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Recently developed reflection techniques of Gessel and Zeilberger and Schensted 
algorithm techniques of Benkart and Stroomer are used to give new proofs of some 
dual pair (or Cauchy-type) symmetric function identities first found by A. O. 
Morris long ago and recently found anew by Hasegawa in the context of dual pairs 
of representations of Lie algebras. © 1993 Academic Press, Inc, 

1. I N T R O D U C T I O N  

Although the identities considered here involve character of Lie groups, 
this paper has been written for combinatorialists. The algorithm part  
requires no Lie theoretic knowledge at all, and the reflection part  uses only 
elementary facts about  Weyl groups. All quantities with the arguments 2 
or # are defined in Section 2. 

The full fledged versions of the identities considerd here first came to 
our attention in a physics motivated mathematics paper [ H a s ]  by Koji 
Hasegawa which considers several similar "double centralizer" construc- 
tions. One goes as follows: A big representation space is constructed upon 
which both sp(2n) and sp(2r) act. It is shown that the linear span of the 
image of each of these Lie algebras centralizes the linear span of the image 
of the other. Hasegawa decomposes the big representation with respect to 
the action of sp(2n)®sp(2r) .  The (Laurent) polynomial identity (CxCy) 
below results when the character of the big representation is equated with 
the sum of the characters of the irreducible constituent representations. 
Many other identities arising from double centralizer situations have 
already been studied by combinatorialists; often the adjectbce "Cauchy" has 
been attached because of an increasingly tenuous tradition. While working 
in a number  theoretic context, Howe introduced [ H o w ]  the terminology 
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dual pair for a pair of algebras which centralize each other in a given 
situation. 

An n-partition 2 is a weakly decreasing n-tuple 21/> 22 ~> -.- >~2n ~> 0 of 
integers. The corresponding shape 2 is a diagram which has 2i boxes in the 
ith row. The rectangle n x r consists of n rows with r boxes apiece. Fix 2 
such that 21 ~< r and place the shape 2 in the upper left-hand corner of n x r. 
Notationally omitting its dependence on 2, n, and r, define # to be the 
r-partition /q/>#2 >/ ' "  >~#r, where #j is the number of boxes in the 
( r - j +  1)st column of n x r which are not in 2. See Fig. 1 for the example 
n = 4, r = 6, 2 -- (5, 4, 2, 0),and # = (4, 3, 2, 2, 1, 1). We say that 2 and # are 
complementary in n x r and write 2 w # -- n x r. 

Recently Gessel and Zeilberger generalized the n-dimensional Andr6 
reflection principle to finite and affine Weyl groups [GZ] .  As an application, 
Gessel (personal communication) obtained an identity closely related to 
the following identity: 

(x+l/2+x~l/2) = ~ spt_ 1(#)SOzn + 1()~( + 1/2); x). (BxC) 
i=  

Here the sum is over all 2 w # = n x r i f  t=2r  or 2 r +  1, and the " + 1 / 2 "  is 
to be used exactly when t = 2r + 1. We first obtained this form of the iden- 
tity by converting certain tableaux constructed by Gessel to "symplectic" 
tableaux. We then discovered that Benkart and Stroomer had recently 
obtained exactly the same identity with a Schensted-type algorithm [BS2] 
based upon work of Berele and Sundaram. However, the dual pair 
construction of [Has]  immediately implies a closely related more general 
two-variable identity: 

f i  f i  (X+1/2y21/2 Jr- X;1/2yi-1/2)(x+l/2yf -1/2 -[- X;i/2y;1/2 ) 
j = ' l  i = 1  

r 

= I~ f i  (xi + yj + x ;  1 + YT')  = 2 Sp2,(2; x) Sp2r(#; y), (Cx Cy) 
j = l i = l  
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where the sum is over all 2 w # = n x r. Here we indicate how the algorithm 
of Benkart and Stroomer can be slightly modified to prove (CxCy). We 
believe that this identity provides a more natural and elegant setting for 
their construction. Itaru Terada [Ter]  and Arun Ram (personal com- 
munication) have each idependently discovered algorithmic proofs of 
(C~Cy). 

We also provide a direct proof of the y = 1 specialization of (CxCy) using 
the Gessel-Zeilberger reflection principle. In addition we show how several 
specializations of some related orthogonal identities can be derived with 
the reflection method. These reflection constructions will affirm the 
naturalness of three peculiar aspects of the combinatorial descriptions of 
orthogonal characters which arose in [ P r l ] .  

The following well-known Schur function identity is proved with both 
methods: 

r n 

]-[ l~ (x, + yj) = ~ s~.(x) s,(y). (A~Ay) 
j - - l i = l  

where the sum is as for (CxCy). (Gessel already knew these proofs.) Using 
notation more consistent with the other identities, the summand could be 
rewritten as GLn(2; x) GLr(#; y). This identity also arises in the study of 
characters of the Lie superalgebra pl(n, r). 

