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Abstract 

Mason, J.C., Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite 
integration, and integral transforms, Journal of Computational and Applied Mathematics 49 (1993) 169-178. 

Chebyshev polynomials of the third and fourth kinds, orthogonal with respect to (l+ x)‘/‘(l- x)-‘I* and 
(l- x)‘/*(l+ x)-‘/~, respectively, on [ - 1, 11, are less well known than traditional first- and second-kind 
polynomials. We therefore summarise basic properties of all four polynomials, and then show how some 
well-known properties of first-kind polynomials extend to cover second-, third- and fourth-kind polynomials. 
Specifically, we summarise a recent set of first-, second-, third- and fourth-kind results for near-minimax 
constrained approximation by series and interpolation criteria, then we give new uniform convergence results 
for the indefinite integration of functions weighted by (1 + x)-i/* or (1 - x)-l/* using third- or fourth-kind 
polynomial expansions, and finally we establish a set of logarithmically singular integral transforms for which 
weighted first-, second-, third- and fourth-kind polynomials are eigenfunctions. 

Keywords: Chebyshev polynomials; Jacobi polynomials; orthogonality; minimax approximation; near-minimax; 
constrained; expansion; interpolation; indefinite integration; integral transforms; singular; hypersingular 

1. Definitions and basic properties 

The Chebyshev polynomials T,(x), U,(x), V,(x) and W,(x) of the first, second, third and 
fourth kinds are defined, respectively, on [ - 1, l] according to the following trigonometric 
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formulae: 
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T,(X) = cos ne, u,(x) = 
sin(n + l)e 

sin 8 ’ 

cos(n + $)e sin(n + +)0 (1) 

Y%(x) = cos Le 9 Kc4 = 
2 sin ;e ’ 

where x = cos 8, 0 < 8 < r. 
The nomenclature of “third- and fourth-kind Chebyshev polynomials” appears to have been 

first used by Gautschi (e.g., [2]). Since sin 8 = (1 -x~)‘/~, cos i0 = [i(l +x)]‘/~, sin @ = [i(l 
-x)1 ‘12, it follows that T (xl, (1 -x~>‘/~U~(X), (1 +~>‘/~l/n(x), (1 -x)~/~W,(X) are propor- 
tional to cosine or sine fu;lctions in 8, namely cos ne, sin(n + i)e, cos(n + +>e, sin(n + +>e, 
each of which oscillates between precisely II + 1 extrema of equal magnitude. We may 
therefore deduce the following minimax property. 

Property 1.1 (minimax property). The polynomials 21-“7”(x>, 2-“U,(x), 2-“I/,(x) and 2-“W,(x) 
have the smallest Chebyshev norm (i.e., maximum magnitude) on [ - 1, l] amongst all manic 
polynomials weighted by 1, (1 -x~)‘/~, (1 +x)‘/~ and (1 -x)‘/~, respectively. 

The 4 polynomials are in fact Jacobi polynomials, orthogonal with respect to (1 - x)*(1 + xjp 
for (Y, p = f i according to the following property. 

Property 1.2 (orthogonality property). {T’(x)], {U,(x)], {Vk/k(x>}, {W,(x)) are orthogonal on 
[ - 1, l] with respect to (1 -x2)-112, (1 -x2)112, (1 +~)‘/~(l -x)-~/~, (1 -~)‘/~(l +x)-~‘~, 
respectively. 

We only have space to give a few of the formulae that hold 
particular, all four polynomials share the same recurrence relation 

P, = 23cP,_, -Pn-2, PO = 1, 

for these polynomials. In 

but with different starting polynomials pl, namely pl =x, 2x, 2x - 1, 2x + 1 for first, second, 
third and fourth kinds. It is also clear that the third- and fourth-kind polynomials are 
essentially the same polynomial, but viewed from different ends of the interval, and specifically 
it is readily seen that 

W,(x) = (- 1)“1/,( -x). (2) 

Hence, it is normally sufficient to establish properties for third-kind polynomials, and then 
deduce analogous properties for fourth kind (by replacing x by -xl. 

A key pair of formulae, for the third and fourth polynomials, establishes a strong link with 
first and second kinds: 

I+) = U-%+1(U), w,(x) = U2&)9 

where u = [i(l +x)]~/~ = cos $3 for x = cos 8. A further 
namely 

K(x) = T2,(4 U,(x) = $.-1U2n+l(U). 

(3) 
pair of formulae may be added to (3), 
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It is clear from these formulae and (3) that T,, U,, V, and W, together form all first- and 
second-kind polynomials in the new variable u (weighted by U-I in two cases). 

