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Abstract

In the chiral quark soliton model the smallness ofΘ+ width is due to the cancellation of the coupling constants which
of different order inNc. We show that taking properly into account the flavor structure of relevant SU(3) representatio
arbitrary number of colors enhances the nonleading term by an additional factor ofNc, making the cancellation consistent wi
theNc counting. Moreover, we show that, for the same reason,Θ+ width is suppressed by a group-theoretical factorO(1/Nc)
with respect to∆ and discuss theNc dependence of the phase space factors for these two decays.
 2004 Published by Elsevier B.V.
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1. Introduction

Recently five experiments announced discov
of a narrow, exotic baryonic state calledΘ+ [1].
Most probably this state belongs to the positive pa
baryon antidecuplet, which naturally emerges in ch
soliton models [2–4]. Early prediction of its mass [
obtained in the Skyrme model [5] extended to th
flavors [6] is in surprising agreement with the pres
experimental findings. Moreover, if the discove
of the heaviest members of the antidecuplet,Ξ3/2,
announced by NA49 Collaboration [7] at 1860 Me
is confirmed, again the same model will be off only
70 MeV [3].
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However, the most striking experimental result
perhaps a very small widthΓΘ+ which is estimated to
be of the order of a few tens MeV or less [1]. Su
a narrow width was predicted in a seminal paper
Diakonov, Petrov and Polyakov [4] within the SU(
chiral quark soliton model (χQSM). The smallness o
ΓΘ+ in this model is due to the cancellation of t
coupling constants which enter the collective de
operator. It is, however, at first sight to some ext
unnatural that the cancellation occurs between
constants which are of different order in the numbe
colors,Nc. If only the leading term were retained, th
width ofΘ+ would be of the same order asΓ∆ [4,8].

In this Letter we show that in fact this cancellati
occurs order by order inNc . This is due to the fact tha
the additional factor ofNc appears when one proper
takes into account the SU(3) flavor representa
content of the lowest lying baryonic states. Indeed,
arbitrary number of colors, baryons do not fall in
nse.
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at the
Fig. 1. Generalizations of octet, antidecuplet and decuplet for largeNc . Bold dots and circles denote physical states, squares and dots
bottom denote spurious states which disappear in the limitq → 1.
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ordinary flavor octet, decuplet and antidecuplet,
are members of large SU(3) representations [9–
which reduce to the standard ones only forNc = 3.
Taking this extraNc dependence into account mak
the SU(3) Clebsch–Gordan coefficients depend onNc .

We also find that group-theoretical factors suppr
ΓΘ+ with respect toΓ∆. This suppression is, howeve
“undone” by the phase space factor, which sca
differently withNc in the chiral limit.

2. Large Nc limit

Both in the Skyrme model [5,6] and in theχQSM
[12,13] baryons emerge as rotational states of
symmetric top which rotates in the SU(3) collecti
space [3,6]. This rotation is described in terms o
rotational SU(3) matrixA(t). Baryonic wave func-
tions [4,6,13,14] are given as SU(3) WignerD(R)BJ (A)

matrices2:

ψ
(R)
BS (A)=ψ(R,B)(R∗,S)(A)

(1)= (−)QS√dim(R)D(R)∗BJ (A).

In this notationB = (Y, I, I3) with Y being hyper-
charge,I andI3 isospin and its third component. Le
index S = (YR = −Nc/3, S, S3) and J = (−YR =
Nc/3, S,−S3) is a state conjugate toS. The fact that
the right index runs only over the SU(2) subspace
the SU(3) representationR follows from the form of
the hedgehog ansatz for the static soliton field and
Wess–Zumino term [6,15].QS is the charge of stateS.

2 The derivation leading to Eq. (1) can be found in Appendix
of Ref. [14] and follows closely the unpublished notes of P
Pobylitsa.
Note that under the action of left (flavor) generat
T̂α = −D(8)αβ Ĵβ ψBR transforms like a tensor in repre

sentationR, while under the right generatorŝJα like a
tensor inR∗ rather thanR.

ForNc = 3 YR = −1 and the lowest allowed SU(3
representations are those of triality zero: 8, 10,10, 27,
etc. In largeNc limit, however, these representatio
are generalized in the following way [9,10] (oth
possible choices are discussed in Ref. [11]):

“8” = (1, q), “10” = (3, q − 1),

(2)“10” = (0, q + 2)

where

(3)q = Nc − 1

2
.

