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The technique of the decomposed Feynman propagator is used to 
establish the equivalence between the Feynman and field theoretic 
formalisms. It is shown that for an nth order process, each of the 2 ~ 1 
decomposed Feynman diagrams is equivalent to a certain group in the 
n! field theoretic diagrams_ This is demonstrated for the fourth order 
Compton scattering of an electron by identifying the energy denomina- 
tors in the two formalisms. 

INTRODUCTION 

I t  is well  known that  the concepts  of  vir tual  states in nonrelat ivist ic  wave 

mechanics,  F e y n m a n  formulat ion,  and field theory  are in pr inciple  the  same 

though  the  detailed s t ructure  of  the  " s t a t e"  is different in the  three  descrip-  
tions. 1 

1. I n  nonrelat ivist ic  wave  mechanics,  we exclude negat ive energy s t a t e s - -  

in o ther  words  we do not  envisage the  creation and annihi lat ion of pairs. I n  

the  tempora l  evolut ion  of  the  system, the  n u m b e r  of fermions  and anti-  

fermions  are assumed to be separately conserved.  I n  calculat ing the  mat r ix  

e lements  we pe r fo rm spatial integrat ion first and the  tempora l  evolu t ion  of  

the  states in m o m e n t u m  representat ion is studied. I t  is therefore  possible 

to speak of  the  state of  a system at a par t icular  t ime t. 

2. In  the  F e y n m a n  formal ism we inc lude  particles in the  negat ive energy 

states, bu t  the  sequence  of  events  in a per turba t ion  expansion is not  tempora l ly  

ordered.  W e  usual ly take the  four -d imens ional  t r ans form and, in this case, 

we can speak of  the  initial and final states being connected  by a F e y n m a n  
sequence  of in te rmedia te  states. 

* Atomic Energy Commission Junior Research Fellows. 

1 In this paper we use the usual Feynman notation and P = p~y~ = E7~ ~ -- p - Y 
we have also set c ~ /~ = 1. 

It is to be noted that the fourth component of the Feynman four-vector of any 
+ 

term within brackets such as [Pl @ q -- ql] is given by 

[(Pl + q - -  ql)2 + m211/~. 
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3. In  field theory, we envisage the creation and annihilation of particles 
and antiparticles. If, in the calculation of matrix elements the spatial inte- 
gration is performed first, the situation is the same as in (1) except that we 
can have a multiplicity of particles. I f  however, we wish to integrate space and 
time together, we have first to rearrange the operators suitably and this 
leads to the Feynman matrix element. I t  was considered that the essential 
merit of the four-dimensional integration was the inherent covariance of the 
theory at every stage, while separate integration with respect to time leads 
to energy denominators. This seems to have been accepted for so long that 
no effort was made to find if it was possible to decompose the Feynman 
matrix element into relativistically invariant components. We now find that 
this is indeed possible in such a manner that some of the revealing features of the 
temporal ordering are preserved while at the same time the elegance of relativistic 
invariance is not lost. In fact if this is done the concept of virtual states 
becomes identical in all three formalisms. 

The nth order matrix element for the scattering of an electron from- 
momentum p[ to momentum p~' is given by 

M = f d4x~ ... f d4xl ~ (x,~) K(x~, x~_~) ... ¢,)i(x~) (1) 

In  the Feynman formalism, the matrix element in momentum representation 
obtained by performing the four-dimensional integration is given by 

1 1 
M = ff(:o~) e~ - -  e n _ l  " "  e 2 - -  e l u ( p [ )  (2) 

p~,, - -  m P x  - -  m 

where the p~ refer to intermediate virtual states with energy 

P4 ~ E~, = %//~ + m 2. 

For  a given order in the sequence of perturbations e~ -'- e~ (i.e., for a single 
Feynman diagram), the above can be decomposed into 2 ~-1 terms which are 
individually covariant as follows: The space and time integrations of (1) 
are separately performed, the former leading to conservation of three momen- 
tum at every vertex, and the time integration which is subsequently performed 
is split into two parts corresponding to the ranges t = --  ~ to 0 with energy 
- - E  and t = 0 to --oo with energy q - E  respectively. I t  was shown in an 
earlier paper that this leads to the decomposition of the Feynman propagator 

+ 

, 1 1  I p + q - -  m - -  2(E~+q) Ev 42 ~ -  -- E~,+q -- E~ ~5-E~ ~- E~,+q (3) 