It is finally useful to give simple formulae for differentiation of suitably weighted polynomi- 
als, as follows: 

T,‘(x) = nU,-1(-q, [(l -X2)1’2u&)]‘= -n(l -X2)_““Tn(X), 

[(l +X)“2V,(X)]‘= (n + i)(l +X)-1’2w,(X), 

[(l -“)“‘W&)]’ = -(n + i)(l -X)-1’2v,(X). 

(4) 

2. Near-minimax constrained approximation 

The common minimax property (Property 1.1) suggests that a partial sum of a series 
expansion in weighted Chebyshev polynomials (of first, second, third or fourth kind) should be 
close to a minimax weighted polynomial approximation, and a similar property should hold for 
interpolation at Chebyshev polynomial zeros. Indeed, in [6], a set of such results is obtained, 
which extend existing results for first-kind Chebyshev polynomials. Any projection P,, of a 
function f in a space F onto a polynomial of degree y2 satisfies 

where B, is the (nonlinear) best minimax approximation operator, and P, f may therefore be 
described as near-minimax within a relative distance (1 P,, 11 m. The latter constant is thus 
important in measuring a bound on the distance from BJ. 

Mason and Elliott [6] define series projections S(l), Sc2), Sc3) and Sc4) from spaces C[ - 1, 11, 
C, 1[ - 1, 11, C_,[ - 1, l] and C,[ - 1, l] to partial sums of degree it of expansions in {T’(x)}, 
{(~-~~>~/~U,_r(x>}, {(l +x>~/~V~(X>} and {(l -x)‘/~~+‘~(x)}, respectively. Here C,,,,,,.[-1, l] 
denotes continuous functions vanishing at a, b, . . . . They also define analogous projections 
L(l), Lc2), L3) and L (4) by interpolation at zeros of T,,+l(x>, Untl(x), V,+,(x) and W,+,(x), 
respectively. They then show that all eight projection norms are apparently asymptotically 
proportional to log n; in some cases the behaviour is only demonstrated numerically, but a 
formula for the projection norm is obtained in all cases. The numerical values of all projection 
norms are less than 5 for all n < 500, and so the corresponding approximations may justifiably 
be described as “near-minimax”. 

3. Indefinite integration by third- and fourth-kind polynomials 

Consider the determination of the indefinite integral 

h(x) = /;,‘l +x)-~‘~~(x) dx, (5) 

where f is a given function and the integrand is square integrable. Similar integrals were 
determined in [5] for weights 1 and (1 -x2>- ‘I2 (in place of (1 +x)-‘/~), using Chebyshev 
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polynomials of the first and second kind, and we adopt an analogous approach for (5) using 
third- and fourth-kind polynomials. Precisely the same approach can also be adopted for the 
weight (1 -x)- , ‘I2 but with x replaced by -x, and with third- and fourth-kind polynomials 
interchanged. 

Suppose that f, is the polynomial of degree y1 obtained as a partial sum of the expansion of 
f in fourth-kind Chebyshev polynomials 

(6) 
k=O 

where 

c, = ;/_‘,(1 -+*(l +X)+*f(X)Wk(X) dx, 

and define 

h,(x) = jl;t(l +X)-~‘*&(X) dx. 

Then, from (41, (6), 

(7) 

h,(x) = kcoC,(k + +)-‘(I ++*&(x). (8) 

Thus, an approximation h, to h has been determined explicitly and simply. From cl), (5) and 
(81, setting x = cos 0, 0 G 8 <n, 

h(x) -h,(x) = /_“1[(1 +x)-‘/*f(x) - 5 c,(l +x)-“*&_(x)] dx 
k=O 

= ,“I 2l/* sin $3 f(cos 0) - i 2l/*C, sin(k + ;)0 de. 1 
Je 1 k=O 

n I 
= 2/n’* g(4) - c 2l’*Ck sin(2k + l)$ d+, (9) 

0 k=O 

where g(4) = 2l/* sin q5 f(cos 24). Now, if we form the natural extension of g(4) to [-T, 7~1 

of 4, by defining it to be even about 4 = +-IT and odd about 4 = 0, then g(4) has a Fourier 
series expansion in 4 with terms only in sin(2k + 1)4. 

Hence, the right-hand side of (9) is the L, norm of the error in the Fourier partial sum of an 
L, function, and this tends to zero with y1 (since such a series is L, convergent and hence L, 
convergent). Thus, 11 h - h, II m + 0, as IZ + a, and the approximation method is uniformly 
comer-gent. We have therefore proved the following theorem. 
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Theorem 3.1. The indefinite integral from - 1 to x of (1 + xl- ‘I2 times the partial sum of the 
Rvpansion of f(x) in Chebyshev series of the fourth kind converges uniformly to the indefinite 
integral of (1 + x)-l12f(x), provided the latter function is L, integrable. 

