

Y% 

: ( **- z:Y 6; y )z. 

\Yt&, 

Observe that in the right hand side, the matrix preceeding 1 is a rank one 
matrix, and as it is the outer product of a vector with itself, it is nonnegative 
definite. 

Obviously, we can repeat this for each term of (3) to obtain the result that 
the right hand side of (3) can be written as 

E [ Bt(ZtBt y)] y = D,Z. (5) 
i=l 

Here, D, is a symmetric matrix which is a sum of m rank one nonnegative 
definite matrices; hence D, itself is nonnegative or positive definite. Its 
elements are quadratic functions of the components of the vector y. A similar 
derivation applies for the right hand side of (4): 

is [ BI(z”iY)]z = DZY, (6) 

where D, is symmetric nonnegative or positive definite, with elements that 
are quadratic functions of the components of 1. 
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Normalization 

Next we define x = l/111// and call u = ~~1~~. Let D, be defined in the 

same way as D,, by replacing every component of 1 appearing in D, by its 

corresponding component in x. Since the elements of D, are quadratic 

functions of the components of 1, we find D, = D, u ‘. Next define A E R Pxq 

as A = CT! 1 B,a. Then we find 

Ay = D,xo, XtX = 1, 

(7) 

Atx = D, ye, yty = 1. 

We are now ready to prove the following theorem: 

THEOREM 1 (STLS as a nonlinear generalized SVD>. Consider the STLS 

problem 

bER~,i~ER7 i&Cai - bi)2 subjectto B(b)y = 0, yty = 1, 

where a,, i = 1, . . , m, are the components of the data vector a E R”, and 

B(b) = B, + B,b, + -0. +B,b,, with Bi, i = 0, 1, . . , m E RPx9, fixed 

given matrices. The solution is generated as follows: 

(a) Find the triplet (u, r, V) corresponding to the minimal r that satisfies 

Au = D,,ur, utD,u = 1, 

(8) 

A”u = D,vr, vtDUv = 1, 

where A = Cy! la, Bi. Here D,, is defined via D, = CT! 1 B:(u tBiv>u = D,,v 

and is a positive or nonnegative definite matrix, the elements of which are 

quadratic in the components of u. D, is defined similarly via Cy! 1 Bi(utBiv)v 

= D,,u and is positive or nonnegative definite with elements that are quadratic 

in the components of v. 

(b) The vector y is given as y = v/llvll. 

(c) The components of b are obtained from b, = ak - utBkvr, k = 

l,...,m 

Before we present the proof of this theorem, we will first devote a few 

words to its interpretation. First observe that, if D,, and D, were constant 
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positive or nonnegative definite matrices (i.e. independent of u and u), the 
equations of Theorem 1 for a given matrix A would be satisfied by any triplet 
(u, u, u> of the restricted singular value decomposition (RSVD) of the triplet 
(A, D,fi2, 0,““) (where Dti2 is a square root of 0,). The RSVD is just an 
SVD with different positive or nonnegative definite inner products in the 
column and row space and is extensively studied in [9]. Observe that, still 
under the assumption that D, and D,, are constant, 

( lt ;:i(:) = (; $)T. utD,,u = 1, utDUu= 1, 

would be a generalized eigenvahre problem. The “nonlinear” aspect however 
is the explicit dependence of the weight matrices D,, and D, on the 
components of u and u. Still, as we will see, these matrices are always 
nonnegative definite (and hence correspond to inner products, which are 
however “position dependent”), and the elements are quadratic functions of 
the components of u and v. 

Proof of Theorem 1. From the equations (7) it follows directly that 

xtAy = ytAtx = x’DYxu = ytD, yo. (9) 

Next observe that from (2) 

=xti~~[Biy(x’Biy)]u2 =x’Aya. 

The equality from and 
Let triplet 7, solve Then 

= = (11) 
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Furthermore, by normalizing u and V, and recalling that 0, and 0, are 
quadratic in the components of u and v, we obtain 

U Du v 
A$ = 1121112 I(U(I (~Ml Ilvll) 

If we now put x = u/llull, y = v/llvll, and o = ~/lull 11~11, then from (lo), 
(11) we find 

xfAyu = Ml II4 
gAJ(~,lull [lull) = ” llull & &,l,ll llvll)2 = T2. (12) 

This shows that we need to find the minimal r. It also delivers the result for 
y. For the components of b we find from (2) 

b, = ak - UB “CT = ak - utBkvr. 
Ilull k IIVII 

This completes the proof. n 

A useful characterization of the optimal solution can be obtained from (2) 
by observing that 

+ icl(ai - bi)bi + ZtBoy = 0. 

If B, = 0, this property says that the vector of residuals a - b is orthogonal 
to b. 
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4. EXAMPLES AND APPLICATIONS 

In this section, we treat several examples and applications of STLS 
problems. If all the elements of B are unknown parameters, we will simply 
use B instead of B(b) as in the previous section. 

4.1. Total Least Squares with Elementwise Relative Weighting 

The elementwise weighted total least squares problem is the following: 

min i i ( aij - bij)2wij 
BEW”~‘, YE!%? i=l j=l 

subject to By = 0, yty = 1. (IS) 

There are many applications. In statistics, a table of means based on 
samples of widely varying sizes should be fitted with weights proportional to 
the sample sizes as mentioned in [15]. In geology, where one analyses 
metamorphic mineral assemblages and reactions 1141, it is required that the 
decomposition matrix be weighted elementwise, because some mineral com- 
position data are known more accurately than others. Sometimes, the vari- 
ance of measurements is not constant (heteroskedasticity). All of these are 
examples of elementwise weighted TLS problems. 

From the Lagrangian, we find dP/ab,, = 0 -+ wij(aij - bij) = Zi yj, 
d_5f/dy. = 0 + B’l = yh, d9//ali = 0 + By = 0, and a9/aA = 0 + y’y 
= 1. 06 serve that the matrix with elements wi .(aij - b,) is a rank one 
matrix. This matrix can be represented as W. * A - B), where * * is the f 
elementwise product. Obviously, when wij = 0, either Zi or yj should be 0. 
We will however consider the case where all weights wij # 0 and use 
LJij = wi;l. Furthermore, define the diagonal matrices L = diag(Zi) and 
Y = diag(yJ3 We can then rewrite the set of equations as 

B=A-LVY, By = 0, B’l = yh, yty = 1, 

‘The notation diag(.) should b e interpreted in the MATIAB convention: If the entity in 

parentheses is a matrix, then diag(.) will result in a vector having as its components the diagonal 

elements of the matrix. If the entity between brackets is a vector, diag(.) delivers a square 
diagonal matrix with the components of the vector on its main diagonal. 
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where V is the matrix with uij as its elements. Observe that 

rank( A - B) = rank( LVY). (I4 

It follows easily that the Lagrange multiplier h is 0, since y*B*l = A = 0. The 
neat thing is that we can completely eliminate B by postmultiplying the first 
equation with y and premultiplying it with I*, which leaves us with the 
equations Ay = LVYy, A’1 = YV’LZ, and y*y = 1. Let r = Z/11111 and 11111 
= cr. Also define the diagonal matrices 

0, = diag(Vdiag( r) r), 

(IS) 
D, = diag(V* diag( y) y). 

