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The technique of the decomposed Feynman propagator is used to
establish the equivalence between the Feynman and field theoretic
formalisms. It is shown that for an nth order process, each of the 271
decomposed Feynman diagrams is equivalent to a certain group in the
n! field theoretic diagrams. This is demonstrated for the fourth order
Compton scattering of an electron by identifying the energy denomina-
tors in the two formalisms.

INTRODUCTION

It is well known that the concepts of virtual states in nonrelativistic wave
mechanics, Feynman formulation, and field theory are in principle the same
though the detailed structure of the “‘state” is different in the three descrip-
tions.!

1. In nonrelativistic wave mechanics, we exclude negative energy states—
in other words we do not envisage the creation and annihilation of pairs. In
the temporal evolution of the system, the number of fermions and anti-
fermions are assumed to be separately conserved. In calculating the matrix
elements we perform spatial integration first and the temporal evolution of
the states in momentum representation is studied. It is therefore possible
to speak of the state of a system at a particular time ¢.

2. In the Feynman formalism we include particles in the negative energy
states, but the sequence of events in a perturbation expansion is not temporally
ordered. We usually take the four-dimensional transform and, in this case,
we can speak of the initial and final states being connected by a Feynman
sequence of intermediate states.

* Atomic Energy Commission Junior Research Fellows.
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! In this paper we use the usual Feynman notation and P = PuVu = E'yﬂ —p-y
we have also set ¢ = # = 1.

It is to be noted that the fourth component of the Feynman four-vector of any

term within brackets such as [p, + q — q;] is given by
- L

(&1 + g — q0* + m?]V2
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3. In field theory, we envisage the creation and annihilation of particles
and antiparticles. If, in the calculation of matrix elements the spatial inte-
gration is performed first, the situation is the same as in (1) except that we
can have a multiplicity of particles. If however, we wish to integrate space and
time together, we have first to rearrange the operators suitably and this
leads to the Feynman matrix element. It was considered that the essential
merit of the four-dimensional integration was the inherent covariance of the
theory at every stage, while separate integration with respect to time leads
to energy denominators. This seems to have been accepted for so long that
no effort was made to find if it was possible to decompose the Feynman
matrix element into relativistically invariant components. We now find that
this is indeed possible in such a manner that some of the revealing features of the
temporal ordering are preserved while at the same time the elegance of relativistic
invariance is not lost. In fact if this is done the concept of virtual states
becomes identical in all three formalisms.

The nth order matrix element for the scattering of an electron from-
momentum p; to momentum p,, is given by

M = [ @, e [ iy g (5) Koy ma) -+ i) 0

In the Feynman formalism, the matrix element in momentum representation
obtained by performing the four-dimensional integration is given by

_ 1 1 ,
M =i,y e, P —m €, 1 € —m eyu(py) 2)

where the p, refer to intermediate virtual states with energy

b2 7> Em- :\/512 + mz-

Tor 2 given order in the sequence of perturbations e,, -~ e, (i.e., for a single
Feynman diagram), the above can be decomposed into 27! terms which are
individually covariant as follows: The space and time integrations of (1)
are separately performed, the former leading to conservation of three momen-
tum at every vertex, and the time integration which is subsequently performed
is split into two parts corresponding to the ranges ¢ = — o to 0 with energy
—E and t =0 to -+ = with energy + E respectively. It was shown in an
earlier paper that this leads to the decomposition of the Feynman propagator
+ _
1 1 Pt+tm PLm

= — 3
prq—m Z(Ep+q) Ep +E, — Ep+a E, + E,+E,, ( )

where E2,_, = (Z + (_7))2 -+ m?® and ]5 is the Feynman four vector with energy
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+E,.,and P has the fourth component — E

D
at that time that each of these terms is relativistically invariant. In fact, the

first term corresponding to positive energy is nothing but the transform of

1o 1t was however not realized

1 ug e -0
(Tﬂif%mdp for  x,>0 4)
and can be obtained from the contour omitting the pole at p, = — E;

in a similar way, the second term can be represented by the transform of the
invariant function

et yy
(217)4 J Sl for 5 <0 5)
so that both the terms are relativistically invariant.

If we use this propagator it is more convenient to :c)hink_) of the energy
of the “virtual” particle to be + E,,, with momentum p + ¢. It is virtual
in the sense that its energy does not correspond to E, + E,, the energy
of the system before its creation. In a similar way, — E,,, corresponds to a
negative energy ‘‘virtual” particle. These two parts are taken together in the
Feynman formalism where we attribute an energy p, to the virtual
particle.

The main advantage of this decomposed propagator is that it lends itself
to a method of comparison with field theory due to the presence of the
energy dencminators so that the equivalence between Feynman and field
theoretic formalism can be established even in the old fashioned manner, that
is, after space integration.