We note that the coefficients C, in (6), which are Fourier series coefficients of g(4), may be 
determined by a fast Fourier transform technique. Alternatively, we can expect to obtain 
comparably accurate results by using, in place of f,, the polynomial which interpolates f in the 
zeros of Wn+,(x>. This can be rapidly determined by a discrete Fourier transform technique. 

In the special case in which f(x) is a manic polynomial of degree IZ + 1, h - h, is a constant 
multiple of 

(1 +x)1’2v,+1(x). 

From Property 1.1 this is a minimax approximation to zero, and hence the integration method 
is optimal in this case. 

4. Integral transforms 

4.1. Hilbert- type kernels 

It is well known that the Chebyshev polynomials of first and second kinds are integral 
transforms of each other with respect to weighted Hilbert kernels, as follows: 

f’,cl -x2)-1’2gdx = rU,_,(y), 

f_‘,(l -x2)1/2 ‘;-!;) dx = -nT,(y). (11) 

Here the integral f is to be interpreted as a Cauchy principal value integral. These two 
formulae correspond, under the transformation x = cos 8, y = cos 4 to the trigonometric 
formulae 

f 

* cos ntI sin n4 

f 

T sin no sin 0 
de=np 

0 cos 8 - cos 4 sin 4 ’ 0 cos 8 - cos 4 
d0 = -T cos n$, 

which may readily be proved by induction. 
It is further known (see, e.g., [l]) that the third- and fourth-kind polynomials are similarly 

related: 

f;j ei”i 

j-;l( E)l” zdx = -TV&). 

(12) 

(13) 

Note that (lo)-(13) all adopt a Hilbert kernel with a weight function, and that the latter weight 
is precisely that with respect to which the left-hand side Chebyshev polynomial system is 
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orthogonal. The formulae (12) and (13) are easily obtained from (10) and (11) by using (3). For 
example, setting x = 2u2 - 1 and y = 2v2 - 1, where u = cos @ and u = cos i$, 

j-;1(~)“2~dx=~(l_f2)lii 2;+_$)2,, 

= fj-;l(l - u*)-~~*T~~+~(u)( --& + &) du 

= j-)1 - u*)-~‘* ‘;y;’ du 7 WY,,(U), by (lo), 

= rw,( Y). 

The four formulae (lo)-(13) suggest obvious orthogonal expansion techniques for obtaining 
Hilbert-type transforms for “arbitrary” functions. Indeed, provided all relevant expansions are 
convergent, we may link f and g by Chebyshev series expansions, as follows. 

(i) If 

k=l k=l 

then 

f_l,‘l -x2)-‘/‘zdx =g(y). 

(ii) If 

f@) - ii bkUk-l(X) and g(Y) - r 2 bkTk(y), 
k=l k=l 

then 

f-l,‘1 -x2)1’2gdx = -g(y). 

(iii) If 

k=O k=O 

then 

f:,( E)“*zdx =g(y). 

(iv) If 

(14) 

(15) 

(16) 

ftx) - kcodkwk(x) and g(y) NT ii dkVk(y), 
k=O 
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then 

jy:l( t,:i”‘Edx = -g(y). (17) 

These provide us with procedures for determining, in principle, either g(y) from f(x) or f(x) 
from g(y). 

For practical implementation the given function f(x) may be replaced by the partial sum of 
degree II of the relevant expansion, and g(y) may then be defined similarly. Alternatively, the 
polynomial of degree IZ interpolating at the zeros of the relevant Chebyshev polynomial of 
degree y1+ 1 may be adopted and expressed in the form of a sum of Chebyshev polynomials. 
Analogous procedures may be adopted if g(y) is the given function. 

4.2. Logarithmic kernels 

If the formulae (lo)-(13) are integrated with respect to y, then new results, also linking 
Chebyshev polynomials, are obtained. 

Theorem 4.1. The integral equation 

/’ (1 -x2)-“‘c$(x)K(x, Y) dx =W(y) 
-1 

(18) 

has the following eigensolutions C/I and corresponding eigenvalues h for the following kernels K: 

(9 

(ii) 

(iii) 

(iv) 

-?r 
4(x> = TM A=--- 

II ’ 

K=K,(x, Y)=loglx-Yl7 

4(x) = (1 -x2)“2u,_,(x), *=Z 
n’ 

K=K,(x, y)=log~x-y~-log/l-xy-(1-x2)1’2(l-Y2)1’21~ 

(b(x) = (1 +x)l’zv,(x), 

K=K,(x, y)=log]x-y] 

4(x) = (1 -x)1’2W,(x), 

K=K,(x, y)=log]x-y] 

*=L 
n+$’ 

-log~2+x+y-2(1+x)“2(1+y)“2(, 

*=a 
n++’ 

- log12 -x -y - 2(1 -x)1’2(1 -y)lq. 