In this paper the various identities provide a beautiful setting in which 
the reflection and algorithm constructions can be illustrated. The reflection 
proofs of the identities (D p BD p) and (D s BD +) return the favor by 
showing that it really is a good idea to keep in mind all three of the subtly 
different possible choices of families of orthogonal characters described in 
Section 5 of [ P r l ] ;  this was a major theme of that paper. 

Orthogonal identities closely related to (CxCy) were first found by A. O. 
Morris in 1958, as is noted in more detail in Section 3. Morris used 
straightforward determinant calculations to establishes the identities, and 
(C~Cv) then quickly follows by a well-known auxiliary identity. 

Several papers [Ber; Ok1; Pr2; Pr3; Sun] have derived symplectic or 
orthogonal character sums for quantities such as ( x l + x ~ - l +  . . .  + 
x n + x ~ l )  k using generalizations of Schensted's algorithm. Some of these 
identities can also be proved with the Gessel-Zeilberger technique, but we 
do not present such proofs. 

Section 2 contains most definitions. On a first reading, one should skip 
ahead to Section 3 after the first half Section 2. There we list all of the 
identities which we consider and make comments concerning their proofs. 
Section4 contains the algorithmic proof of (CxCy). Section5 gives 
background information for root systems and Weyl groups. The 
Gessel-Zeilberger reflection method is presented in Section 6. The reflection 
proofs are in Section 7. 
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We thank Ira Gessel for generously sharing his work with us at an early 
stage, and Sheila Sundaram and Itaru Terada for providing us with 
historical references. We also thank the referee for several helpful comments. 

2. MOST DEFINITIONS 

Consult Sections 1 and 5 for any definitions not found in this section. 
Given an n-partition 2, an n-semistandard tableau of shape ,t. is a filling of 
the boxes in the shape 2 with entries from the set {1, 2, ..., n} such that the 
entries weakly increase across each row and strictly increase down each 
column. The Schur function s).(x) is the sum over all n-semistandard 
tableaux P of shape 2 of x~ I's(P)x~Z's(P)'" "X~ n's(P), where # k 's(P) is the 
number  of times that the entry k appears in P. Given an n-partition 2, an 
N-symplectic tableaux of shape 2 is a semistandard tableau with entries 
from {1, 2, ..., N} such that the entries in the ith row are no smaller than 
2/-1. Given a 2n-symptectic tableaux P, the weight monomial  x(P) is 
defined to be x~  2"s(P)-- # l's(P)x2# 4"s(P) # 3's(~) . . .  X~ 2,'s(e)-- # (2n-- 1)'s(e). Then 

the symplectic character Sp2,(fl; x) is defined to be the sum of x(P) over all 
2n-symplectic tableaux P of shape 2. The non-negative integer sp~(fl) is 
defined to be the number of N-symplectic tableaux of shape ft. As noted in 
[ P r l ] ,  SpN()~ ) can be interpreted as the dimension of a representation of 
SpN for even or odd N. Given an n-partition fl, a (2n + 1 )-Sundaram tableau 
of shape 2 is filling of fl with entries from { 1, 2 ..... 2n, oo } such that the 
entries ~< 2n form a symplectic tableau. The entries oo can occur only at 
the ends of rows and there cannot be more than one ~ in a row, but one 
oo can be directly above another [-Sun]. 

Suppose that 2 w/a = n x r and that P and Q are respectively 2n- and 
2r-symplectic tableaux of shapes fl and/~. We often need to visualize P and 
Q placed simultaneously in n x r. Then P is simply placed in the upper left- 
hand corner of n x r. Before placing Q in the lower right-hand corner, it 
must be "flipped" about  the i = j main diagonal of # and then rotated 180 ° 
in the plane. After this has been done, we still refer to the original rows 
(columns) of Q as rows (columns) with their original numbering, and 
so the usual semistandard adjectives "row weak and column stri~zt" are 
preserved with respect to these nouns. However, since we are visualizing 
manipulations in the n x r framework, all prepositions such as "above" and 
"to the left" are with respect to n x r, i.e., with respect to the paper. So the 
entries in the first column of Q end up in the last row of n x r, and we say 
that "the entries in the first column of Q strictly decrease from left to right." 