--) O + 
where E2+q = (p + q)" + m 2 and P is the Feynman four vector with energy 
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q- E~+,~ and P has the fourth component - -  E~+q. I t  was however not realized 
at that t ime that  each of these terms is relativistically invariant. In  fact, the 

first term corresponding to positive energy is nothing but  the transform of 

1 ( u a e  -~-~  
(2~r) a J~+ p~ - -  m 2 d4P for x 4 > 0  (4) 

and can be obtained from the contour omitt ing the pole at pa = -  E;  
in a similar way, the second term can be represented by the transform of the 
invariant function 

1 ( e - i~ '~  u,7 
(2~r) 4 3 c_ Pz - -  ~ d~p 

for x4 < 0 (5) 

so that  both the terms are relativistica!ly invariant. 

I f  we use this propagator it is more convenient to think of the energy 
of the "vir tual"  particle to be - -  E~+q with momentum p + q. I t  is virtual 
in the sense that  its energy does not correspond to E~ + Eq, the energy 
of the system before its creation. In  a similar way, - -  Ez,+~ corresponds to a 
negative energy "vir tual"  particle. These  two parts are taken together in the 
Feynman formalism where we attr ibute an energy P4 to the ~irtual 
particle. 

The  main advantage of this decomposed propagator is that it lends itself 
to a method of comparison with field theory due to the presence of the 
energy denominators so that  the equivalence between Feynman and field 
theoretic formalism can be established even in the old fashioned manner, that 
is, after space integration. 

In  a field theoretic picture for a given order in the sequence of perturba-  
tions, the nth order term has n! diagrams, each of which will give different 

energy denominators. This  is because the position of every vertex relative 
to all other n - -  1 vertices is important  since the t ime integration is performed 
in a temporari ly ordered way. Thus  every new complexion gives a different 
energy denominator and a sum over intermediate states implies a sum over 
all such diagrams. 

If, on the other hand, we employ the method of the decomposed Feynman 
propagator, the position of every vertex on the t ime axis with respect to the 
previous (in the Feynman sense) one is relevant since the integration ever 
interval t~ - -  t~_ 1 is divided into two ranges, positive and negative, or whether 
the nth vertex lies "above" or "below" the n l th  vertex. Thus,  since for 
an nth order process there are n - -  1 propagators each of which can be split 
into two parts, it follows that  we can have 2 n-1 diagrams. I t  now remains to 
be shown that  the n I diagrams of field theory are equivalent to the 2 ~-1 such 
diagrams, n! >~ 2 ~-1 for all n ~> 2). 
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CALCULATIONS 

We here demonstrate explickly the equivalence for a fourth order process. 
We have for definiteness considered the Compton scattering of an electron. 

We shall consider a particular sequence in which the initial photon of four 
momentum q(oJ~ q) is absorbed by an electron at rest and three photons of 
four momenta ql(ool, ~1), q2(¢'°2, 72) and q~(ms, 7a) are emitted in this order 

.-> 

along the Feynman path, the final electron havin~ momentum p2(E2,pe).  
The calculation of the entire matrix element would of course involve all 
permutations of the above sequence. However for the present purpose it is 
sufficient if we consider a particular sequence only. 

A .  Fie ld  Theoretw Formalism 

The matrix element in field theory for this fourth order process is 

gf I I I  g I I i  II N i l  I HI i  x"  M4 (6) 
1-4 (E 0 _ Eti i  ) (E 0 _ Eli)  (E 0 _ Ei  ) 

where f and i refer to final and initial states respectively and the summation 
is over all intermediate states III, II, and I. 

Hfli  I = (~0f, H in t  ~III) etc. (7) 
and 

Hint = G f ~ ,  ¢¢ d:~x (8) 

where ~b and Gk are the electron and photon field operators respectively. 

