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Abstract

In the chiral quark soliton model the smallnessat width is due to the cancellation of the coupling constants which are

of different order inN.. We show that taking properly into account the flavor structure of relevant SU(3) representations for

arbitrary number of colors enhances the nonleading term by an additional fa¢fgr wiaking the cancellation consistent with
the N, counting. Moreover, we show that, for the same rea&phwidth is suppressed by a group-theoretical facdt/N,.)
with respect tad and discuss th&, dependence of the phase space factors for these two decays.

0 2004 Published by Elsevier B.W@pen access under CC BY license,
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1. Introduction

However, the most striking experimental result is
perhaps a very small widthy+ which is estimated to

Recently five experiments announced discovery be of the order of a few tens MeV or less [1]. Such

of a narrow, exotic baryonic state called™ [1].
Most probably this state belongs to the positive parity
baryon antidecuplet, which naturally emerges in chiral
soliton models [2—4]. Early prediction of its mass [3]
obtained in the Skyrme model [5] extended to three
flavors [6] is in surprising agreement with the present
experimental findings. Moreover, if the discovery
of the heaviest members of the antidecuplgt,,,
announced by NA49 Collaboration [7] at 1860 MeV
is confirmed, again the same model will be off only by
70 MeV [3].
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a narrow width was predicted in a seminal paper by
Diakonov, Petrov and Polyakov [4] within the SU(3)
chiral quark soliton model{QSM). The smallness of
I+ in this model is due to the cancellation of the
coupling constants which enter the collective decay
operator. It is, however, at first sight to some extent
unnatural that the cancellation occurs between the
constants which are of different order in the number of
colors, N,. If only the leading term were retained, the
width of ®* would be of the same order &%, [4,8].

In this Letter we show that in fact this cancellation
occurs order by order iv.. This is due to the fact that
the additional factor ofV,. appears when one properly
takes into account the SU(3) flavor representation
content of the lowest lying baryonic states. Indeed, for
arbitrary number of colors, baryons do not fall into
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Fig. 1. Generalizations of octet, antidecuplet and decuplet for I&¢geBold dots and circles denote physical states, squares and dots at the
bottom denote spurious states which disappear in the dimit 1.

ordinary flavor octet, decuplet and antidecuplet, but Note that under the action of left (flavor) generators
are members of large SU(3) representations [9-11], T, = —Dé?,)fﬁ ¥y transforms like a tensor in repre-
Wh"_:h fequce to the standard oqes only for = 3. sentatiorfk, while under the rightgeneratof§ like a
Taking this extraN. dependence into account makes . ... inR* rather thark
the SU(3) CI_ebsch—Gordan coefflt_:lents depend/pn For N, = 3 Yg = —1 and the lowest allowed SU(3)
We also find that group-theoretical factors suppress
I+ with respecttd’s. This suppression is, however,
“undone” by the phase space factor, which scales
differently with N, in the chiral limit.

representations are those of triality zero: 8,10, 27,
etc. In largeN, limit, however, these representations
are generalized in the following way [9,10] (other
possible choices are discussed in Ref. [11]):

i i “8" = (1’ CI), “10" = (3’ q - 1)’

Both in the Skyrme model [5,6] and in theQSM where
[12,13] baryons emerge as rotational states of the N,.—1
symmetric top which rotates in the SU(3) collective ¢ =% (3)
space [3,6]. This rotation is described in terms of a
rotational SU(3) matrixA(¢). Baryonic wave func-
tions [4,6,13,14] are given as SU(3) Wignﬁgi)(A)
matrices:

R
Vis' () = V.5 (4) For | tations like (2) physical flavor stat
: o or large representations like (2) physical flavor states
= (5)25y/dimR) D" (A). @) have hypercharge different from the one in the real
In this notationB = (Y, I, I3) with Y being hyper- world, however isospin, charge and strangeness take

charge,/ and/s isospin and its third component. Left the physical values. This is depicted in Fig. 1.