Note that in this notation anti-ten is not a conjug
of decuplet, neither is an octet selfadjoint. Theref
we shall denote a complex conjugate by a∗:

(4)R∗ = (p, q)∗ = (q,p).
For large representations like (2) physical flavor sta
have hypercharge different from the one in the r
world, however isospin, charge and strangeness
the physical values. This is depicted in Fig. 1.

Baryon masses are given in terms of the effec
Hamiltonian

M =Msol + 1

2I1
S(S + 1)

+ 1

2I2

(
C2(R)− S(S + 1)− N2

c

12

)
,

whereC2(R) = (p2 + q2 + pq + 3(p + q))/3 is the
Casimir operator for representationR = (p, q) and
Msol = O(Nc) is the classical soliton mass. It is ea
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to convince oneself that in the chiral limit nonexo
splittings scale likeO(1/Nc) while exotic–nonexotic
like O(1), e.g.:

M∆ −MN ∼O
(

1

Nc

)
,

(5)MΘ −MN ∼O(1).

The fact thatΘ − N mass difference is of the orde
of 1 was used to argue that the rigid-rotor quantizat
of the chiral soliton is not valid for exotic states [16
The discussion of this point is beyond the scope
the present Letter, let us however note, that argum
have been also given in favor of the rigid-rot
quantization [17] despite Eq. (5)

3. Decay width

The baryon–meson (κ) coupling operator can b
written in terms of the collective coordinates as [4]:

(6)Ôκ = −i 3

2MB

[
G0Ô

(0)
κA −G1Ô

(1)
κA −G2Ô

(2)
κA

]
pA,

where

Ô
(0)
κA =D(8)κA, Ô

(1)
κA = dAbcD(8)κb Ŝc,

(7)Ô
(2)
κA = 1√

3
D
(8)
κ8 ŜA.

Here Ŝa are generalized spin right SU(3) generat
related to the known “isospin”,V -spin andU -spin
operators in the following way

Î3 = Ŝ3, Î± = Ŝ1 ± iŜ2, V̂± = Ŝ4 ± iŜ5,

(8)Û± = Ŝ6 ± iŜ7, Ŷ = 2√
3
Ŝ8.

Note that these operators act on the right index of
wave function (1), for which “isospin” is related to th
physical spin. We have adopted here a convention
Greek indices run over all possible values:α,β, . . . ,
κ = 1, . . . ,8, capital Latin indices over the SU(2
subgroup:A,B, . . . = 1,2,3 and small Latin indices
a, b, c, . . .= 4,5,6,7. In order to calculate the widt
for the decayB → B ′ + κ we have to evaluat
the matrix element ofÔκ between the baryon wav
functions, square it, average over initial and sum o
final spin and isospin [4]:

M̄2
B = 1

(2IB + 1)(2SB + 1)

(9)×
∑
IB3,SB3

∑
IB′3,SB′3

∣∣〈B ′, SB ′3|Ôκ |B,SB3〉
∣∣2.

Coupling constantsGi are related to the axia
vector couplings by a Goldberger–Treiman relat
and scale differently withNc:

(10)G0 ∼N3/2
c , G1,G2 ∼N1/2

c .

Finally, in order to get the width one has to multip
(9) by the phase space volume and the final result re

(11)ΓB = 1

2π
M̄2

Bp,

where

p = | �pκ |
(12)=

√
(M2 − (M ′ +mκ)2)(M2 − (M ′ −mκ)2)

2M
is the momentum of mesonκ . In Ref. [4] Eq. (11) was
multiplied by a ratio of the baryon masses which
important for the numerical results, which, howev
scales asO(1) with Nc and therefore is irrelevant fo
further discussion.

The action of theD functions entering the collec
tive operators can be calculated with the help of
SU(3) Clebsch–Gordan coefficients [18,19]:

dim(R3)

∫
dAD

(R3)∗
B3J3

(A)D
(R2)
B2J2

(A)D
(R1)
B1J1

(A)

(13)=
∑
γ

(
R1 R2
B1 B2

∣∣∣∣Rγ3B3

)(
R1 R2
J1 J2

∣∣∣∣ Rγ3J3

)
,

whereγ is the degeneracy index. In order to calcul
matrix elements of (7) between wave functions (1)
shall also use the action of the operatorsV̂± and Û±
on the spin states [18]:

(14)
Û+ ↖ ↗ V̂+

V̂− ↙ ↘ Û−
Note that the spin states belong toR∗. The relevant
action is depicted in Fig. 2.