' J I /  
j I 

¢ I ~o 

O0 

I;i+:: 
2 

O) 

; ] , ' /  

,// ' i ¢~ ( i a ) 

r 
I 
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I I ' z '  1 i i ~ " ,~, , 
I ! V ' t I ~  ; ff~ !., 
I I / I . . Z  t r ~;~ 

I i I " I / ~ , ! /  

Z 

Cv) twi) (vi,J 

! ~, I /  I ! , , ,  

~v i i i )  ( i x )  

' l l l  

1 

w '  I 

j I I / , /  

( x )  ( x i )  ( x i i )  
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We now evaluate M~ for each of the n!/2 = 12 diagrams. The  other half is 
just an exact counterpart with all positive energy intermediate states replaced 
by negative energies and vice versa. Thus, corresponding to diagram (i), we 
have 

~¢ HrlI1 Hill II HII I Hii 
M,(il = (m + to - -  E~+~) (m + to - -  to, --  E~1+~_¢~) (E2 + tos --  E~+%) 

(9) 
( <~*lH*nt(xa)[~HI><`I)nllH*nt(xa)lcpl~> ) 

(m + oJ -- E~l+q ) (m -- to -- ~o 1 -- E~+a_q~ ) (E 2 + toa -- E~+q~) 

where b~ is the creation operator of the electron with momentum pl(0, m). 
The  photon field operators are all omitted in what follows since they always 
commute and are hence not relevant for our arguments. We shall also omit 
numerical factors for convenience. Conservation of energy implies 

m + to : E~ + to1 + to2 + to3. (10) 

and the energy denominators in (9) correspond to diagram (i). Expanding 
H i n t ' S ,  inserting the photon operators, and integrating over the space variables 
Xa, xz, ..., x 4 leads ultimately to an over-all 3-function which implies momen- 
tum conservation. Thus  the electron operators in the numerator of (9) reduce 
to 

( * f  I (b+b) (b'b) (b'b) (b+b) I b~*> 0 ff~,[uff ua uff] u~ (11) 
all morn 
indices 

where the b's are the annihilation operators for electrons. 
Making use of 

b~,b,*)o = 3(p - -  p')  (12) 

and the over-all 3-function resulting from the space integration, (q) becomes 

Ma(ij = (m + to - -  E~+q) (m + to - -  co I - -  E~+q_¢0 (E~ -}- oJ~ - -  Evs+~a) 

(13) 
(ii) Similarly for the diagram (ii) we have 

( ( ~  ] Hint(xa) I q)IIl) (~blII ] Hin*(x3) ] q~II) ) 
X ( ¢ n  ] Hint(X2) [ q~I) (qbleint(Xl)!b~,)o 

M4{ii) = (m ~-  to - -  e~ l+q  ) (m + to - -  to1 --  E~,+,-¢x) (to~ --  E~,+q_¢, - -  E~,+¢s) 

(141 
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and the numerator 

= ~ <q~f ] (db) (btd t) (btb) (b+b) ] b~>o zT,~(v~5) (ua) (uz~)u~, 

where d and d t are the annihilation and creation operators of the positror~ 
and v the corresponding spinor; this is now rearranged as 

-- ~4 <q5f [ bf(dd t) (bb t) (bb t) b [ b~>o 0,2(vet ) (u~2) (uzT) u,~ 

so that we can now apply (12) and we have 

M4(u) = l (m _? og _ E~+q) (m + og _ o91_ E,a+q_q~ ) } (15} 

× (o9~ - E~+q_~ --  E,~+~.) 

(iii) In the case of diagram (iii), which differs from (ii) in that the verteK 
at which o9~ is emitted is "below" the vertex at which o91 is emitted, the energy 
denominators are obviously different. We have 

~_¢ <q3f I (db) (btb) (btd t) (btb) I b~t~>o ff.~(vg) (u,7) (u,7) u,~ 
M 4 ( i i i )  

I 
(m + ~ - -  E,,+~) ( ~  + ~ - E,,+~ - -  E,,+.o) } 

× (o92 - E~+o_o~ - E,,+~.) } 

(16), 
The numerator when rearranged is 

and again 

M 4 ( i l i )  = 

-- <@~ [ b~(dd t) (bb t) (bb t) [ b~)o 

- % [ v % + j  [u%+o_o3 [,%+~] ,~,  

I 
(m + o9 - E , I+o  ) (o91 + o92 - -  E~l+q - -  E,,+q~) t 

× (o92 - -  Evl+¢-ql - -  E**+¢~) ) 

(17) 

We note that the numerators in M4(ii ) and M4(iii) are identical though the 
denominators are different. 