Then we find the equations as in (7) which can be renormalized to get 
equations as in (8). Note that D, and D, are guaranteed to be nonnegative 
definite if all elements of V are nonnegative (which is the only case that 
occurs in practice). If all the weights wij = 1, we recover the ordinary TLS 
problem of Section 2. 

Let’s now verif>l that we need the minimal eigenvalue of the nonlinear 
generalized eigenvalue problem of Theorem 1. We have 

i i (aij - bij)‘wij = i i x;y,?uiju2 = x*Dy XU+ = x*Ayu = 7’. 
j=l j=l i=lj=l 

The last equality follows from (12). 

4.2. Total Least Squares with Fixed Elements 

When only some of the elements of A can be modified to reduce the 
rank, we have a total least squares problem with f=ed elements. In order to 
formalize this, we split A as A = A, + A,, where A, contains the futed 
elements and A, the elements of A that can be modified. Denote by 9 the 
set of index pairs of f=ed elements and by -yTc its complement. The problem 
now becomes 

min [IA - Bll”F 
BcIWPXq, yclw“ 

subject to By = 0, y*y = 0, B = A, + B,, B,(i,j) = 0 V(i,j) EX 
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The problem does not always have a solution, as the following example 
shows: 

EXAMPLE. 

I = A, + A, = 

Obviously, by only modifying the element 2, we can never reduce the rank of 
the matrix A, which is 2. 

The Lagrangian function here is P(B, y, 1, h) = C&i,jjE~Jaij - bij)2 

+ z%j + Ml - y”y) + ccci,j)Es r ij (aij - bij), where R E [WP 4 is a ma- 
trix of Lagrange multipliers with R(i, j) = 0 if (i, j) ~,1”,. This leads to the 
set of equations 

B, = A, + R - Zyt, B=A,+B,, 

B,(i,j) = 0 V(i,j) EY, R(i,j) = 0 V(i,j) ~4, 

By = 0, B’Z = yh, yfy = 1. 

Again, we can show that A = 0 and eliminate B to obtain (A + R)‘Z = y(Z’Z), 
(A + R>y = I, and y’y = 1, which after normalization of Z as x = Z/11111, 
IIZII = u becomes 

(A +R)y =xu, X’X = 1, 

(A + R)‘x = yu, y’y = 1. 

This is an SVD of the matrix A + R. Of course, R is unknown too, but we 
know it is zero on Sc. The message is that we need to modify A precisely in 
those positions that we are not supposed to modify! 

Another point of view is that we basically have to do with an SVD 
completion problem: We have to modify the matrix A in such a way that 
some structural constraints on the singular values and vectors are satisfied. 
These structural constraints are the following: From B, = A, + R - Zy’ we 
have that R(i,j) = Ziyj = x,ayj when (i,j) EYand that R(i,j) = 0 when 
(i,j) E.&. This implies that B,(i,j) = A,(i,j) - Ziyj and hence A, - B, 
will be of rank one. Using these observations, we can eliminate R and find 
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that 

Ay = D,xa, x”x = 1, 

Atx = D, yu, yfy = 1, 

where D, and D, are given by exactly the same expressions as in (15), and 
where now V is a zero-one matrix which has a 0 at every element (i, j) E 4 
and a 1 at every element (i, j> ~3c. In this sense, the TLS problem with 
futed elements can be considered as a limiting case of the weighted TLS 
problem of Section 4.1. 

Let us conclude by pointing out that some special cases of fxed element 
patterns can be solved explicitly. The case of some columns error-free is 
considered in [16], while the case of three out of four subblocks error-free is 
considered in [7,9]. 

4.3. Weighted total least squares 

The componentwise weighting of Section 4.1 can be generalized to a 
pairwise weighted total least squares problem as follows: 

subjectto By = 0, y’y = 1. 

From the Lagrangian we find %Y,,ab,, = 0 * C,P_ iCT= i(wrsij + zuijrsXaij 

- bij> = I, yS, which can be written as C/=,CJ= iwq(aij - bij) = I, ys, where 
W ” is a 1 X pq row vector. Next define the matrix W E R PqxPq which has 
the row vectors urs as its rows. Then, assuming invertibility of W, 

lY1 
\ 

lY2 
vec(A-B)=W-’ . , 

where vet(.) stacks the columns of the matrix in a long pq X 1 vector. Call 
W-’ = V, and partition it in p X p blocks as 
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$11 J,712 . . . vlq 

VZ1 V22 . . . V2.4 
v= . . . 

\VQl VG . . . vqq / 

Then we can eliminate B to find Ay = (V “1 V 12Z *a* V’qZ)yyl 
+ . . . +(V+Z . . . VqqZ) yyq. We can write out element i of Ay as 

(Ay)i = zl Yt 

+ I2 

which is a linear function in the elements of 1 and quadratic in the elements 
of y. Similarly, element j of ZtA can be written as (ZtA)j = (ZtVj’Z)yl 
+ --- +(Z*VjqZ) ys, SO that 

Ay = 

A’1 = 

yfpy yfU12y . . . 
YtUlqY I 

ytU21y ytpy . . . 
YtU2qY z 

. I> 
ytU41y yqJq2 y . . . 

: I ywqq y 

‘ppz pv12z . . . ztvlqz 

ztv 211 ztv 22z . . . pv29z 

,pqq pvq21 .*. zvqqz 

where we define the matrix Uk” as qj’ = I’,‘{. Normalizing 1 as x = Z/llZll 

with (+ = 11111 leads to the problem (7) or, via a renormalization into vectors u 
and u, to the nonlinear generalized eigenvalue problem (8). 
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In many statistical problems of practical interest, the noise covariance 
matrix is known. When all data in a p X q matrix A are noisy, the noise 
covariance matrix is a pq X p9 positive definite matrix. If the noise on the 
data is zero mean normally distributed with this known covariance matrix, the 
pairwise weighted TLS problem corresponds to a maximum likelihood esti- 
mation formulation. 

4.4. An Errors-in-Variables Variant of the Kalmun Filter 

A particularly interesting application of STLS is what may be called an 
errors-in-variables variant of the Kalman filter. For simplicity, we consider 
the first order linear time-invariant system 

xk+ 1 = axk + vk, 

zk=mk+wk, 

where a E [w, c E [w, rk is the state and zk the output at time k, and nk and 
wk are the process and measurement noises respectively. For subsequent 
time instants, one can write down a set of linear equations as 

I 

\ ’ 

ZO 

0 

21 

0 

z2 

0 

= 

c 0 0 0 -** 
a -1 0 0 *** 

0 c 0 0 -0. 

0 a -1 0 e-0 
0 0 c 0 *** 
0 0 a -1 *.. 
. . . . . . 
. . 

X0 

Xl 

x2 

*3 

+ 

WO 

UO 

Wl 

Vl 

w2 

u2 

(16) 

The Kalman filter assumes that the model is known exactly (i.e., a and c 
are exact) and also requires knowledge of the covariance structure of the 
noise. The Kalman filter is nothing else than a clever way of updating the 
least squares solution to the above set of equations, by exploitation of the 
special and sparse structure of the data matrix every time a new measurement 
or state is added. The associated Riccati difference equation updates the 
Schur complement of the lower part of the matrix with a and c. 

If however also a and c are not known precisely, it makes sense to 
consider the following minimization problem: 
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,Y 
xk+r = (Y+_ + t,, 

Sk = &, k = 0,1,2,. ..,p. (18) 

These equations can be written as 

SO y 0 0 **- 

to -a 1 0 *** 

31 0 y 0 -** 
t1 0 _-(y 1 . . . 