Our strongest result concering symplectic characters is the algorithm of 
Section 4, and by defining the Sp2,(2; x) as above it is possible for that 
work to take place entirely in the "catagory" of tableaux. However, we 
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obtain only reflection results for the orthogonal characters, and so it is 
more natural to define these quantities with the Weyl character formula. As 
noted below, each case of the Weyl character formula which we use can be 
written as a quotient of two determinants (i.e., as a bideterminant), or as 
the sum of two such quotients. Section 5 reviews Weyl group and dominant 
weight terminology following [ H u m ] .  Let W be a Weyl group acting on 
a Euclidean space E" according to a root system R of rank n; the set of 
dominant  weights is denoted A +. Given some 2 e A +, define 

E . ~  w ( -  1) z(~) x~(~ + ~) 
H(R, Z; x) := 

E ~  . 1 (  - 1 / ¢ ~ )  x ~¢~) 

where 6 is half of the sum of the positive roots and l(cr) is the length of a. 
~ ~2... ~, for ~ ~ E'. A half- Once a basis for E" has been fixed, x ~ means x 1 x 2 x ,  

integer is an odd integer divided by two. An n-half partition 2 = p + 1/2 is 
a weakly decreasing sequence of positive half-integers. In Section 5 the root 
systems of types B,, C,,  and D, are described with respect to the usual axis 
basis for E'. The coordinates for the vectors 6 are listed there. The set of 
dominant  weights A + for B, consists of all n-partitions together with all 
n-half partitions. Then for Z ~ A +, we define the odd orthogonal character 
S02,+ I(2; x) := H(R(B,), 2; x). A signed n-partition Z* is an n-tuple of 
integers satisfying 21 ~> 22 >~ -.. /> 2, ~/> 12,1 ~> 0. If 2 is an n-partition, then 
define 2 + to be Z, and 2 -  to be the same as 2 except for 2,7 = - 2 , .  This 
definition and notation is to be repeated for signed n-half partitions 2*. The 
set of dominant  Weights A + for D, consists of all signed n-partitions 
together with all signed n-half partitions. Then for 2 * e  A +, we define the 
even orthogonal character S O 2 n ( 2 "  ; X) := H(R(D,) ,  2*; x). For  either N =  2n 
or 2n + 1, we often omit the ~ when we know that Z or Z* is integral; but 
note that the presence of ~ does not imply that 2 or Z* is half-integral. The 
set of dominant  weights A + for C, consists of all n-partitions. 

The identities listed in Section 3 have their most succinct interpretations 
when the characters are defined with bideterminants such as 

s~(x)  = Ix)'+°-il 
Ix) ~ '1 

Given an n-partition Z, the symplectic character Sp2,(2;x) can also be 
expres~d as H(R(C,) ,  2; x). This quotient and the ones for SOzn+l(Z;x) 
and SOzn(Z*;x) can be easily written with bideterminants; see e.g., 
Appendix 2 of [P r l  ]. For a direct proof of the equivalence of the tableau 

a n d  bideterminant definitions for Spz,(Z;x), see [Pr4] .  Enough of the 
flavor of the definitions has now been conveyed for the reader to skip 
ahead to Section 3 for a first reading. 
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As is explained in Section 5 of [ P r l ] ,  there are actually two other useful 
sets of orthogonal characters O~(2; x) and O~ (2; x) in addition to the 
SO~v(2; x). Let N =  2n or 2n + 1. The OP(2; x) are indexed by n-partitions 
2 or n-half partitions 2, and are defined to be just SON(2; X) except when 
N =  2n and 2n #0 .  Then we define (3PN(2; X) := SO2n(2+; x) + S02n(2 -  ; X). 
An N-orthogonal partition is an N-partition 2 which does not have more 
than a total of N squares in the first two columns of its shape. These parti- 
tions 2 index the set of characters O~ (2; x). (In this paper we do not need 
the spin characers ~/v (2; x) with half-integral 2.) Let 2 be N-orthogonal 
and let e be the number of squares in its first column. The associate 
partition 2 a is defined to have the same shape as 2 except in the first 
column, where it is to have N-c~  squares. (It is easy to check that 2 a is a 
partition, and is in fact also N-orthogonal,) If c~<n, then define 
ON + (2; X) := OfV(2; X). If C~ >~n, then define O + (2; x) := OP(2a; x), where 
clearly 2 a is an n-partition. 

Let 2* be a signed n-partition with 2~ < 0, and place the first n - 1 rows 
of 2 in the upper left-hand corner of n x r. Visualize 2, with i2,1 boxes 
sticking out to the left of the last row of n x r. Now define #* not only to 
consists of the boxes in n x r which do not belong to 2*, but also have the 
12hi boxes sticking out to the left as well. We describe this situation 
with 2* w#*  = n  xr ,  which can also indicate the usual 2 w # = n  xr ,  if 
2,/>0. See Fig. 2 for the example n = 4 ,  r = 6 ,  2 = ( 5 , 4 , 2 , - 2 ) ,  and 
# = ( 4 ,  3, 2, 2, 1, 1, 1, 1). Let ~ = r +  [2,] be the number of boxes in the first 
column of # and let/~ be the number of boxes in the second column of/~. 
Note that 12.1 ~< 2~_ a and 2, 1 +/~ = r. Hence c~ +/3 = 2r - 2~_ 1 + 12n] 4 2r, 
and so we conclude that #* is a 2r-orthogonal partition. 