Finally we shall need Clebsch–Gordan coefficie
for large SU(3) representations (2). Here we list
Clebsch–Gordan series for the highest weights in
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Fig. 2. Action ofÛ± andV̂± operators on spinS3 = ±1/2 states belonging to antidecupletR∗ = (q + 2,0) and decupletR∗ = (q − 1,3). In

the latter case the upper entries refer to the transitions to the spurious statesB.
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cases relevant to the present calculation [9,10]:

|“10”,∆++〉 =
√

q

q + 1
|8,π+〉 ⊗ |“8” ,p〉

−
√

1

q + 1
|8,K+〉 ⊗ |“8” ,,+〉,

(15)

|“10”,Θ+〉 =
√

1

2

∣∣8,K0〉 ⊗ |“8” ,p〉

−
√

1

2
|8,K+〉 ⊗ |“8” , n〉.

Remaining Clebsch–Gordan coefficients can be fo
by applying lowering operators to (15).

The result of the calculations are as follows (
spin down states and�p = (0,0,p)):

• ∆→ πN

〈N |Ôπ |∆〉 = −i 3

MN +M∆
(

8 “8” “10”
π N ∆

)

(16)

×
√
q + 3

3(q + 4)

[
G0 + 1

2
G1

]
p,

• Θ+ →KN

〈N |ÔK |Θ+〉 = −i 3

MN +MΘ+

(
8 “8” “10”
K N Θ+

)

×
√

q + 1

2(q + 2)(q + 4)

(17)

×
[
G0 − q + 1

2
G1 − 1

2
G2

]
p.
For∆ decay we get:

M̄2
∆ = 3

(MN +M∆)2
q(q + 3)

2(q + 1)(q + 4)

×
[
G0 + 1

2
G1

]2

p2 3

(MN +M∆)2

(18)× (Nc − 1)(Nc + 5)

2(Nc + 1)(Nc + 7)

[
G0 + 1

2
G1

]2

p2,

whereas forΘ+ we have:

M̄2
Θ = 3

(MN +MΘ)2
3(q + 1)

2(q + 2)(q + 4)

×
[
G0 − q + 1

2
G1 − 1

2
G2

]2

p2

× 3

(MN +MΘ)2
3(Nc + 1)

(Nc + 3)(Nc + 7)

(19)×
[
G0 − Nc + 1

4
G1 − 1

2
G2

]2

p2.

Two important remarks are here in order. Fi
of all, and this is our main result announced in
Introduction, forΘ+ decay constantG1 is enhanced
by a factor ofNc and therefore the second term
Eq. (19) is of the same order asG0. These two
terms cancel against each other yielding numeric
Θ+ width much smaller than the width of∆. This
cancellation is therefore consistent withNc counting
and justifies the use of nonleading terms in the de
operator (6).

Secondly, the overall factor in front of[· · ·] ×
p2 is O(1) for ∆ → πN andO(1/Nc) for Θ+ →
KN . This effect, as can be seen from Eqs. (1
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(17), is entirely due to the “spin” part of the matr
elements〈B ′|Ôκ |B〉. Indeed, flavor Clebsch–Gorda
coefficients in Eqs. (16), (17) scale asO(1) with Nc ,
as can be inferred from Eq. (15). This is, howev
not a completeNc dependence, since momentump
also depends onNc . We shall come back to thi
dependence in a moment.

After multiplying by the phase factors we get:

Γ∆ = 3

2π(MN +M∆)2
(Nc − 1)(Nc + 5)

2(Nc + 1)(Nc + 7)

×
[
G0 + 1

2
G1

]2

p3,

(20)

ΓΘ = 3

2π(MN +MΘ)2
3(Nc + 1)

(Nc + 3)(Nc + 7)

×
[
G0 − Nc + 1

4
G1 − 1

2
G2

]2

p3,

wherep is given by Eq. (12). In the chiral limitmκ = 0

(21)p = (M −M ′)(M +M ′)
2M

.

Since the differenceM −M ′ scales differently with
Nc for ∆ andΘ+ decays (5):

∆→ πN, pπ ∼ O
(

1

Nc

)
,

(22)Θ →KN, pK ∼O(1)

and the overall scaling for the widths reads

(23)Γ∆ ∼ O
(

1

N2
c

)
, ΓΘ ∼O(1).