. . . 

. . . 
. * 

\I 

\ 

= 0. (19) 

The interpretation is the following: Not only do we assume the presence of 
process noise and measurement noise [which motivates the modification of 
the left hand side in (1611, but also we approximate the system (a, c) with 
( CY, y). The result is a system ( (Y, y ) given by (181, which is driven by a 
process noise sequence tk but without measurement noise. Of course, one 
could include additional weights in (17) to emphasize the relative importance 
of each quadratic term in the criterion or to exploit a priori information 
concerning the noise covariance structure or model errors if e.g. 

E [( 1 “c-y (a-a c-Y) 
1 

were lmown, for instance from an identification algorithm. 
With the constraints (191, we associate 2p + 2 Lagrange multipliers 

4,. * *, &+2. We find easily the following equations by taking derivatives of 
the Lagrangian. Note that all the results are implicitly dependent on the time 
horizon p, a dependence that is denoted between square brackets. For 
instance, the estimate of y after p = 2 measurements is denoted by y[2]. We 
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illustrate the results here for p = 2: 

If we denote 

Yo c 0 0 0 

0 -a 1 0 0 

A[21 = “d ; ’ ; i 

Y2 0 i" c 0 

0 0 0 -al 

’ -1 

x0 PI 
y[2] = 421 ) 

x2 WI 
\ 421 1 

WI’ 
12 PI 
@I 

WI = /J21 7 

4 PI 
\m, 

it is now tedious though straightforward to show that 

API Y PI = 42,Wl 

where 

D 
Yf21 = 

1+x^,2 0 I*- 0 A A 

x1x0 x2 x0 0 
0 1+x^,2 0 AA ,. A 

x1x0 0 x2x0 
6 A 
x0x1 0 1+q 0 ** x1x2 0 

0 A ,. 0 1+1;; 0 *A x0 Xl x1x2 
A A 

0 
,. ,. 

x0 x2 X1X2 0 1+x^,2 0 

0 A A An x0 x2 0 x1x2 0 1 + ;2" 

(20) 
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Observe that Dylsl is a rank two modification of a diagonal matrix. Also 
we find that 

where 

D 1[2] = 

(A[21)tl[21 = D1&21~ 

11w 0 0 0 0 

0 11” + 1; l,l, + l,l, l,l, + l,l, 0 

0 413 + 1214 13” + 1,” l,l, + l,l, 0 

0 l,l, + l,l, l,l, + l,l, 15” + 16” 0 

0 0 0 0 0 

(21) 

Observe that DIL,] is a rank three matrix. The lower 4 X 4 part can be 
factored as 

Together, the equations (201 and (211, via the equations (7), show that the 
errors-m-variables Kalman filtering problem reduces to the “nonlinear” gen- 
eralized SVD problem described in Theorem 1. 

If we add one more measurement equation, the set of equations gets 
updated. For each measurement update, we increase the time horizon index 
between square brackets by 0.5. We then find the equation 

where 

A[2.5] = 

~[2.5]~[2.5] = D,,,,,I[2.5], (22) 
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and ~y~2.51 now becomes a 7 X 7 matrix of the form 

D yp.51 = 

1+;,2 0 AA x1x0 0 x2x0 . ,. 0 
0 1 +P 0 ,. A 0 * ,. 

0 x1x0 x2x0 

A A 
0 1+P 0 

. A 
x0x1 1 X1X2 0 

0 A ,. x0x1 0 1+x^,2 0 ,.A x1x2 

I* A 
x0x2 0 

,. 1 
x1x2 0 l-c?,2 0 

0 . h 0 ,. . 
x0x2 x1x2 0 1+P,2 

,. ,. 
0 

n n 
0 

*n 
x0x3 x1x3 x2x3 0 

Also 

( A[251)t@31 = Qt,.sl Y i2.51, 

where D1,2,sI becomes 

Q[2.5] = 

,. ,. 
x3x0 

0 
,. n 
x3x1 

0 

n n 
x3x2 

0 

1 + . $2 
3 J [2.5] 

(23) 

11~112 \ 0 0 0 0 

0 1; 1; + 1,1, 1,1, + 1,1, 1,1, + E,l, 

0 44 124 + 13” 14” + l,l, 141, + 1,1, . 

0 1,1, + 1,1, 1,1, 1,1, + 15” 16” + lsl, 

0 111, 131, Y, 17” , [2,s] 

The lower 4 X 4 part can be factored as 

/ 
4 12\ 

4 

4 4 4 15 17 

15 4 ( 12 4 4 0 i L2.5]’ 

\ z7 O / [2.5] 

Taking together Equations (201, (211, (221, and (231, we can now get a 

picture of a recursive updating of the nonlinear generalized SVD problem 
that solves the errors-in-variables Kalman filter. The details however will not 
be worked out here. 

It goes without saying that the simple first order example we have given 
here can be extended to general matrices A E R”x n and C E R” “, with 
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arbitrary given covariance matrices for the model and the noise. Even 
structure of A and C (such as the requirement that certain elements be zero 
or equal to each other) can be taken into account, as well as time-varying 
models. 

4.5. Approximation by a Rank-Deficient Hankel Matrix 

Consider the problem of approximating a given data sequence a E 

[wP+9-1 by b E IwP+q-l so that Z,!‘=‘i”‘(ai - bi)’ is minimized subject to 
By = 0, yf y = 1, where B is a p X 9 Hankel matrix with the elements of b. 

The rank deficiency of the Hankel matrix B ensures that b is the impulse 
response of a finite dimensional linear system of order 9 - 1 at most. 

If the sequence a is itself the impulse response of a higher dimensional 
system, our problem corresponds to model reduction. For p --) 00 we get 
model reduction in the H,-norm. If the sequence a is a given data sequence 
(which is not an impulse response, but for instance a noise-corrupted one), 
one might consider this problem as a noisy realization problem. Rank- 
deficient (block-)Hankel matrices are the key issue in realization problems, 
which consist in modeling a given set of data by impulse responses from finite 
dimensional time-invariant linear systems. Applications occur in system iden- 
tification, modal analysis, biomedical signal processing (such as NMR), etc. 

The “classical” realization algorithms such as [21] use the SVD to find a 
rank-deficient approximation to a full rank Hankel matrix. But the approxima- 
tion itself does not have the required structure. 

Attempts have been made to restore the structure by finding the closest 
Hankel matrix (in Frobenius norm) to the rank-deficient approximation 
(which is simply obtained by replacing the antidiagonals by the average of 
their elements). However, this new Hankel matrix is no longer rank-deficient. 
One then iterates by again computing the truncated SVD and again obtaining 
the closest Hankel matrix, etc. It can be shown that this process converges 
[4,5], but we will show with an example in Section 6.3 that the solution does 
not satisfy any H, optimahty condition. 

Another approach is developed by Abatzoglou et al. [l], where the matrix 
structure is taken into account by parametrizing it with (0,l) matrices as Fh, 

where F contains only 0 and 1 and Fh is the Hankel matrix formed with the 
elements of the vector h. Then a gradient-based minimization approach is 
derived to solve an equation which is similar to our Equation (30). 