Let N = 2 n  or 2 n + J  and let 2 be an n-partition. In this paper an 
OP-tableau Q of shape 2 is an N-symplectic tableau Q of shape 2 which 
satisfies the additional requirement Qm, 2 ~ 2m (i.e., Qm, 2 # 2 m -  1) on the 
second entry of the mth row. Given an OP-tableau Q define its weight to 
be 2", where * is the number of values of m for which Qm, 1 = 2m and 

Fi~ul~ 2 
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Qm- 1, 1 = 2m - 1, as m runs from 2 to n. For  a fixed n-partition 2, let oP(2)  
be the sum of the weights of all OP-tableau of shape 2. These new O p- 
tableaux are related to tableaux of [Kgl ;  K T ]  by a simple non-weight 
preserving bijection. Given a semistandard tableau Q, for each M ~> 1 let 
eM (respectively /~M) be the number of entries in the first (respectively 
second) column of Q which are ~< M. Given an N-orthogonal partition )o, 
in this paper an O~v-tabIeau Q is an N-semistandard tableau Q such that 
~M +/?M ~< M for each 1 ~< M ~< N. Let o+ (2) be the number of O+-tableau 
of shape 2. 

If one were concerned with only our algorithmic Section 4 and [BS2], 
it would be simplest to define the quantity SO2,÷1(2 +1/2;  x) " :=" 
I I  n tx+l/2 + x~l/2) i=lt  i Sp2n(2; x). Since we also want this quantity in the 
reflection context, let us stay with the quotient expression as the definition; 
then the well-known identity " :=" can easily be proved using the simple 
identity (ii) of Appendix A2 of [ P r l ]  to relate the corresponding bideter- 
minant expressions. Another definition conflict brought up by [BS2] is as 
follows. The orthogonal character SO2~+ 1(2; x) could be defined to be the 
sum of x(P)  over all (2n + 1)-Sundaram tableaux P shape )~, where x(P)  is 
defined as in Section 2. (Just ignore the ~ 's . )  See either Theorem 3.8 of 
[Sun]  or Theorem 8.2 of [Pr l  ] to relate the two definitions. 

The integer quantities Spu(,~), oPn()~), and 0+(2)  were given com- 
binatorial definitions above. The notational convention being followed here 
is: If we set all x i = 1 in a character, then drop the "x" and switch to all 
lowercase letters. (In representation theory, this gives the dimension of the 
corresponding representation.) We now check that the orthogonal 
definitions are consistent under this notational convention with the 
quotient definitions of the corresponding characters. The o+ (2) consistency 
is confirmed by Theorem 3.1 of [ P r l ] .  For ofn(2), let 2 be an n-partition 
and consider the "2n-multiorthogonal tableaux" Q of shape 2 of 
Theorem 8.4 of [ P r l ] ,  which come from [ K g l ]  (or [Ok l ] ) .  Given such a 
Q, for each 1 ~< m ~< n such that Q m, 1 = Q m, 2 . . . . . .  Q m, k = 2m -- 1, change 
k - 1  of these values as follows: Qm, 2 . . . . .  Qm, k=2m.  This converts 
those multitableaux to the OP-tableaux defined above. 

3. LIST OF IDENTITIES AND OVERVIEW OF PROOFS 

Fix n ~> 1 and r ~> 1. Define two quantities as follows: 

i = 1  

and 

P(x, y ) : =  I~ ( I  (Xi+I/2y? 1/2 -~- xcl/2y/1/2)(X?I/2y/1/2-~- xcl/2y/1/2)" 
j = l i = l  
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Aside from the algorithm proof of (Cx Cy), the most interesting aspect of 
this paper is the beautiful and surprising way in which the reflection deriva- 
tion of the identity s + ( D x B D )  below perfectly explains and relates three 
peculiar aspects of combinatorial descriptions of orthogonal representa- 
tions. (By "peculiar" we mean relative to the nicer analogous symplectic 
descriptions.) While the closely related identity (D p B D p) might be preferred 
by some people because of the simpler nature of ), w # = n x r instead of 
2*w #* =n x r, the aspect of possible negative nth row length of highest 
weight partitions for SO2n fits together perfectly via the 2* w #* = n x r con- 
struction with the "long first column tail" aspect of t-orthogonal partitions 
for O,. Although t-orthogonal partitions have been largely ignored since 
Weyl's time, they have recently arisen [Pr2] in an algorithm model for 
tensor representations of orthogonal groups. Even more recently tableaux 
of this shape (which are hybrids of the tableaux of Theorems 6.1 and 6.2 
of [Prl  ]) have been used by King and Welsh to construct [KW] represen- 
tations of O,. The third peculiar orthogonal aspect explained by the reflec- 
tion derivation of (D s B D ÷ ) is the ~, + fl, ~ r requirement for O ~+-tableaux. 
It is interesting to note that of the three families of orthogonal characters, 
the somewhat synthetic choice of (7)Pn ends up pairedwith itself (viz. 13 p) 
in (DPBD p) while the opposite natural choices of SO2n and O, + end up 
paired with each other in (D s BD +). 