index S = (Yg = —N,/3,S,83) and J = (=Yg = Baryon masses are given in terms of the effective
N./3, S, —S3) is a state conjugate t§. The fact that ~ Hamiltonian

the right index runs only over the SU(2) subspace of
the SU(3) representatiocR follows from the form of

Note that in this notation anti-ten is not a conjugate
of decuplet, neither is an octet selfadjoint. Therefore
we shall denote a complex conjugate by.a

R*=(p.q¢)"=(q.p). 4)

1
M=M —S(S+1
so|‘|‘2[1 $S+1

the hedgehog ansatz for the static soliton field and the N2
Wess—Zumino term [6,151) s is the charge of statg. + TR (Cz(R) —S(S+1) - 1_;)
2

—_— _ 2 2 .
2 The derivation leading to Eq. (1) can be found in Appendix A whereC2(R) = (p° + 4+ pq +3(p +¢))/3 is the

of Ref. [14] and follows closely the unpublished notes of P.v. Casimir opergtor for repr_esenta.tidh = (p,q) .and
Pobylitsa. Mso = O(N,) is the classical soliton mass. It is easy
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to convince oneself that in the chiral limit nonexotic final spin and isospin [4]:
splittings scale likeD(1/N.) while exotic—honexotic 1

like ©(1), e.g.: M3 =
(b e 5= @Iy + @S5+ D)
A 2
My — My N@(i) x Y Y (B Sp3lOcIB, Ss3)|”. (9)
NL‘ 133,SB3 13/3,53/3
Mo — My~ O(1). ®) Coupling constantsG; are related to the axial-
The fact that® — N mass difference is of the order VECtor couplings by a Goldberger-Treiman relation
of 1 was used to argue that the rigid-rotor quantization @nd scale differently witiv..:
of the 'chlral §ol|ton is not yall(_j for exotic states [16]. Go~ Nc3/2, G1.Go ~ Ncl/z. (10)
The discussion of this point is beyond the scope of _ _ _
the present Letter, let us however note, that argumentsFinally, in order to get the width one has to multiply

have been also given in favor of the rigid-rotor (9) bythe phase space volume and the final result reads
quantization [17] despite Eq. (5)

I'p = MBP’ (11)
3. Decay width Where
p =Dl
The baryon—-mesorn«j coupling operator can be VMZ= (M + me)?) (M2 — (M’ — me)?)
written in terms of the collective coordinates as [4]: = M (12)

is the momentum of mesan In Ref. [4] Eq. (11) was

— 3O _ AL _ A(2)

O = oMy [GoOy — G10,) — G20, ]pa. (6) multiplied by a ratio of the baryon masses which is

h important for the numerical results, which, however,
where scales a®)(1) with N, and therefore is irrelevant for

A (0) ) 6N ® e further discussion.

=D =dapcD, . . .

Oca 1“" Opa = dae Dy Se. The action of theD functions entering the collec-
(2 8o i i
0£A> _ D£8)5A~ @) tive operators can be calculated with the help of the

V3
Here S, are generalized spin right SU(3) generators dim(Rg)/dADgR})*(A)D%R})(A)DgR})(A)
related to the known “isospin”y-spin andU-spin 33 272 11

SU(3) Clebsch—Gordan coefficients [18,19]:

operators in the following way _ Z (7;1 R2 | R} ) (Rl R2| R} ) . a3)
R A . R R R 1 B2 Ji J2 | J3

I3 = §3, I+ =851+£i85, Vi =384+1iSs,

R R R R 2 . wherey is the degeneracy index. In order to calculate
Usr=Ss+iS7, Y = 7§S8- (8) matrix elements of (7) between wave functions (1) we

shall also use the action of the operat¥is and U4
Note that these operators act on the right index of the on the spin states [18]:
wave function (1), for which “isospin” is related to the
physical spin. We have adopted here a convention that U+ . /' |/

Greek indices run over all possible valuesg, ..., VN (14)

k =1,...,8, capital Latin indices over the SU(2) - -

subgroup:A, B, ... =1,2,3 and small Latin indices  Note that the spin states belong®¥. The relevant
a,b,c,...=4,5,6,7. In order to calculate the width  action is depicted in Fig. 2.