The Lagrangian function is _Y(b, y, I> = Er2t-‘(ai - bi)’ + ZtBy + 

A( yt y - 1) with B Hankel. Setting all derivatives to zero results in the set of 
equations (a convolution is denoted by *) 

a -b = l*y, 
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which means that 

a, - b, = 1, y,, 

a2 - b2 = 4Y2 + l2YD 

a3 - b3 = 4Y3 + l2Y2 + l3Y1, 

183 

and 

~~+~-l - bp+q-l = l,y,, 

Btl = yh, yty = 1, By = 0. 

Note that we have 2p + 29 + 1 unknowns (the elements of b, 1, y, and A) 

and exactly 2 p + 2 9 + 1 equations. The first equation is a convolution which 

represents p + 9 equations. It is straightforward to find that A = 0 because 

lfBy = A = 0. Let B be the p X (9 + 1) Hankel matrix formed with the 

elements of b. Then 

x 

Yl Yz 

0 Yl 

0 0 

0 0 

Yq 0 

Yq-1 Yq 

Yz Y3 

lp-2 q-1 

1 
p-1 1, 

1, O 

0 0 

. . . 
Y9 

. . . 
Y9-1 

. . . 
Y9-: 

. . . 
Yl 

. . . 0 

. . . 0 

. . . 0 

1, 0 -0. 0 0 0 

0 0 *** 0 0 I, 

(24) 
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which means that the difference A - B is the product of a Hankel and a 
Toeplitz matrix (note the “circulant” structure in both matrices). 

A useful property of this factorization, when it is postmultiplied with a 
vector z, is illustrated here for the case p = 4, 9 = 3: 

(zl 1, 1, I, 0 0’ 
1, I, 1, 0 0 I, 

1, I, 0 0 1, 1, 

1, 0 0 I, 1, I, 

Yl Yz Y: 
0 Yl Yr 
0 0 Yl 
0 0 0 
Y3 0 0 

Yz Y3 0 

(20 Zl 22 0 0 0 

0 z. 21 z2 0 0 
= 

0 0 20 21 z2 0 

\ 0 0 0 20 z1 z2 

= T,T;l, 

I 
\ 

I 
\ 

20 Ii 21 
22 

0 0 0 Yl 
Y2 Yl 0 0 

Y3 Y2 Yl 0 

0 Y3 Y2 Yl 

0 0 Y3 Y2 

0 0 0 Y3 

\ 

I 

\’ 
J 

4 
12 

I3 

4, 

(25) 

where T, and Ty are banded Toeplitz matrices with the elements of z and y. 
It shows that the Hankel-Toeplitz vector product is converted into a 
Toeplitz-Toeplitz vector product. We now use this property to eliminate the 
matrix B. Postmultiplying A - B with y results in Ay = D,Z, where D, is 
p X p banded symmetric positive definite Toeplitz of the form D = TyTi. 
Hence, its elements are quadratic functions of the components o ? y. Simi- 
larly, we find by postmultiplying A’ - B t with 1 that A’1 = D, y, where D, is 
a 9 x 9 symmetric positive definite Toeplitz matrix of a form generated in 
the same way from the elements of 1 as D, from the elements of y: 
Dl = T,T:. If we normalize 1 so that Z/l1111 = x and 11111 = u, we have exactly 
the equations as in (7). 

If we are given a linear system of order n and we want to approximate it 
by one of order 9 < n (model reduction), the algorithm proposed in this 
paper can be converted via the z-transform to a z-domain iteration. Details 
and additional references can be found in [ll]. 

One might also consider to minimize the Frobenius norm (IA - B11: 
where both A and B are Hankel, subject to By = 0 and y t y = 1. For 
p + CO and 9 + a~ this is called the Hilbert-Schmidt-Hankel norm, and it has 
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some very interesting features (see [19]). For this object function, one can 
show that the equations as in (7) are obtained with 

D, = T,WT,t , 

(26) 
D, = T,,WT;. 

Here, T, and Ty are band Toeplitz matrices as in (25), while W is a diagonal 
weighting matrix which takes into account the relative frequency of the 
elements in the Hankel structure: 

It is straightforward to show that the ortbogonality property now becomes 

(u - b)tw-‘b = 0. 

4.6. System Iakntijkation 
If a dynamic time-invariant linear system with one input and one output 

has 9 poles and r zeros, its inputs uk and outputs yk will be related by 

Yl Yz *** yq Ul u2 **- u, 

Y!2 Y3 **- Yq+1 UT2 u3 -** u r+1 

Y3 Y4 *** yL7+2 u3 u4 *-* u,+2 

. * . . 

. . . . 

. . . . 

YP Yp+l *** Yp+q-1 up up+1 **. Up+r-1 

/ 
a1 

a2 

. . . 

% 

Pl 

P2 

. . . 

\ I% 

= 0. 

Here, the coefficients oi and pi are the coefficients of the transfer function 
of the system. The data matrix here is a concatenation of two Hankel 
matrices. We assume that p > 9 + r. 

When the input-output data are obtained from measurements, they will 
be corrupted by noise. The noise variance can vary greatly, as the magnitude 
of the signals can range over several orders of magnitude. Also, some of the 
elements of the input sequence might be known a priori to be equal to zero. 
If, for instance, 9 = 1 and r > 2, the sequence pj is a finite impulse 
response, and part of the input sequence (when starting up from initial 
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conditions zero for instance) might be zero. Another possibility is that certain 
elements of the input-output sequence might be missing due to unreliable 
sensor readings. 

In all these cases the double Hankel data matrix will not be rank- 
deficient, and one could try to approximate the given double Hankel data 
matrix by a rank-deficient one, replacing the measured yk by a sequence zk 
and & by a sequence tk. This can be formulated as an approximation 
problem: 

p+4-1 p+r-1 

min Zk,tk, ui, B, kF:, ( yk - zk)2wk + c (“k - tk)2’-k 
k=l 

subject to 

~a + Tb = 0 and .‘u + b’b = 1. 

Here wk and rk are user-defined weights, and Z and T are Hankel matrices 
generated from the sequences zk and tk. The vectors a and b contain the 
elements (Yi and @. we will ahO Use uk = I/wk, sk = I/rk. 

Instead of wor h ng out the general result in full detail, it suffices to 
consider a particular example, where p = 4, 4 = 3, r = 2. Let I be a vector 
of Lagrange multipliers associated with Zu + Tb = 0. Then we find, by 
setting the derivatives of the Lagrangian to zero, 

Yl - 21 = Ul(bA Ul - t, = Sl(Zl Pl), 

Y2 - 22 = uz(b2 + Z2a,)7 u2 - t, = sz(h P2 + 22 PI)? 

y3 - 23 = u3(Z,(Y3 + z,cf, + l,q), u3 - t3 = ‘3(‘2P2 + ‘3&), 

y4 - 24 = u4(z2a3 + z3a2 + z4a,), u4 - t, = s4(13 P2 + I4 PI) I 

y5 - % = u5(z3a3 + z4a2), us - t, = %( I4 P2) ’ 

y6 - t6 = u6(z4a3). 

Observe that the difference sequences yk - zk and uk - tk are both ob- 
tained from “weighted” convolutions of the sequence I, with the sequences 
(Y( and pj. It can also be shown that the Lagrange multiplier associated with 
the constraint utu + btb = 1 must be zero. 
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Next we eliminate zk and t, using Zu + Tb = 0. Let Y and U be 
Hankel matrices with the outputs and inputs. Then we find 

du + btb = 1, 

where D, is a positive definite matrix obtained as D, = T,VTat and D, = 

TbSTbf. Here T, and Tb are band Toeplitz matrices as in (25), and V = 
diag(y), S = diag(sJ. Note that we can take (some or all of) the si zero if 
(some or all of) the inputs are noise-free. The matrices 0; and D/’ are 
defined similarly. 