Here are all of the identities which we consider. Except for identities 
(DSD~ -) and (DSBD+), the sums are over all 2 w # = n x r ,  which was 
defined in Section 1. For those two identities, the sums are over all 
2 * w # * = n x r ,  which was defined in Section2. In identities (BxCJ), 
(DPBDP), and (DSBD+), let t=2r or 2r+ 1: then the + 1/2 is to be used 
exactly when t = 2r + 1: 

j = l  i = 1  

P(x, y) = Z Sp2.(.~; x) Sp2.(#; y) (Cx Cy) 

A(x) P(x, y) = Z 0 ; . (2  + 1/2; x) SO2.+ 1(#; Y) (Dx p By) 

P(x, y) = Z o~.(~; x) o f  A#; y) (Ox ~ D;) 

A(x) 3(y) P(x, y) = Z S~5)2. + 1(2 + 1/2; x) S~Ozr+ 1(# + 1/2; y) (B x By) 

P(x, y) = ~, SO2.(2"; x) O + *" 2r(/A , y )  ( S + DxD v ) 

A(x) P(x, y)= ~ SO2+ + 1(2 + 1/2; x) Sp2r(#; y) (Bx Cy) 

A( x)2r = E sP2r(#) Sp2.(2; x) (CxC) 
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A ( x ) ' =  ~, sp, 1(#) S~O2,+ ,(2( + 1/2); x) (BxCJ) 

3(x)' = ~ of(#) Of~(2(+ 1/2); x) (Ox ~ n DP) 

A ( x ) , = ~ o + ( # . ) S O 2 n ( 2 y ( + l / 2 ) ; x ) .  (DxB D s  +) 

In identities with only one set of variables, the order of the products has 
been reversed to keep with the usual way of writing a polynomial times an 
integer. The acronyms for the identities use the following naming conven- 
tions " 'A' for general linear, 'C' for even symplectic, 'O' for odd symplectic, 
'B' for odd orthogonal, and 'D' for even orthogonal. The use of superscripts 
p, s, and + for the orthogonal cases follows the definitions of the three 
families of orthogonal characters made in Section 2. 

Historic Occurrences. The variant of (AxAy) presented in Section 4 
P P below is very old. Morris obtained (DxeBy), (DxDy), and (BxBy) as 

Theorems III, II and IV of [Mor] with short bideterminant character 
calculations. King later conjectured these three identities and (CxCy) as 
Eqs. (6.16)-(6.19) of [-Kg2]. He then observed (personal communication) 
that (C~Cy) is an easy consequence (details below) of (BxBy). We believe 
the first occurence of (B~ C J) was in [BS2] and that the variations (B~ Cy), 
(OSO+), and (DSBD +) are new here. 

Representation Constructions. In Theorem 3.2 of [-Has], Hasegawa con- 
structs certain big representations and then proves that they decompose in 

P P manners corresponding to the cases (AxAy), (CxCy), (D p By), and (D x Dy). 
The actual mechanics of the proof consist of a slightly general character 
theoretic argument posed in the language of abstract weights. He then 
explicitly notes that the variant of (AxAy) presented in Section 4 below is 
a consequence in Section 3.3.1. Here is how to deduce the other three 
identities above from [Has], as illustrated for case (C~Cy): Knowledgeable 
representation theorists will recognize that the use of groups here instead 
of the Lie algebras used in [Has] is just a matter of taste. Let the eigen- 
values of the groups SP2n and S p2  r be x l  .... ,xn,  xT t , . . . , x21  and 
Yl . . . .  , Yr, y ~ - l ,  ..., y Z 1 ,  respectively. Then the eigenvalues for the subgroup 
Sp2  n x Sp2  r of the group O4nr are xly~ .... , x~y~, x l y (  1, ..., x n y Z  1 and their 
inverses. Hence the spin character for the overall representation of 
Sp2n x Sp2r which Hasegawa constructs is P(x ,y ) .  His Theorem 3.2 decom- 
poses this representation into the sum of representations indicated by the 
right-hand sides above. Section 3.3.2 of [Has] presents a bideterminant 
manipulation proof of (B~ By) which looks very similar to Morris' proof. 

Algorithm Proofs. A variant of (AxAy) is proved algorithmically in 
[Knu]; we give details of the relationship in Section 4. Then we present an 
algorithmic proof of (CxCy). 
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Reflection Proofs. The identies (AxAy), (CxC), (BxC3), (Dx p BDP), and 
s D+ (DxB ) are proved with the reflection technique in Section 7. 