(iv) In a similar way the vertex at which o9~ is emitted can be still further 
"lowered" which gives rise to the diagram (iv), and it can be easily verified 
that the numerator is the same as in the previous two cases. 
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We thus have 

- -  ?~2[~02+q]] [~¢~l+q--ql ] [~U~01+q] /~201 

M~(~) = ( ( _  E~ - -  o~, - -  E ~ + ~ )  ( ~  + ~o~ - -  E~+~ - -  E~.+o~) 

i 
(18) 

× (o~ - -  E~+¢_ql - -  E~+q~) } 

The diagrams (ii), (iii), and (iv) form a group which will later be shown to 
be equivalent to one Feynman diagram. 

(v) A group of diagrams can now be obtained by having the second 
Feynman intermediate state of negative energy while the first and third 
have positive energies. The procedure for the reduction of the numerator 
is quite similar to the previous ones and in future we shall merely write 
down the matrix element with the appropriate energy denominators. We 
have for diagram (v). 

-/l/14(v) = l (m 

- % [ " % + d  [~%.+~-d ["%+o] "~,. 
- ~  to  - -  e ~ l + q  ) ( m  2:- co - -  oJ 2 - -  E ~ l + q  - -  E~+q~ - -  E~+q_~)  ) 

l X (E2 + w3 -- E~2+q~) 

(19) 

(vi) This diagram can be obtained from (v) by lowering the last vertex 
below the second (on the time axis) and we have 

- ~'~[ '%+d [~%.+~,-d ["%+q] "~,. 

21/I4(vil = ( (m -? ~o - -  E~l+q ) (m -? oJ - -  E~,+q_ql 

l x (~1 - -  E~+,~ - -  E~t+,~_~ ) 

(20) 

(vii) In this the second vertex in (vi) becomes the first and vice versa so 
that 

- % [ ' % + , d  [~,~-,-,~-~,_] [u%+~,] ,~,,_ 

M4(vii) = l (m + oJ - -  E~+q - -  E~+q_~, - -  co 2 - -  Ev2+q,) 

X ( - -  E~+q_ql - -  ~o 2 - -  E,2+q.) ( E~ + w 3 - -  E~+q~) 

(21) 
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(viii) Here again the last vertex of (vii) becomes the third and 

- a ~ [ u ~ + ~ ]  [v~7~+~_o~] [ua~+~] u~ 
M4(vlil ) .-- 

233 

(--  E~+~_¢~ --  % --  E~,~+%) I × (m + co --  E~,l+q_q, - -  E~,+q --  co~ --  E~+q~) 

X (% --  E~+~ --  E~I+~_~,) 

(22) 

(ix) The  last diagram of the class (v-.. viii) is obtained by making the 
second vertex in viii the third and vice versa so that 

M 4 ( i x )  

- a~,(ua~=+~.) (~7~+~_~) (~1+~) ~ 

I 
( - -  E~+~_0~ - -  ~ - -  E . . + ~ ) ( - -  E~+0_0.  - -  ~ - -  ~ ,  - -  E.)  } 

× ( %  - -  E~+~ - -  E~+q_~) 

(23) 

This exhausts all such possible diagrams and the five diagrams can be 
shown to be equivalent to a single Feynrnan diagram. Another class of dia- 
grams will be with the first Feynman intermediate state of positive energy 
and the other two of negative energy. It  is easily seen that we have three 
such diagram (x '-' xii) which can be shown to be equivalent to one Feynman 
diagram. We have 

Ma(x) : I(m + co --  E~1+¢ ) (% + w 2 --  E~,+,, - -  E~1+¢ ) (24) 

X (o i  - -  E~I+~_~ - -  E~+~) 

a..(~.+0~) (~%+~-00 (ua~1+0) ~. M4(xi'=I(--E2--%--E~+q~)(%+%--E~1+a--E~+q~)l(25)X (~1 - -  E~I+¢_~ - -  E~+q) 

~(~G~+0~) (~%~-~0 (~+~) ~ 
M4(xii~ = ( - -  E 2 - -  % - -  E~+,~)  ( - -  E2 - -  % - -  % - -  E~.+~_~) 

× ( %  - E~+~_~ - -  E~+ . )  

(26) 
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B. Feynman Formalism 

The Feynman matrix elements for a given type of diagram can be imme- 
diately Written down with the use of the decomposed propagator (3) and we 
have for the four equivalent diagrams in the order discussed in Section A 
the following: 

+ + + 

M~ a~{[pz + qa] + m} {[p~ + q -- qa] + m} {[p~ + q] + m} u~ 

'~ ---- (~ +~ ~ E-~+¢~ (~ ~- ~ ~ ~o~ -- E~,+~_¢~) (E----~ -/o~s -- E~+~) (27) 