Let us conclude by pointing out that when the data are generated by an 
exact linear time-invariant system, but corrupted by additive white noise 
which is zero mean normally distributed, the STLS method here will also 
provide the maximum likelihood estimates. 

4.7. Approximation by a Rank-Deficient Toeplitz Matrix 

Let A E lRPxP be a symmetric Toeplitz matrix with elements a,, i= 

1 . . > p of full rank p. Minimizing Cr’,(a, - bJ2 subject to By = 0 and 
y’i = 1, where also B E lwPxP f 1s required to be symmetric Toeplitz, leads 
to a similar generalized matrix decomposition to that in Theorem 1. Because 
of the symmetry in the problem, the normalized vector of Lagrange multipli- 
ers x will be equal to y, and hence the generalized SVD problem reduces to 
a generalized symmetric eigenvalue problem of the form 

Ax = D,ra, xtx = 1, 

where the matrix D, is positive definite. It has a spectral structure which is 
illustrated here for the case p = 6: 

Xl x2 x3 x4 x5 X6 

x2 Xl + x3 x4 ‘5 1c6 0 

D, = x3 x2 + x4 Xl + x5 X6 0 0 

x4 x3 + x5 x2 + X6 x1 0 0 

x (-)‘. 

x5 ‘4 + ‘6 x3 x2 Xl 0 

‘6 x5 x4 x3 x2 Xl 

It can be seen that the left factor is Hankel + Toeplitz. A similar structure is 
obtained for every p. 
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Interestingly enough, it can be shown, using the results in [6], that the 
matrix D, will be rank-deficient. Since A and D, are symmetric Toeplitz 
matrices, it follows that the minimal eigenvector of Ax = D, XC will be 
highly structured. Indeed, the fact that each eigenvector of a symmetric 
Toeplitz matrix is either reciprocal (symmetric around its midpoint) or 
antireciprocal (skew-symmetric around its midpoint) can trivially be extended 
to our generalized symmetric Toeplitz eigenvalue problem. This structure 
implies the rank deficiency of D,, which is of rank p/2 for p even and rank 

(p k I)/2 for p odd. 

4.8. Giving a Matrix a Specified Singular Value 

Suppose we want to find a matrix B which is close to A such that B has 
a specified singular value /?. This can be formulated as 

min i i (aij - bij)2wij 
BERPXq,UEIWP,VEIWqi=lj=l 

subject to Bu = up, Btu = u/3, utu = 1, 

where wij are user-defined weights. Here u and u are singular vectors 
corresponding to the singular value P (it is easy to show that utu = u% 
always). Introducing Lagrange multiplier vectors 1 E R P and k E [wq results 
in the set of equations 

(aij - bii)wij = Zivj + kju,, B? = kfl, --Z/3 + Bk = uh, 

Bu = u/3, B’u = up, utu = 1. 

After some manipulation, one can show that h = 0, 1 = u, and v = k, so that 
the nonlinear generalized SVD problem becomes 

where D, = diag(V t diag(u)u) and D, = diag(V diag(u) v). The matrix B 

can be reconstructed as B = A - diag(u) V diag(u) u. Note that if V is a 
matrix consisting of all ones, the answer is basically given in terms of the SVD 
of A. As with the rank-deficient case (where p = 0), there is not always a 
solution. 

4.9. The Largest Stability Radius of an Uncertain Linear System 

The following type of problem occurs in the determination of the mini- 
mum distance to instability, or parameter margin, for linear time-invariant 
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systems that are subject to rational variations of certain parameters: Consider 
a linear time-invariant closed-loop system of order 9 with i = F(r)x, where 
x E [w9 is the state and F(r) E LQ9’9 is a rational matrix function of a 
parameter vector r of size n. Then the two parameter margin R,(M, r) of 
F(r) is defined as 

R,( M, r) = $g {IlrLldet[ 1, + MA(~)] = O} (27) 

with 

A(r) = blockdiag[ riZ,vl ... r, IN”], 

Here M is a constant real N X N matrix which is constructed from the 
entries of the matrix F(r), and the dimensions Ni of the blocks of the 
block-diagonal matrix A(r) add up to N. Full details can be found in [ 131 and 
the references there. 

In general, the s-parameter margin for the system i = F(r)x is defined 
as 

R,(F) = miiV {llrllsl F( r) is unstable}. 

In Doyle’s p-analysis, the singularity constraint is expressed as det[jwZ - 
F(r)] = 0, where o is the frequency. In order to solve this problem, a 
frequency sweep is required. The pitfall with Doyle’s ZJ is that the problem is 
not continuous in the input data r when these are real. However, for many 
robust stability problems, the singularity constraint can be written as a 
singularity constraint on a real, frequency-independent matrix, which reduces 
to the formulation as in (27). In [13] th’ p bl is ro em is solved for two parame- 
ters (n = 2) in the &-norm, but our technique will work for any number n of 
parameters. 

Obviously, (27) is a special case of the following problem: 

subject to t/y = 1, 

where the two constraints express the rank deficiency of B = B, + CT= 1 B, bi 
(the matrices Bi are not necessarily square, but in the stability radius 
problem they are). It is straightforward to convert this problem to (7) in 
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which 

D, = 5 (BkYPkYL 
k=l 

and A = - B,. Obviously, D, and D, are nonnegative (or positive) definite 
matrices. 

5. AN ALGORITHM 

We now present an algorithm to solve the set of nonlinear equations (7) 
[with some slight modifications, this algorithm can solve (8) instead]. The 
iteration number is indexed between square brackets. 

We will use the QR decomposition of A: 

A= Ql (._ 
Pxq 

(28) 

We can decompose I = xu as 1 = Qiz + Qaw for certain vectors z and w. 
From (7) we find t 0 

Q;zyQl Q:i,u, 0 (29) 
Q:D,Ql Q:DrQs -R 

A possible algorithm to calculate the smallest eigenvalue and correspond- 
ing eigenvector of a symmetric matrix is by inverse iteration. Instead however 
of calculating the minimal eigenvalue in each step, we could also perform 
only one step of an inverse iteration scheme and then update the weighting 
matrices D, and D,. (A variation of this algorithm could be to perform t > 1 
steps of inverse iteration with fixed D, and Dy . However, here we will only 
use t = 1.) This is achieved in the following iteration, which is just an 
iterative way of solving Equation (29).4 

4As a matter of fact, there are several other possibilities for solving this set of equations 

iteratively (e.g. Gauss-Seidel-like or SOR-like variants), but we only analyse one particular 
version here. 
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INWR~E rr~~4moN ALGORITHM. 

Initialization: Choose xt’i, yt’t, rri’i, and normalize Ilxiolll = 1, 11 y[‘]11 = 1. 

For k = 1 till convergence: 

4. Xlkl = xtk’/llx[k’ll. 

5. Y 
Ikl ik] = R-‘Q&-1,x . 

6. uIkl = 11 tklll. 