It is interesting to ask at this point how well th
Nc scaling arguments work numerically in Nature. F
the mass differences we get (assumingMΘ+ = 1540,
MΞ3/2 = 1860 MeV, which givesM̄10 = 1752 MeV
for the average antidecuplet mass):

(24)M̄10 − M̄8 = 234, M̄10 − M̄8 = 601

(in MeV) which is in a reasonable agreement with
expected factor ofNc = 3, see Eq. (5). As far as th
phase-space factor is concerned, the physical valu
the meson momentum reads (in MeV)

(25)pπ = 225, pK = 268

and it is hard to argue that the scaling of Eq. (2
really holds. Formally formκ �= 0 meson momentum
p scales in both cases3 asO(1). In that case:

(26)Γ∆ ∼O(Nc), ΓΘ ∼O(1)

which would explain parametrically the narrowness
Θ+ with respect to∆.

4. Nonrelativistic limit

Coupling constantsG0,1,2 are related to the axia
couplings through Goldberger–Treiman relation.
the other hand we know explicit model formulae f
these couplings [14,20]:

G0 ∼A0 − A
(−)
1

I
(+)
1

, G1 ∼ 2
A
(+)
2

I
(+)
2

,

(27)G2 ∼ 2
A
(+)
1

I
(+)
1

up to the same proportionality factor of the order
MB/Fπ ∼O(

√
Nc ). Explicit formulae and numerica

values of the inertia parametersA andI can be found
in Ref. [14]. If in theχQSM one artificially sets the
soliton sizer0 → 0, then the model reduces to th
free valence quarks which, however, “remember”
soliton structure [21]. In this limit, many quantitie
like the axial-vector couplings, are given as ratios
the group-theoretical factors [20]:

A0 → −Nc, A
(+)
1

I
(+)
1

→ −1 ,

(28)
A
(−)
1

I
(+)
1

→ 2,
A
(+)
2

I
(+)
2

→ −2.

With these values we get that the nucleon ax
coupling [20,21]

(29)gA → Nc + 2

3
= 5

3

which is the well known naive quark model result [2
For the antidecuplet decay strength we get:

G10 = G0 − Nc + 1

4
G1 − 1

2
G2

3 In the case of∆ decaypπ is imaginary since, strictly speaking
in the largeNc limit M∆ =MN and the decay does not occur.
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7)

47

49;
∼
(
A0 − A

(−)
1

I
(+)
1

)
− Nc + 1

2

A
(+)
2

I
(+)
2

− A
(+)
1

I
(+)
1

=
(
A0 − Nc

2

A
(+)
2

I
(+)
2

)
+

(
− A

(−)
1

I
(+)
1

− 1

2

A
(+)
2

I
(+)
2

− A
(+)
1

I
(+)
1

)

(30)→
(

−Nc + Nc

2
2

)
+

(
−2+ 1

2
2+ 1

)
= 0.

We see that the cancellation is exact in each orde
Nc .4

Let us speculate that the cancellation of the lead
order terms in (30) is exact. ThenG10 ∼ O(

√
Nc )

whileG10 ∼O(N3/2
c ). In this case we would get

Γ∆ ∼ O(Nc)× p3 →
{
O(1/N2

c ), mκ = 0,

O(Nc), mκ �= 0,

(31)ΓΘ ∼O
(

1

N2
c

)
× p3 →

{O(1/N2
c ), mκ = 0,

O(1/N2
c ), mκ �= 0,

which would mean that in the chiral limit both dec
widths scale asO(1/N2

c ) while formκ �= 0Θ+ decay
is damped by a factorO(N3

c )with respect to∆.

5. Summary

Our primary goal was to show that the cancellat
which takes place in the case of theΘ+ width is con-
sistent with theNc counting. Indeed, by employin
correct generalizations of standard SU(3) represe
tions for arbitrary number of colors, we have sho
that there is additionalNc enhancement of the consta
G1 which is formally one power ofNc less thanG0.
This enhancement comes entirely from the spin pa
the matrix elements〈B ′|Ôκ |B〉 and carries over to th
decays of all particles in antidecuplet.

We have also found that there isO(1/Nc) suppres-
sion factor in theΘ+ width with respect to∆, com-
ing from the same source, namely from theNc de-
pendence of the SU(3)flavor Glebsch–Gordan coeffi
cients. Unfortunately, this suppression is “undone”
the phase space factorp3, which in the chiral limit

4 I am grateful to D.I. Diakonov for pointing out this cancell
tion.
scales differently forΘ+ and∆ decays (22). If we
assume that meson masses are nonzero, then the
pression survives (26). This kind of “noncommutat
ity” of the chiral limit and largeNc expansion is wel
known and there are many examples where it cre
problems.

Finally, we have shown that in the nonrelativis
quark model limit, i.e., in the limit where we artifi
cially squeeze the soliton, the cancellation in the
cay strength forΘ+ is exact and occurs independen
at each order ofNc . In this limit Θ+ width vanishes
identically.
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