+ + 

Me ~v2{[P~ ~- q3] + m} {[p~ + q -- q~] + m} {[p~ + q] + m} n~l 
--- ( 28 )  

+ + 

:~ ff~{[P2 + q~] + m} {[Pl + q -- ql] -]- m} {[Pl + q] + m) u~l 

M,.s = ~ T ~ o - ~ - -  E~+~-(m~- ~ -~  ~1~-~- -~_~)  ( - m + ~  ~ ~ q )  (29) 

_ _ + 

F a~o~{[P2 + qa] + m} ([p~ + q -- q~] + m} {[Pl + ql] + m} u~l 

Ma'4 = (E~ + (% + Eva+q.) (m + co -- a,~ + E~+q_q,) (m + co -- E~+q) 
(30) 

C. Equivalence 

It now remains to be shown that the sum of the individual expressions in 
Section A for a given type of diagram reduces to the corresponding expression 
in Section B. 

M4(l) ~ M e 4,7 as is seen from (27) and (13). ° 

Since 

2. To show 

+ 

u~%+% = {[pz + qa] + m} etc. 
s p i n s  

M4(,il + M~(iiil + M4(~-a = M F 4,~ f31) 
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Now from (15) and (17) 
M4(iii) +M4(iv) 

N [ ] 

I i I I x 
m + oJ - -  E~+q E2 + oJ a + Ev,+q, 

N [ ] 

and 

M4(il) - } - / 4 ( i l i )  - ~ / 4 ( i v )  

N 
= [(m + o~ - -  Evl+q ) ( o J~ -  E ~ l + q _ q  1 - -  E.2+q.)] 

l 1 1 } × --  
m + co - -  ~1 - -  E ~ + ~ _ ~  E2 + ~o~ + E~+q.~ 

N 
(m + ~ - E~,__q) (m + ~ - -  ~ :  - -  E~:÷~_~,) (E~ + ~o~ + E~,+~)  

~ -  M~ 
since 

- Z vv%o,-  Z u-E~-E,~,+o3, = {[P2 + q~] + m} etc. 
spins spins 

3. We now demonstrate 

= M F (32) M4(v) + Ma(vi) + Ma(vli) + Ma(vlll) + M4(ix) - -  a,3 

The numerators can similarly be shown to be the same as that of (29) 

a = M4(v) + Ma(vi) 

N 
(m + co - -  E~:+q) (E2 + co a - -  E~+q, )  (oJ: - -  E~l+q - -  E~+q_q~) 

N 
( - -  oJ~ - -  E~:+q_q~ - -  E,~+q.) (~a + E 2 - -  E,:+q.) (o) 1 - -  E,l+q - -  E~1+q_ql) 
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7 : Ma(vii) -}- M4(viii} -}- M~(ix~ 

N 

l 
(o~ - e ~ + ~  - -  E ~ + q _ ~ )  ( ~  + E~ - -  E ~ + ~ )  

Therefore 

× (E~l+q_¢l + oJ 2 + E 2 + oJz) I 

N 

+ 7 = - -  ( E  2 + toz - -  E~+q~) (m  + oJ - -  E~+q)  (o~. + E 2 _u oJa + E~+q_q~) 

N 

(E 2 + oJ 3 - -  E~2+q3) (m ~- oJ - -  E~+q) (m + w - -  ~o~ + E,~+q_ql) 

. Similarly 

M(:,) + M(~i) + M(xii) M e 4,4 

M(x) + M(xi) 

N 

(33) 

- -  (co I - -  E~l+q_qt - -  E~+q)  ( - -  E 2 - -  ~3 - -  Ev~+q~) (m  + oJ - -  E~ l+q  ) 

and 
M(xl + Mixil + M(xiil 

N 
(E~ + oJa + E~+q~) (m + w -- E~l+q) (E 2 + ~o 3 + (o 2 -~ Eql+q_ql ) 

N 
(E 2 + to a + E,2+q3) (m -~ co - -  E,l+q ) (m + co - -  co 1 + E~x+q_q, ) ~--M4,4 . F  

We have thus demonstrated that with the use of the decomposed propagator 
the equivalence between Feynman and the field theory can be established 
in a simple and straightforward manner. 

Two of us (R.T.) and (T.K.R.) are grateful to the Atomic Energy Com- 
mission, India for the award of Research Fellowships. 
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