In a field theoretic picture for a given order in the sequence of perturba-
tions, the nth order term has n! diagrams, each of which will give different
energy denominators. This is because the position of every vertex relative
to all other 7 — 1 vertices is important since the time integration is performed
In a temporarily ordered way. Thus every new complexion gives a different
energy denominator and a sum over intermediate states implies a sum over
all such diagrams.

If, on the other hand, we employ the method of the decomposed Feynman
propagator, the position of every vertex on the time axis with respect to the
previous (in the Feynman sense) one is relevant since the integration over
interval z, — ¢,,_, is divided into two ranges, positive and negative, or whether
the nth vertex lies “above” or “below” the # — 1th vertex. Thus, since for
an nth order process there are # — 1 propagators each of which can be split
into two parts, it follows that we can have 27! diagrams. It now remains to
be shown that the ! diagrams of field theory are equivalent to the 2*~ such
diagrams, n! > 271 for all n > 2).
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CALCULATIONS

We here demonstrate explicitly the equivalence for a fourth order process.
We have for definiteness considered the Compton scattering of an electron.

We shall consider a particular sequence in which the initial photon of four
momentum g(w, q) 1s_’absorbed by an electron at rest and three photons of
four momenta ¢,(wy, ¢1), g2(ws, ¢5) and gy(ws, 93) are emitted in this order
along the Feynman path, the final electron having momentum py(E,, pz)
The calculation of the entire matrix element would of course involve all
permutations of the above sequence. However for the present purpose it is
sufficient if we consider a particular sequence only.

A. Field Theoretic Formalism

The matrix element in field theory for this fourth order process is

2 HfIII HIII 11 HII I HII (6)
(Ey — Em) (Ey — En) (Ey — Er)

where f and i refer to final and initial states respectively and the summation
is over all intermediate states III, IT, and 1.

Hyp = (@, Hing @) etc. )
and
Hint =G J. by, b d*x )
where ¢ and ¢ are the electron and photon field operators respectively.
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We now evaluate M, for each of the n!/2 = 12 diagrams. The other half is
just an exact counterpart with all positive energy intermediate states replaced
by negative energies and vice versa. Thus, corresponding to diagram (i), we

have .
Mo — 2, Hug Hyp v By Hu
m e — Bpra) (m o — oy — Bpioq,) (Ba + 05 — By iq)

e
<q§f | Hmt(%) | D1y Py | Hint(xg) | Prrd
( X (Prt | Hint(,) | D) Dy | Hint(y) | B], )

(m+ o — Epﬁ—tz) (m+ o —w — Eﬂﬁq—ql) (B + w3 — Ep2+q3)

where b1L is the creation operator of the electron with momentum p(0, ).
The photon field operators are all omitted in what follows since they always
commute and are hence not relevant for our arguments. We shall also omit
numerical factors for convenience. Conservation of energy implies

m+ w=FE, -+ o -+ w, + w, (10)

and the energy denominators in (9) correspond to diagram (i). Expanding
Hiny's, inserting the photon operators, and integrating over the space variables
%y, %y, +-, ¥, leads ultimately to an over-all 8-function which implies momen-
tum conservation. Thus the electron operators in the numerator of (9) reduce
to

2 (DPr | (570) (67D) (870) (518) | b, Do 11, [uit il wit) u,, (11)

all mom
indices

where the b’s are the annihilation operators for electrons.
Making use of

bybtye = 8(p — ') (12)

and the over-all 8-function resulting from the space integration, (g) becomes

ﬂpz[uﬁm2+qa] [uﬁpl+q—ql] [uﬁp1+q] Uy,
(m + o — Ep1+¢1) (m+o—ow — Ezu+a—q1) (g + w3 — Ep2+q3)
(13)

My =

(ii) Similarly for the diagram (ii) we have

(D1 | Hint(xy) | Prrr) {Prir | Hint(xs) | Prry
( X {(Dpy | Hint(%,) | D1 (D | Hint(,) | B}, )

Mo, =
en (m +ow— Ezu1+t1) (m +w—w — E;o1+q—q1) (‘”2 - Ep1+q—q1 - Epg+qs)

(14)
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and the numerator
= 2 (@1 | (db) (6'2") (B7h) (le?) | B} >0 iy, (0) (i) (uil) 1,

where d and dT are the annihilation and creation operators of the positron
and v the corresponding spinor; this is now rearranged as

— 2, (D1 | b(dd") (55T (6b") b | B}, >y B, (07) (wid) (ul)
so that we can now apply (12) and we have

- ﬂpz[vﬁpﬁqa] [uﬂpﬁq—ql] [uﬁpﬁq] Uy,
(m+ o — Eill1+11) (m+w—o — Ep1+q—q1)

X (wz - Ep1+q—t11 - Ep2+qa)