Interrelationships. The identities (RxCy) and (BxBy) can be deduced 

from (CxCy) immediately by using the identity S O 2 n + l ( 2 + l / 2 ; x ) =  
A(x) Sp2,(2; x) noted in Section 2. 

p p One can immediately rewrite (DxDy) as (DSDy ~) using defintions and 
facts from Section 2: Whenever 2, ¢ 0, replace OP,(2; x) by SO2n(2 + ; x) + 
SO2,(2- ;  x). For  the first of these two terms, change the corresponding 
factor Ofr(#; y) to O~(#;  y). Since 2 w # = n × r, we have 2n = r -  ~, where 

is the length of the first column of #. Define kt to be the same as /z, 
except with a first column of length ~ + 2~., = 2r - ~. So # = #", and hence 
O p • 2 r ( # , y ) = O ~ ( / ~ - ; y ) .  Make this replacement for the cofactor of the 
second term above to change the sum over 2_~ n × r of SO2,(2+; x) 
O + • . . 2r(#, Y) + SO2,(2 , x) O ~ ( # - ,  y) to the sum over 2* w #* = n × r 

The identity (CxC), the odd t cases of (BxCJ)  and (D~BDP), and the 
even t cases of (DPBD p) and (DSBD +) follow immediately from the 

P P (DxDy),  respectively, by identities (C~Cy), (B~Cy), (DPBy), (DxDy), and s + 
setting, y = l .  (For the odd t cases of (DPBD p) one uses the equality 
S02~+~(#;y)=OPr(l~;y) at the dimension level.) The odd t case of 

s +) (D~BD can be deduced from the odd t case of (DPBD p) in a manner 
similar to the derivation of s + p p (D~Dy)  from (DxDy). When t=2r, the iden- 
tity (BxCJ)  can be obtained from (C~C) by changing each "2t" in a sym- 
plectic tableau for Sp2r(/L) to an "Go" for a Sundaram-type SO2,+~(2'; x) 
tableau. As the union runs over all 2~_nxr, this describes a simple 
bijection between the weighted multisets corresponding to the union of the 
terms sp2r(#)xSp2,(2;X) on the one hand and the union of terms 
Sp2r_ l ( /~ '  ) X S O z n +  l (2 t ;  x )  o n  the other hand. 

Orthogonal Algorithms? The only identities above which are not given 
p p any proof in this paper are (D p By), (D ~ D y ), and (D s D + ). We believe that 

it should be possible to give algorithmic proofs of these identities if one is 
willing to work hard enough. This would be done by using some kind of 
orthogonal tableaux from [ P r l ] ,  [ O k l ] ,  or [Sun]  together with a 
modification of the algorithm in [Pr2]  or [ O k l ]  made in the spirit of 
[BS2] and our Section 4. Also see the recent [Ok2].  

4. ALGORITHMIC PROOFS 

The following identity was proved by Knuth with a variation of 
Schensted's algorithm [Knu] :  

j = l i = l  
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The sum is over all )~ __ n x r and 2' is the conjugate shape of 2. It is easy 
to get (AxAy) from this by setting y: = z f  I and then multiplying both sides 
by (Yl "" "Yr) n. (Use the fact that ( Y l '  Yr) ~ s;~,(Y; 1, --., YZ 1 = s~(y), where 
2 u # = n x r.) There are several known direct algorithmic proofs of (A~Ay), 
including at least one published one [Rem].  We now sketch one such 
proof  as an introduction to our proof  of (CxCy). This proof (known at 
least to Gessel) is easily obtained from Knuth 's  proof  by watching the 
effect of applying this conversion. With more space a complete direct 
presentation from scratch could be made. 

Rewrite the left-hand side of (AxAy) to get 

r 

[I [I (yj+ xi)=Z s;(x) s.(y), 
j - - 1  i = n  

where the inner product runs "backwards" and the sum as before is over 
all 2 u # = n x r. Corresponding to the expansion terms of the product, we 
form input "sentences" for the algorithm. Each sentence consists of r 
"words," where each word i l i2. . ,  ik is such that il > i2 > ' "  > i k .  If this 
word is the j t h  word of the sentence, then its weight is defined to be 

n --  k yj xi~' . 'xi , .  The left-hand side of the identity is the generating function 
for the set of the 2 nr possible input sentences. The proof  uses induction on 
r with n fixed; suppose we have so far constructed a weight preserving 
bijection proving this identity up to the r - 1  case. Corresponding to the 
( r - 1 ) - v a l u e  of the right-hand side, consider the set of all ordered pairs 
(F, G) such that F and G are respectively n-semistandard of shape 2 and 
( r -1 ) - s emi s t anda rd  of shape # with 2 u # = n x ( r - 1 ) .  Place F in the 
upper left-hand corner of an enlarged rectangular n x r and G in the lower 
right-hand corner of n x r (as in Section 2), leaving one empty square in 
each row of n x r between F and G. Use Schensted insertion to insert the 
decreasing letters i l i2.. ,  ik of the r th word into F. By [ K n u ]  it is known 
that the shape 2' of the resulting tab leau .P  will have one more square 
than the shape of F in k distinct rows. Place an entry "r" in each of the 
remaining in-between n -  k squares and adjoin these squares to G to form 
a tableau Q of shape #'. Now 2 ' w # ' = n x r  with P and Q being 
n-semistandard, respectively. This process is bijective by [Knu] ,  and so the 
induction step is complete. 