for the decayB — B’ + « we have to evaluate Finally we shall need Clebsch—Gordan coefficients

the matrix element of), between the baryon wave for large SU(3) representations (2). Here we list the
functions, square it, average over initial and sum over Clebsch—Gordan series for the highest weights in two
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Fig. 2. Action of U+ and V+ operators on spif3 = +1/2 states belonging to antidecupigf* = (¢ + 2, 0) and decupleR* = (¢ — 1, 3). In
the latter case the upper entries refer to the transitions to the spurioushstates

cases relevant to the present calculation [9,10]: For A decay we get:
10", A*H) = / 1187 ®1'8". p) M, = 3 9 +3)
(My 4+ Mp)22(g+ 1) (g +4)
1. 7° 3
-\ lB KD ere.Eh), [Go+ Gl] —
qg+1 2 (My + Mp)?
_ 1 (N — D)(N. +5) 1.7,
wWTAT o+ | 0 ugn G -G , (18
|10,())—\/; .K°)®1“8". p) X2(NC_|-1)(NC+7) R I (18)
1 9t :
—\/;|8,K+)®|“8”,n). (15) whereas fo®™ we have:
3 3g+1

ini - » N =

Remaining Clebsch-Gordan coefficients can be found Me (My + Me)22(q +2)(g + %

by applying lowering operators to (15). )
The result of the calculations are as follows (for |:Go 9+t 1G1 _ —Gz}

spin down states angd= (0, 0, p)): 2 2
3 3(N:+1)
« A nN My + Mo (Ne + 3(Ne +7)
3 8 “8"|“10” 2
(N1014) = i 3= (n vla ) . |:Go— Y261~ %Gz} P (19
q+3 |:G +}G1 » Two important remarks are here in order. First
3g+4 27 of all, and this is our main result announced in the
(16) Introduction, for©* decay constant; is enhanced
e Ot - KN by a factor of N. and therefore the second term in
. 3 8 8" |10 Eqg. (19) is of the same order aSp. These two
(N|Og|®OT) = —j ———— ( + ) terms cancel against each other yielding numerically
My + Mo+ \K N |O @+ width much smaller than the width of. This
g+1 cancellation is therefore consistent witf) counting
X m and justifies the use of nonleading terms in the decay
operator (6).
[Go— q_"'l(;l_ :—LG2:| Secondly, the overall factor in front df --] x
2 2 p?is O1) for A — N and O(1/N,) for Ot —

a7 KN. This effect, as can be seen from Egs. (16),
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(17), is entirely due to the “spin” part of the matrix
elements(B’|O,|B). Indeed, flavor Clebsch-Gordan
coefficients in Eqgs. (16), (17) scale é%1) with N,
as can be inferred from Eg. (15). This is, however,
not a completeV, dependence, since momentym
also depends omV.. We shall come back to this
dependence in a moment.

After multiplying by the phase factors we get:

3 (Ne —1)(N:+5)

Iy = -
27 (My +MA)2 2(Ne + (N + 7)
_ 1 2 .
X G0+§G1 P,
L3 3(Ne + 1)
© = 20 (My + Mo)2 (N, + 3)(N. + 7)
r N.+1 172
«[Go— et Gl—éGz} » (20)

wherep is given by Eq. (12). In the chiral limitz, =0
M -M)YM+M)
b= oM '

Since the differencé/ — M’ scales differently with
N, for A and®* decays (5):

(21)

1
A N, ~O0|— ).
—> 7 DPr (Nc)

® — KN, px ~OQ) (22)
and the overall scaling for the widths reads

1
Iy~ O(W) I'e ~0Q1). (23)

It is interesting to ask at this point how well the
N, scaling arguments work numerically in Nature. For
the mass differences we get (assumMg+ = 1540,
Mz,, = 1860 MeV, which givesMy; = 1752 MeV
for the average antidecuplet mass):

M1o— Mg =234, ]\;11—0—11_43=601 (24)
(in MeV) which is in a reasonable agreement with an
expected factor ofV, = 3, see Eqg. (5). As far as the
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p scales in both casasO(1). In that case:

I'a~O(Ne), I'e ~0(1) (26)

which would explain parametrically the narrowness of
©™T with respect toA.