7. Y [kl = yl Y l/&l. 

8. Convergence test using xtkl, ytkl, ~[~i. 

As the numerical experiments below demonstrate, the convergence rate 
of this algorithm seems to be linear. Intuitively, this can be understood when 
we assume that 0, and D, are invertible. In that case, we can eliminate the 
vector x = D,‘Ay/a and write 

(kD;‘A)y = D,ycr', (30) 

which is a generalized eigenvalue problem in which the weights D, and D, 
are quadratic functions of the elements of x and y. If D, is invertible, we 
might even convert this generalized eigenvalue problem into a symmetric 
eigenvalue problem as 

T,,( D,'12y) = ( D;1’2AfD~1AD~1’2)(D~‘2y) = ( D:‘2tj)~2, 

where Oil2 is a symmetric square root of 0,. Note that TX9 is a symmetric 
positive definite matrix, which implies that all its eigenvalues are real positive. 
As we will see in the numerical examples below, D,JII and D 1~ 
rapidly to matrices that are approximately constant, which imp h 

converge 
es that also 

T, y is approximately constant, so that we are basically iterating with TiY1. 
This observation implies that, asymptotically, the convergence rate is 

linear and will be governed by the two leadin 
In particular, one can then show that with 5 v[ 

eigenvalues A, and A, of I’&‘. 
1 = Did? Y[~]// D,‘#~[~]ll, 
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Hence, the cosine of the angle between two iteration vectors decreases 
linearly. A natural convergence test is to monitor the difference between two 
consecutive iterates, as e.g. 11 ytkl - ytk- llll. 

Another implication is that log,, [ Q,,( BtkI) will decrease linearly as a 
function of the iteration number k, where BtkI = B, + Cy= rBibIkI with 
bi”l = ak - Xi%k y [kb[kl This provides an even better, though much more . 
expensive, convergence test. A good initial guess might be provided by the 
singular triplet corresponding to the smallest singular value of A. 

6. SOME NUMERICAL EXAMPLES 

All examples below were generated in MATLAB. 

6.1. Relative Error Total Least Squares 

Let A E R Pxq, and B be a rank-deficient approximation of it. The 
relative error rij for each element is defined as rij = laij - bijl/lbijl. This 
implies that laij - bijl/laijl = rij/(l + rij). If we now choose as weights in 
the problem (131, wij = l/afj, we are minimizing 

which for small relative errors is approximately equal to Zip_ iCy= rr;. As an 
example, consider the linear fit in two dimensions of a set of measurements, 
ranging over several order of magnitudes. Typically, the measurement errors 
are relative and not absolute, so that it is more meaningful to minimize the 
sum of squares of the relative errors than the sum of squares of the absolute 
errors. An example is shown in Figure 1. 

6.2. Total Least Squares with Fixed Elements 

Consider the matrix 

I1 2 3 4 

2 1 5 6 
A= 5 6 7 1 

2 3 5 8 
\5 3 2 1 



STRUCTURED TOTAL LEAST SQUARES 193 

800- 

0 100 200 300 400 500 600 700 800 900 loo0 

FIG. 1. The unadorned full line represents exact data. The asterisks are 50 noisy 
observations. Obviously, for large data values, the errors get large too. The dashed line 
is the weighted total least squares solution with wij = l/u: as weights, which 
approximately minimizes the sum of squared relative errors. The full line with circles 
is the unweighted TLS solution (which minimizes the sum of squares of absolute 
errors). Although it would be more meaningful to compare the null spaces instead of 
the ranges of the matrices A and B (see [lOI for an explanation), still, we see here 
clearly that the relative error fit is much better than the absolute error fit. 

and the four inverse weight matrices 

10 0 0 1 
0 0 0 1 

v,= 0 0 0 1 
0 0 0 1 

\o 0 0 1 

\ 

v, = 

I 

10 0 0 0’ 
0 0 0 0 

v,= 0 0 11, v, = 

0 0 1 1 
,o 0 1 1, 

0 0 1 1’ 
0 0 1 1 
0 0 11, 
0 0 1 1 
0 0 1 1) 

1 0 1 0’ 
0 1 0 1 
10 10. 
0 1 0 1 
1 0 1 oj 
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For the first three weighting matrices, a solution can be found with other 
algorithms as well. For instance, for V,, since we are only allowed to modify 
the last column, a simple least squares regression will do. For V,, one could 
use the approach described in [16], while for V,, the results in [7,9] apply.’ 
For the four cases, we used as initial vectors x0 = (1 1 1 1 1)’ and y,, = (1 
1 1 l)‘, and as a convergence criterion the test CQ(B[~]) < 10-13, where Btkl 
is the modified matrix at iteration k. For V,, the matrix 23 is found in two 
iterations as 

B= 

1.0000 2.0000 3.0000 2.4330 
2.0000 1.0000 5.0000 7.0258 
5.0000 6.0000 7.0000 3.9158 
2.0000 3.0000 5.0000 4.4731 
5.0000 3.0000 2.0000 -0.6019 

“For V,, we can also obtain the solution from the SVD of a Schur complement as follows: 

Let A be partitioned as according to the structure of Vs. Then we need to find D 

such that II A,, - Dl[i is minimized subject to 

(i:: %)(::) = 0 and y;yI+y;yz=l. 

Using vectors of Lagrange multipliers I, and Z,, one easily finds 

0. 

Observe that D is a rank one modification of A,. If A,, is square-invertible, we can eliminate 

YI and 11. Call@ ll~~ll= B, x = &/B, Ilyzll = a, y = yz/a. and CUB = CT, we find 

(A= - A,, &‘A,,) y = x(+ > xfx = 1, 

( A, - A,, A,‘A& = yu > y’y = 1, 

which implies that (x, cr, y) is a singular triplet of the Schur complement. The general solution 
when A,, is not square or not invertible is explored in [7,9]. 
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It is easy to verif>l that the last column is equal to A, Ai Az where A, 
contains the first three columns of A and A, is the fourth column of A. It 
follows from (14) that A - B is a rank one matrix. 

For V,, the approximating matrix I3 of rank 3 and the matrix R of 
Section 4.2 are found in 13 iterations as 

11 .OOOO 2.0000 3.4722 3.7987 
2.0000 1.0000 3.6830 6.5615 

B = 5.0000 6.0000 6.0947 1.3860 , 
2.0000 3.0000 5.9952 7.5757 

,5.0000 3.0000 2.9396 0.5994, 

’ -0.0128 0.4438 0 0’ 
0.0358 -1.2379 0 0 

R= 0.0246 -0.8509 0 0 , 
- 0.0270 0.9354 0 0 

\ -0.0255 0.8831 0 0) 

with corresponding triplets xt = ( -0.2190, 0.6107, 0.4198, -0.4615, 
-0.4357), (+ = 3.0996, and yt = (0.0189, -0.6539, 0.6957, -0.2966). It 
can be verified that (x, u, y> is the third singular triplet of A + R (and not 
the fourth). For V,, we find in 10 iterations 

/1.0000 2.0000 3.0000 4 .oooo 
2.0000 1.0000 5.0000 6.0000 

B = 5.0000 6.0000 5.0494 2.1037 
2.0000 3.0000 5.7907 7.5526 
5.0000 3.0000 3.9366 - 0.0958 

The same solution can be obtained via the SVD of the Schur complement. It 
follows from (14) that rank( A - B) = 2. 