M4(ii) =

(15}

(iii) In the case of diagram (iii), which differs from (ii) in that the vertex
at which wy is emitted is ‘“below” the vertex at which cw, is emitted, the energy
denominators are obviously different. We have

D (Pr | (ab) (b18) (B1d") (B78) | D0 i, (08) (uid) (i) w,,

s (m+ o — Ep1+q) (w1 + @y — ipte — Ep2+413) }
X (“’z - Ep1+z1—q1 - Ep2+q3) &
(16)

The numerator when rearranged is

— @ | B,(dd") (8b") (bb") | B] >,

and again _
- l‘pz[vv@ﬁ%] [uﬁyl—f—q—ql] [uﬁp1+q] Up,

' 17
(m+o—E, ) (0 + o — E,iq— Ep2+qa) 17y

X ("-’2 - Eﬁﬂﬁq—ql — Ep2+q3)

M4(iii) =

We note that the numerators in J aity and M 415, are identical though the
denominators are different.

(iv) In a similar way the vertex at which w, is emitted can be still further
“lowered” which gives rise to the diagram (iv), and it can be easily verified
that the numerator is the same as in the previous two cases.
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We thus have

— ﬁpz[vﬁpﬁqa] [udpﬁq—ql] [uﬂpﬁq] upl
(— E2 — Wy — Epz+q3) (wl + wy — E1>1+c1 — Eﬁa2+q3)

X (wy — Ezv1+q—q1 — Epz+q3)

My = (18)

The diagrams (ii), (iii), and (iv) form a group which will later be shown to
be equivalent to one Feynman diagram.

(v) A group of diagrams can now be obtained by having the second
Feynman intermediate state of negative energy while the first and third
have positive energies. The procedure for the reduction of the numerator
is quite similar to the previous ones and in future we shall merely write
down the matrix element with the appropriate energy denominators. We
have for diagram (v).

- ﬁpz[”ﬁp2+q3] [7)'5m1+q—ql] [uﬁp1+4] Up,

(m +o— EII]_—HI) (m + o —w, — Ep1+q - Epz-»—qa - Ep1+q—q1)
X (Ez + wg — Ep2+q3)

JV[4(V) =

(19)

(vi) This diagram can be obtained from (v) by lowering the last vertex
below the second (on the time axis) and we have

- ﬂmz[uﬁp2+qs] [7)77171+q—q1] [uﬁpﬁ—Q] Up,

% (m—+ow— Eﬂ1+!1) (m+ o — Em1+q—q1 — Wy — Ep2+q3 - Em1+q) 2

X (“’1 - Eauﬁ—q - E:D1+q—q1)

M4(Vi) =

(20)

(vii) In this the second vertex in (vi) becomes the first and vice versa so
that

- aﬁg[uﬁpg‘ﬂh] [Dﬁpﬁq—ql] [uﬂp1+q] uzﬂl

i(m +ow— Eau1+q - Ep1+q—q1 — Wy — Ep2+q3) %

M4(vii) =
X (— Ep1+q—q1 — Wy — Ep2+113) (Fa + w3 — Epz+q3)

1)
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(viii) Here again the last vertex of (vii) becomes the third and

- ﬁpz[uﬁp2+q3] [‘ZI"D-pl+q_q1] [uﬁﬂﬁ—q] Ugp,

M4(viii) =

(— Eppra—g, — @2 — Eppiqy)
X(m+ow—Ey g4 —Epg—wp — Epi)
X (@1 = Epirg = Bpiraqy)
(22)

(ix) The last diagram of the class (v -« viii) is obtained by making the
second vertex in viii the third and vice versa so that

- ﬁpz(“ﬁpz+p3) (7)771»1+q—q1) (uﬁmﬁ-q) Uy,

M4(iX) =

(_ Ep1+q—q1 — Wy — Ep2+qa) (_ Ep1+q—q1 T W — Wy — Ez)
X (‘“1 - Epﬁ-q - Ezr1+q—t11)
(23)

This exhausts all such possible diagrams and the five diagrams can be
shown to be equivalent to a single Feynman diagram. Another class of dia-
grams will be with the first Feynman intermediate state of positive energy
and the other two of negative energy. It is easily seen that we have three
such diagram (x *-- xii) which can be shown to be equivalent to one Feynman
diagram. We have

ﬁpz(”ipz+qs) (7)77p,+q~q1) (uﬁpﬁq) Upy

Myxy = 24
400 (m+ o — Epﬁ—q) (‘“1 + w; — Ep2+qg - Epﬁ-a) ( )
X (wl - Ep1+q—q1 - Ep1+<1)
ﬁpz(vﬁpzﬂg) (7’5p1+q—q1) (”ﬁpﬁ—q) Up,
M,xi) = 25
D (— By — w3 — Ep2+q3) (wy + @y — Ep1+q - Ep2+q3) 25)
X (‘”1 - Eau1+q—q1 - Ep1+q)
dﬂz(vﬁﬁzﬁ‘qi{) (vﬁpl-rq—ql) (ulZT1+Q) ulll
M4(xii) =