Now we prove (CxCy) in a similar spirit, by revamping an algorithm of 
Benkart and Stroomer [BS2]. Ideally one will have [BS2] or its precursor 
[BS1] at hand while reading the following, but at least one should be 
familiar with either Berele's original algorithm [Ber] or one of its 
descendants [Ok l ;  Pr2; Pr3; Sun]. It would be much more elegant to 
present the entire proof  from scratch. Then it would not be necessary to 
mention orthogonal or odd symplectic tableaux. However, such a use of 
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journal space cannot be justified since very little effort is needed to 
translate the proof of [BS2] to a symplectic context (while at the same 
time introducing a second set of variables). 

In this section the ordered alphabets {1, i, 2,2 ..... n,~i} (or 
{1, i, 2 ,2 , . . . , r , f} )  are used instead of { 1 , 2 , 3 , 4 , . . . , 2 n - l ,  2n} (or 
{ 1, 2, 3, 4 ..... 2 r -  1, 2r }) for the symplectic tableaux. This means that sym- 
plectic tableaux can be characterized as semistandard tableaux in which the 
letters i and i occur no "lower" than the ith row (i.e., these letters cannot 
occur in rows numbered ~> i + 1). The weights assigned to these two letters 
are xi and x71 (or Yi and y71), respectively. 

Corresponding to terms from the expansion of the left-hand side 

[] ~ (x2 ~/2yf,/~ + xi-,/~yT,/2)(x+,/2y/~/2 + xy,/2yj~/2) 
j = l i = n  

of the identity, we again form input sentences for the algorithm consisting 
of r words. Now each word further consists of an ordered pair of 
"syllables." Each syllable is an element of the product set {n, ~} x .. .  x 
{2, 2} x {1, i}. The x-weights of syllables are formed as in the example: 
x((3, 2, 1))= x~-mXzl/2x; -m. We assign the weight y* to the first syllable 
of the j t h  word, where * is n / 2 -  # ,  with # being the number of barred 
letters oceuring in that syllable. Similarly assign the weight Y7 * to the 
second syllable of the j t h  word. Let the xy-weight of a syllable be the 
product of its x-weight with its y-weight, and extend this definition multi- 
plicatively to words and sentences. Now the left-hand side above is the 
generating function for the set of all possible 22nr input sentences. As we 
input one word of a given input sentence at a time, the algorithm will 
progressively construct a pair (P, Q) of symplectic tableaux. To each such 
pair we assign the weight x(P) y(Q), where x(P) is as Section 2 and y(Q) 
is defined in the same way, with yj replacing xj. 

THEOREM. The algorithm described below gives a weight preserving 
bijection from the set of all sentences with r words to the set of all pairs 
(P, Q) of tableaux such that P and Q are respectively 2n- and 2r-symplectic 
and have complementary shapes in n × r. Taking xy-weights, this bijection 
immediately implies the identity (CxCy). 

The proof of this theorem is as above: Fix n >~ 1 and assume that it has 
been verified up to r - 1 .  Let F and G be 2n- and 2(r-1)-symplectic 
tableaux of complementary shapes in n × (r - 1). Given such a pair (F, G) 
and an input word w, use the following algorithm to create a new pair 
(P, Q) with P and Q being 2n- and 2r-symplectic, respectively, and 
complementary shapes in n x r. 
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Algorithm. Let the two syllables of the input word w be denoted 
u =  {u 1 ..... u,,} and v =  {vl ..... v~}, where each u i = i  or i and each v i = i  
or L Form a strictly decreasing sequence z of letters according to 
Definition 3.4 of [BS2]: Start with the empty sequence and let i run from 
n to 1. If both ui = v~ = i (or both u~ = v~-~), place i (or i) at the end of z. 
If u~ = i and vi = i, place nothing in z for that value of i. If ui = i and vi = i, 
place i followed by i on the end of z. In the sequel we will refer to these 
four possibilities for the ith iteration with (a)-(d),  respectively. Insert the 
strictly decreasing sequence z of letters into F with the usual Berele 
procedure to create a tableau P',  with the following simple modification: 
As annihilations occur, after sliding the empty square (or "puncture") out 
to the southeastern boundary of the tableau, place an ? in that square, 
rather than simply forgetting about  it as in I-Bet] or placing an oo in it as 
in [BS2]. Now place P '  in the upper left-hand corner of n × r and G in the 
lower right-hand corner of n × r. Place entries r in any remaining 
unoccupied squares of n x r, and transfer all entries f from P '  to the new 
lower right-hand tableau which will called Q. Use P to denote the tableau 
resulting from removing the f 's  from P'. We now have a pair (P, Q) of 
tableaux of completementary shape in n × r. 