For the checkerboard weighting matrix V,, 17 iterations were required to 
find the matrices B and R: 

(1.4482 2.0000 3.6558 4.0000 
2.0000 2.5895 5.0000 6.2960 

B = 5.0246 6.0000 7.0360 1.0000 
2.0000 2.2966 5.0000 7.8690 

\ 4.9885 3.0000 1.9832 1.0000 

R= 

0 1.1099 0 0.2067 \ 
0.6419 0 0.9392 0 

0 0.0610 0 0.0114 , 
- 0.2840 0 - 0.4156 0 

0 - 0.0284 0 -0.0053 / 
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with corresponding triplet x t = (- 0.5379, 0.7703, - 0.0296, - 0.3409, 
0.0138), cr = 2.5663, and yf = (0.3247, - 0.8040, 0.4751, - 0.1497), which 

is the fourth singular triplet of A + R. Convergence patterns for the 

checkerboard matrix V, are shown in Figure 2; the evolution of the compo- 

nents of ytk] is shown in Figure 3. 

6.3. Noisy Realization 

The noisy realization problem is to approximate a given sequence a by a 

sequence b such that the p X q Hankel matrix B with the elements of b is 

rank-deficient. This ensures that b is the impulse response of a system of 

order at most q - 1. 
We only present a small example here, mainly to show that the iteration 

proposed in [4] does not satisfy any of the optimahty properties of Theorem 

-Id " ” ” ' " 
0 2 4 6 6 IO II I4 I6 I6 II) 

-IS * ’ ’ ’ 
0 2 4 6 6 10 12 I4 I6 I6 a0 

FIG. 2. Convergence patterns (here for V, of Section 6.2, but they are typical for 
all examples in this paper). The x-axis contains the iteration k. The left plot is the 
logarithm of the singular values of the approximating matrix Brk] as a function of k, 
while the right plot contains the eigenvalues of T;Y’ as a function of k. The 
interpretation as an inverse power method allows us to estimate the asymptotic 
convergence rate, which will be governed by the largest two eigenvahres of the matrix 
T;Y’. As a consequence the smallest singular value of B ckl decreases linearly (at least 
asymptotically) with a slope determined by A[,“]/A[,“l. Observe that after five iterations 
we have already reached the asymptotic regime. Also note that the other singular 
values of Btkl are approximately constant, as would be the case in the unstructured 
inverse power method. 
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.,I 
0 2 4 6 8 IO 12 14 16 II a0 

FIG. 3. Evolution of the components of the vector yfkl as a function of the 

iteration number k for the checkerboard pattern V,. 

1. Consider the Hankel matrix: 

3 4 2 1 
4 2 1 5 

A= 2 1 5 6 
1 5 6 7 
5 6 7 1 
6 7 1 2) 

and its two rank-deficient approximants B,,, and BCadzow: 

3.4535 3.5356 2.0027 1.4871 

3.5356 2.0027 1.4871 4.0396 

B 2.0027 1.4871 4.0396 7.0785 = 
0”rS 1.4871 4.0396 7.0785 5.9951 

4.0396 7.0785 5.9951 1.7211 
7.0785 5.9951 1.7211 1.6138 

B Cadzow = 

(2.9449 3.2181 2.1356 1.6930 

3.2181 2.1356 1.6930 4.0012 
2.1356 1.6930 4.0012 7.0541 

1.6930 4.0012 7.0541 6.1020 
4.0012 7.0541 6.1020 1.5591 

j7.0541 6.1020 1.5591 1.6209 
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The norm we use here is the Frobenius norm of the Hankel matrices. Hence, 
in the nonlinear generalized SVD we use the weighting matrices D, and D, 
as in (26). Started up with the smallest singular triplet of A, our algorithm 
converges in 14 iterations, while Cadzow’s converges (also linearly) in 125 
iterations. We find however that [IA - Boursllr = 3.7614 < IIA - BcadzowllF 
= 3.8503. Moreover, our solution satisfies the orthogonality property (a - 

b,,,J * diag([l 2 3 4 4 4 3 2 11) * b,,,, = 0 (a and b,,,, are 9 X 1 vectors 
with the numbers of the Hankel matrices A and B,,,,), while Cadzow’s result 
doesn’t; hence the latter cannot be HZ-optimal. 

6.4. System Iahtijkation 
Data were generated by a discrete time fifth order linear system with 

transfer function 

0.0202~~ + 0.6844~~ - 0.6182~~ - 0.3996z2+ 0.36312 + 0.0580 
h(z) = z5 

- 1.1000.~~ - 0.5200~~ + 0.8360~~ + 0.39312 - 0.5206 

The input was generated as rounded Gaussian white noise of mean zero and 
variance 100 (round (lO*rand (100,l) )). The input and output were 
then corrupted by white noise with variance 25. We call the signals obtained 
in this way uk and yk, respectively, and their fits t, and zk; they are plotted 
in Figure 4. Models with 9 = r were fitted, where 9 ranged from 2 to 9. 

m 

IS 

10 

0 

-I 

-10 

-IS 

al 

2s 
0 I IO IS a0 75 30 3s 4) 45 so 0 3 IO IS ID 2.5 30 33 40 43 30 

FIG. 4. The original noiseless input is the full line in the left plot; the noiseless 
output is the full line in the right plot. The noise-corrupted versions are dashed lines. 
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This means that we have models from order 1 up to order 8. The number p 
of rows of the double block Hankel matrix was adapted from 57 to 50, so as 
to keep the number of data used in the identification constant (i.e. p + q - 

1 = 58). The starting vectors were always the left and right singular vectors 
corresponding to the smallest singular value of the p X (q + r) double 
Hankel matrix [Y VI. The misfit-versus-complexity tradeoff is illustrated in 
Table 1 and Figure 5. 

6.5. Symmdric Toeplitz Matrix 
Consider the L, approximation of the sequence a = (4, -9, 7, 4, 2, 4, 

- 8, 1, 3, 4, 4, 4, 5, - 7, 2, 0, 8, 4, 8, 5, 5, - 5, 3) by a sequence b such that 
the corresponding symmetric Toeplitz matrix B is rank-deficient. For this 
example, the set of equations becomes a “nonlinear” generalized eigenvalue 
problem of the form Ax = D, x CT (where we have to allow o to be negative). 
When the initial vector x0 = (1, 1, 1, . . . , l), the final vector x is (read from 
left to right): 

(5.6215~ - 02 1.0602E - 01 1.3074E - 01 1.7144E - 01 1.7480E - 01 

1.2414E - 01 5.8171E - 02 -4.707OE - 02 - 1.0742E - 01 -3.1512~ - 01 

-3.0844E - 01 -4%4OE - 01 -3.0844E - 01 -3.1512~ - 01 - 1.0742E - 01 

-3.9844~ - 01 -4%dOE - 01 -3.0844E - 01 -3.1512~ - 01 - 1.0742E - 01 

1.3074E - 01 1.0602E - 01 5.6215~ - 02). 

which is a symmetric vector (it is symmetric around its midpoint). The 
corresponding matrix D, is of rank 11. The value of (+ is -0.31411, and the 