(— Ey — w3 — Ep2+a3) (_ Ey, — w3 — wy — Ezz1+q—q1)

X (g — Ep1+q—q1 — Ep1+q)

(26)
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B. Feynman Formalism

The Feynman matrix elements for a given type of diagram can be imme-
diately written down with the use of the decomposed propagator (3) and we
have for the four equivalent diagrams in the order discussed in Section A
the following:

+ + +
F ’zpz{[Pz +qs] +m} {[p; +q —q] +m} {[p, +q] + m} Uy,
= 27
M4’1 (m +w— E:v1+<1) (m +w—w — Ep1+q—ql) (Es + w3 — Ep2+q3) ( )

o BllpsFas] +m) {lpy +a —ail +m) {lpy +a) + b,

= 28
M4'Z (EZ + w; + sz+qa) (m +o—w— Ep1+q—ql) (m +w— Ep1+q) ( )
+ - +
o e+ aal + 7} oy +q —ai] + 7} {[py +ql +m}uy,
== 7l 29
Mes = T = B m o —an F By ) m 0 — Ly &)
- - +
F ﬁpz{[Pz +aqg] +m} {[py +q —aqi] +m} {[p1 +qq] + m}u,
M4,4 = (30)

(Fe + oy + Epz+qa) (m+o—o + Ep1+q—q1) (m+o—E, )

C. Equivalence

It now remains to be shown that the sum of the individual expressions in
Section A for a given type of diagram reduces to the corresponding expression
in Section B.

1. M1, = Mj, as is seen from (27) and (13).

Since

+
2 uﬁﬂz""la = {[Pz _|_ q3] + m} etc.

spins

2. To show

F
M,y + Myaiy + Myiwe = My, (31
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Now from (15) and (17)
M4(iii) ‘|‘ M4(iv)
= ~ |
(“’1 + wy — Em1+q — Eﬂg+03) (‘”2 — Ep1+q—q1 - Eﬁ2+qa)

1 1

X J—
mtw—E, . E+w+Ey,

N
- [(“’2 - Ep1+q—q1 - Em2+qs) (m +w— E:o1+q) (E2 + w3+ Epg+qs)]

and
My + My + My
- = ]
(m+w—E, ) (0 —Ep g q — Epig,)

1 1
>< —
m+ o —w — Ep1+q—q1 Ey 4wy + Ep2+q3

. N

(m+ o — E:III-HI) (m +o—o — Ep1+q—q1) (Ez + wg + Epz-i»qﬂ)
= ]W,fz
since

- E VOpyrqy = — 2 U_EU_F(pyiq) = {[p2 + qa] + m} etc.

spins spins

3. We now demonstrate
Mywy + Magvsy + Mygossy + Mywinyy + My = My (32)
The numerators can similarly be shown to be the same as that of (29)

a = Myw) + My

N
N (m+ w — Eiaﬁ—q) (B + wy — Ep2+q3) (w1 — Ep1+q —E

Dy1+a— (11)

B = Mywvit) + My
_ N
(‘ Wy — EZJ1+Q—(11 - Ep2+q3) (“’3 + Ez - Ep2+qa) (“’1 - Ezz1+'1 - Eﬂ1+¢1—!11)
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Y = M4(vii) + M4(viii) + ]‘/14(ix)
_ N
(‘”1 - Ep1+q - Epl+q—q1) (“"3 + E, — Ep2+qﬂ)
X (Em1+q—q1 + @, + Ez + ‘”3)

Therefore
oty =— N
(E; - wy — Ep2+qa) (m+ o — Eﬂ]_‘i—Q) (w0 + By + @y + Ep1+q—q1)
_ N
(By + w5 — Ep2+q3) (m+ o — Ep1+q) (m+o— o + Ez:1+q—q1)
= Mf:a-

4. Similarly

Mx) + Mxiy + My = M£4 (33)
Mxy + Mxi
- N
(‘"1 — Em1+t1—q1 - E171+11) (~ Ey — wy — Eiﬂ2+!13) (m +o— Ep1+t1)

and

M(x; + M(xi) + M(xii)

N
By ooyt Ep2+q3) (m+ow— Ea:1+q) (Ey + w3 + w; + Eq1+q—q1)

N
- (Ez + wy + Ezv2+q3) (m +o— Ep1+q) (m +o—o | Ep1+q—q1)

=M, ,.

We have thus demonstrated that with the use of the decomposed propagator
the equivalence between Feynman and the field theory can be established
in a simple and straightforward manner.

Two of us (R.T.) and (T.K.R.) are grateful to the Atomic Energy Com-
mission, India for the award of Research Fellowships.
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