4. Nonrelativistic limit

Coupling constant$ig 12 are related to the axial
couplings through Goldberger—Treiman relation. On
the other hand we know explicit model formulae for
these couplings [14,20]:

Go~A A(li) G 2A(2+)
0 0— F» 1 F’
1 2
(1+)
1

up to the same proportionality factor of the order of
Mg/ Fy; ~ O(J/N.). Explicit formulae and numerical
values of the inertia parametedsand/ can be found

in Ref. [14]. If in the x QSM one artificially sets the
soliton sizerg — 0, then the model reduces to the
free valence quarks which, however, “remember” the
soliton structure [21]. In this limit, many quantities,
like the axial-vector couplings, are given as ratios of
the group-theoretical factors [20]:

A(+)
Ag —> —Ng, =11,
1
A(li) 2 A(2+) 2 28
TH T T (28)

1

With these values we get that the nucleon axial
coupling [20,21]
Ne+2 5

3 3 (29)

which is the well known naive quark model result [22].
For the antidecuplet decay strength we get:

84—

phase-space factor is concerned, the physical value of

the meson momentum reads (in MeV)

pr =225 px =268 (25)

and it is hard to argue that the scaling of Eq. (22)
really holds. Formally for, # 0 meson momentum

N.+1 1
_ Net Gi— G,

G =G
=0Ty 2

3 Inthe case oft decaypy is imaginary since, strictly speaking,
in the largeN, limit M 4, = My and the decay does not occur.
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(A Aﬁ) Ne+1457 A"
~ (Ao— _ _

(+) (+) (+)
[1 2 [2 [1

N, A (2+)

2 12(+)

) )
_AL 1450
@s) @

I 2,

)

N, 1
— (—NC + 72) + (—2+ 52+ 1) =0. (30)
We see that the cancellation is exact in each order in
N2

Let us speculate that the cancellation of the leading
order terms in (30) is exact. Thefizg ~ O(V/N,)

while G190~ O( 3/2). In this case we would get

Ne
O(1/N?), m, =0,
O(No), my # 0,
i) < s {0(1/N3>, m =0,
NZ O(/N?), my #0,
which would mean that in the chiral limit both decay

widths scale a®(1/N?) while for m, # 0 ©* decay
is damped by a factcif)(Nf)with respect taA.

)+

(+)
_ A
+)

Il

Fa~ON,) x p°— {

T'e ~ (9( (31)

5. Summary

Our primary goal was to show that the cancellation
which takes place in the case of tBe” width is con-
sistent with theN, counting. Indeed, by employing
correct generalizations of standard SU(3) representa-
tions for arbitrary number of colors, we have shown
that there is additionaV,. enhancement of the constant
G1 which is formally one power o, less thanGy.
This enhancement comes entirely from the spin part of
the matrix elementsB’| O, | B) and carries over to the
decays of all particles in antidecuplet.

We have also found that there@1/N,) suppres-
sion factor in the®* width with respect taA, com-
ing from the same source, namely from tivg de-
pendence of the SU@\or Glebsch—-Gordan coeffi-
cients. Unfortunately, this suppression is “undone” by
the phase space factgP, which in the chiral limit

41 am grateful to D.l. Diakonov for pointing out this cancella-
tion.
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scales differently for®* and A decays (22). If we
assume that meson masses are nonzero, then the sup-
pression survives (26). This kind of “noncommutativ-
ity” of the chiral limit and largeN, expansion is well
known and there are many examples where it creates
problems.

Finally, we have shown that in the nonrelativistic
guark model limit, i.e., in the limit where we artifi-
cially squeeze the soliton, the cancellation in the de-
cay strength fo®* is exact and occurs independently
at each order ofV,. In this limit @+ width vanishes
identically.
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