Proof. (i) Integrating (10) with respect to y from - 1 to y gives (18) for 4 = T,(x), once we 
have observed that the values at - 1 match each other exactly. This result is well known, see [3, 
p.3371, for example. (The order of integration may be reversed, if the integrals are regarded in 
a Lebesgue sense.) 
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(ii) Multiplying (11) by (1 -~~)-l/~, and integrating from - 1 to y, using (41, we deduce (18) 
for 4(x> = (1 -x~)‘/~U,_,(X) with A = v/n and 

K(x, y) = (1 -~~)~‘~frl(l -Y~)-~‘~(x -y)-’ dy. 

Writing x = cos 24, y = cos 2$, we may deduce after some algebra that 

= log 
X-Y 

1 -xy - (1 -x2)1’2(1 -y2)1’2 
=K,(x, Y). 

(iii) Multiplying (12) by (1 +y)-l12, and integrating, using (4), we deduce (18) for 4(x> = 
(1 +x>~/~V,(X) with h = r/(n + i) and 

f 

U 2u 
= ~dv=log~~~=log~U2~~~~~uv~ 

0 u2-v2 

= log 
2 +x +y + 2(1 +x)1’2(1 +y)1’2 

X-Y 

= log 
X-Y 

2+x+y-2(1+x)“2(1+y)“2 
=&(x3 Y). 

(iv) follows similarly. 0 

Note that K,(x, y> has not only a (log) singularity on the line x = y, but also two additional 
point (log) singularities at x =y = + 1. 

Note also that K&x, y) has not only a (log) singularity on the line x = y, but also an 
additional point (log) singularity at x = y = - 1, while K, is similar but has its additional point 
singularity at x = y = + 1. 

The results (i)-(iv) of Theorem 4.1 suggest an obvious orthogonal expansion technique for 
obtaining log-type transforms of “arbitrary” functions. Again, provided that all of the relevant 
expansions converge, we may link f and g by formal Chebyshev series expansions, as follows. 

Corollary 4.2. (i> If 

f(x) N 2 %&c(x) and g(y) 
m %J,(Y) 

--TX 
k=l k=l 

k 7 

then 

/’ (1 -~‘)-~‘~f(x)K~(x, y) dx =g(y). 
-1 
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(ii) If 

m wL1(Y) 
and g(y) ~(1 -Y’)~‘~ c 

k=l k=l 

k , 

then 

lIlf(x)K,(x, Y) dx =gW 

(iii) If 

m ‘k’kb) 

fb) - ki?ockvk(x) and g(y) N + +y)1’2 k;. k + 1 ’ 
2 

then 

/’ (1 -x)-““f(x)&(x, Y) dx =g(y). 
-1 

64 If 
cc 

f(x) N k~od,W,(x) 
m dkWk(y) 

and g(Y) - r(l -Y)1’2 c 
k=O k++ ’ 

then 

/’ (1 +X)-1’2f(X)&(X, Y) dx =g(y>. 
-1 

As in Section 4.1, for a practical implementation, each of the series (in Corollary 4.2) may be 
replaced by an appropriate series partial sum, or alternatively f (or g) may be replaced by that 
Chebyshev sum (i.e., polynomial) of degree n which interpolates f (or g) at the zeros of the 
corresponding Chebyshev polynomial. Precisely the latter approach has been adopted in [7]. 

4.3. Hypersingular equations 

We may also obtain a set of results by differentiating (lo)-(13), after premultiplying by 
(1 - yY2, 1, (1 - y)l’2, (1 + y)l’2, respectively. However, these do not give simple kernels, 
except in the second-kind case, where we obtain 

f,(l --x2)“’ ~~~~ dx = -rnU,_,(y). 

Moreover, if 

f(x) N k+k”k-I(X)~ g(y) - --7F g k”kuk-l(y), 
k=l 

then 

fl,(l -x2)“’ (;lX1))2dX =g(y). 

(19) 

(20) 
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The integrals in (19) and (20) are to be interpreted as Hadamard finite-part integrals. 
For a practical implementation we may again replace each series by a partial series sum or by 

a Chebyshev sum which interpolates in Chebyshev zeros. Indeed, in [S], such an approach is 
successfully adopted. 

Appendix 

After completion of the paper, we noticed that result (ii) of Theorem 4.1 appears in a 
modified form as [4, equation (4.711 where also (19) is quoted. (However, results (iii) and (iv) of 
Theorem 4.1 remain original.) 
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