TABLE 1 

Order 9 - 1 g8J(yi - ZiY + (Ui - tin 
39.8519 
37.1859 
36.2391 
26.8839 
25.5382 
23.3237 
21.6729 
17.8117 
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FIG. 5. The left plot shows the singular values of the double Hankel matrix with 
p = 50 and q = r = 9. Theoretically, there should be a gap in the singular spectrum. 
Without noise, the rank of the double Hankel matrix would be the rank of U (which is 
9) plus the order of the system (which is 5); see e.g. [22]. Hence the rank of the 
double Hankel matrix would be 14. Obviously, with noise there is no clear gap which 
would allow us to determine the order (which is needed in the SVD subspace 
algorithms for system identification in e.g. [25]). Th erefore, it makes sense to consider 
several models and evaluate them on the tradeoff between misfit and complexity. The 
right plot shows the output error, which is the difference between yk and zk for 
order 8 (full line) and order 1 (dashed line). Clearly, the misfit is smaller for the more 
complex model. 

approximating sequence b is 

(4.3141E + 00 -8.4158~ + 00 7.4642~ + 00 4.29lOE + 00 2.093OE + 00 

3.9055E + 00 -8.2423~ + 00 6.6583~ - 01 2.6373~ + 00 36655E + 00 

3.7333E + 00 3.8213~ + 00 4.9098E + 00 -7.0165~ + 00 2.0353~ + 00 

6.2470~ - 02 8.0678~ + 00 4.0602~ + 00 8.0459E + 00 5.0295E + 00 

5.1063E + 00 -4.99253 + 00 3.0020~ + 00). 

If however we take as an initial guess the right singular vector of A 

corresponding to the smallest singular value, we find for x 

(2.5312~ - 01 6.7382~ - 02 2.00923 - 01 -7.3734E - 02 -5.6324~ - 02 

-2.49553 - 01 -1.0956~ - 01 -3.8270~ - 01 -3.0173E - 01 -2.6237~ - 01 

-4.2434~ - 02 -2.12643 - 16 4.2434~ - 02 2.6237~ - 01 3.01733 - 01 

3.8720~ - 01 1.0956E - 01 2.4955~ - 01 5.6324~ - 02 7.37343 - 02 

-2.00923 - 01 -6.73823 - 02 -2.5312~ - Ol), 
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which is an antireciprocal vector (skew-symmetric around its midpoint). Here 
u = -0.37403, and the corresponding approximating sequence c (say) is 

(4.3740E + 00 -8.5377~ + 00 7.4489E + 00 4.099OE + 00 2.0225~ + 00 

3.7079E + 00 -8.3635~ + 00 5.1886~ - 01 2.5860~ + 00 3.6942E + 00 

3.7905E + 00 3.9767E + 00 5.0352~ + 00 -6.7883~ + 00 2.1559E + 00 

2.2477~ - 01 8.0795E + 00 4.1223~ + 00 7.9986E + 00 5.0077E + 00 

4.9205E + 00 -5.0255~ + 00 2.9521E + 00). 

We find that 

[Ia - bll = 1.1401 < [Ia - cl1 = 1.2146. 

This example illustrates an important point: There is no guarantee that the 

algorithm will find a global optimum upon convergence. In other words, the 
results may be dependent on the initial estimate. 

6.6. Giving a Matrix a Specified Singular Value 

Consider the matrix A with the inverse weight matrix V: 

’ 16 -15 1 -1 0 1 1 1 

A= ; 3 12 8 i V_ 1 1 1 10 
-8 13 11 

’ 

\13 3 -1 19 \l 1 0 11 

Suppose we want to assign a singular value p to A, by keeping its elements 
in positions (1, 11, (2,4), (3, l), and (4,3) fured, which is reflected by the 
zero-one structure of V. In Figure 6 we show some results on finding the 
closest matrix B which coincides with A on the zero support of V and which 
has a specified singular value /3 E [0,40]. The convergence behavior is shown 
in Figure 7. 

7. CONCLUSIONS 

While many of the problems we have discussed here have been consid- 
ered separately in the literature, it was not recognized that all of these 
problems reduce to our main result of Theorem 1, which is the major 
contribution of this paper. 
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FIG. 6. In both plots, the r-axis contains values of p E [0,40] with steps of 0.2. 
The left plot shows the singular values of the approximating matrix B. The right plot 
contains 11 A - B]lF after convergence. In both plots, the vertical dashed lines are at 
the positions of the singular values of A. For values of p smaller than CJ$ A), /? is the 
smallest singular value of B. Somewhere in between the fourth and third singular 
values of A, p becomes the third singular value of B. In between us3( A) and a,( A), 
it becomes the second, and for large values it is the dominant singular value of the 
approximation B. Observe that ]]A - BllF b ecomes zero when p hits a singular value 

of A. 

We have only presented one rude outline of an algorithm in this paper, 
and much more work needs to be done on possible refinements, accelera- 
tions, and proofs of (local) convergence. There are several other algorithms 
that have been considered to solve related problems such as NIPALS 
(nonlinear iterative partial least squares; see references in [15]), the Newton- 
method-based algorithm of [l], homotopy methods, etc. 

An expensive part of the inverse power algorithm is the explicit calcula- 
tion of the matrix Qs (especially if p gets large). One can however avoid it by 
applying an inverse iteration scheme to the nonlinear generalized eigenvalue 
problem (30), where a 9 X 9 matrix needs to be inverted in which the 
inverse of D, , which is p X p, appears. D however is in many cases a highly 
structured matrix. Therefore, clever acce erations are possible, such as e.g. r 
fast QR via displacement rank concepts. In the system identification example, 
one could exploit the special banded Toeplitz structure of the matrices D, 
and D, using the FFT. 

In the H, model reduction problem, for p --) ~0, we have discovered that 
all the signals involved in the iteration can be modeled as infinite impulse 
responses from rational transfer functions. Therefore, one can map the 
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FIG. 7. For each iteration, the initial vector rioI is the vector x obtained from 

the previous value of B. The left plot shows, as a function of /3, the number of 

iterations required to reach convergence (defined by llByl1 - pll < lo-010, where y 
is the right singular vector approximation). It can be seen that between each pair of 
singular values of A, there is a certain value of /3 for which the number of iterations 
gets large. For instance, between ~a( A) and or< A), for /3 = 26.8, 170 iterations are 

required to achieve convergence, even when a good initial estimate is available from 

the previous iteration. For a value of /3 which is a little bit smaller, say 26.6, /? would 

be the second singular value of B. However, for this value of p = 26.8, it becomes 

the first singular value of B. This magic switching moment is depicted in the right 

plot, where one finds the singular values of the approximating matrix B during the 

iteration for this value of /3 = 26.8, which is the dashed line. It can be seen that /3 

starts off being the second singular value, but then after approximately 100 iteration 

steps decides to become the first singular value. 

iterations to the z-domain using z-transforms and iterate in the z-domain. In 
this way, we get rid of the large number p (for details, see [ll]). There are 
some good acceleration techniques that could be used in connection with the 
power method (such as the use of Chebyshev polynomials (see e.g. [8]) or 
shifts (see e.g. [l71 or other techniques described in [24]). 

It is an open problem to assess the importance of the fact that 0, and 0, 
(or D, and Dy) are positive or nonnegative definite and what role this 
property plays in the convergence behavior of the algorithm. [If for instance 
the inverse weight matrix V contains negative elements, so that 

diag(V diag( y) y) is indefinite, there is no convergence at all.] Other issues to 
be investigated are order and data recursive updating, for instance in the 
identification application and in the errors-in-variables variant of the Kalman 
filter. 
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A final observation to be explored concerns the resemblance of our 
generalized nonlinear SVD problem to the nonlinear eigenvalue problems in 
[26], where the “total least” problem is analyzed for other norms (e.g. total 

least absolute value). 
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