In the following lemma, the x-weight of a pair of tableaux (F, G) is 
defined to be x(F). 

LEMMA. Fix n >~ 1 and r >~ 1. There is a simple x-weight preserving 
bijection between the set of all pairs (P',Q') of (2n+ l)-Sundaram and 
(2r - 1 )-symplectic tableaux of complementary shape in n x r and the set of 
all pairs (P, Q) of 2n-symplectic and 2r-symplectic tableaux of complemen- 
tary shape in n × r. 

Proof of Lemma. Place P '  and Q' in n x r in the usual way. Change 
each oe in P '  to an ~ and move each of these to Q'. Call the resulting 
tableaux P and Q. Clearly P and Q have complementary shapes. The 
x-weight is preserved since the oe's contributed nothing to x(P'). Clearly P 
is 2n-symplectic. Since there was no more than one oe per row P',  there 
will be no more than one ? per column of Q. Since the r='s appear at the 
bot toms of the columns of Q, we see that Q is semistandard. Since Q has 
no more than r rows, it is 2r-symplectic. • 

Proof of Theorem. Assume the theorem is true up to the value r - 1 .  
Use the above lemma in the reverse direction to convert each of the 
complementary pairs (F, G) of 2n- and 2 ( r -1 ) - symplee t i c  tableaux to 
complementary pairs (F', G') of (2n + 1)-Sundaram and ( 2 r -  3)-symplectic 
tableaux. Now refer to the ( 2 r - 1 ) t h  and 2rth steps of the analogous 
procedure in [-BS2-I. Note that their ( 2 r -  1)th step really just temporarily 
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"parks" their ( 2 r - 1 ) t h  input Syllable S' in the column of half-boxes. 
Identify our second syllable v of the r th input word w with their S' syllable 
of the latter part of Definition 3.5 which is being "unparked" from the 
column of half-boxes. Identify our first syllable u of w with their 2rth input 
syllable S of the latter part of Definition 3.5. So the procedure of forming 
and inserting z specified above is (almost) exactly the same as prescribed 
by Definition 3.4 and the latter part of Definition 3.5 of [-BS2]. (We have 
harmlessly reversed the order of the pair syllables above in our version 
of applying Definition 3.4 since as a matter of taste we think that they 
should have interchanged the roles of S and S' in their application of 
Definition 3.4.) However, [-BS2] places oo's in their new left tableau P' 
whereas we place Fs in our new right tableau Q. The description of our 
algorithm above is the result of applying the lemma to the output of their 
algorithm. The placement of r's in the remaining empty boxes above is 
exactly the same as their placement of q's in part (ii) of Definition 4.1. Since 
applying the lemma is bijective in the forward direction, we can deduce the 
bijectiveness of our procedure from the bijectiveness of their procedure. 
Since their procedure produces a pair (P', Q') of (2n + 1)-Sundaram and 
( 2 n -  1)-symplecitc tableaux, the lemma implies that (P, Q) will be a pair 
of 2n- and 2r-symplectic tableaux. The preservation of x-weight is inherited 
from [BS2] via the lemma. During the n steps of forming the sequence z, 
suppose that each of the cases (a), (b), (c), (d) occurred respectively 
a, b, c, d times. Note that a + b + c + d = n. The y-weight of the input word 
w was c - d .  Suppose that e annihilations occurred during the insertion of 
the a ÷ b + 2d letters of z. Then P has a ÷ b + 2 d -  2e letters more than F. 
Therefore Q has n - ( a  + b + 2 d - 2 e )  letters more than G. But e of these 
letters are Fs. Therefore the y-weight of Q is y* times the y-weight of G, 
where * = # r ' s -  # F's = ( n - a - b - 2 d + e ) - e  = n - a - b - 2 d =  c - d .  
Since this was the exponent of Yr for the y-weight of w, the procedure 
preserves y-weights as well. • 

5. WEYL GROUPS AND WEIGHT LATTICES 

First we review the general terminology [-Hum]. Suppose that a finite set 
of vectors R in the Euclidean space E" forms a root system. Define the 
modified inner product {7 ,~ ) :=2 (7 ,~ ) / (~ ,~ ) .  The reflection of  ~ with 
respect to ~ is defined to be r~(7) : = 7 -  {~, ~ )  ~. The Weylgroup Wis the 
finite group generated by the reflections with respect to the roots. Fix a 
choice of positive roots R +. This determines the set of simple roots 
A = {~i}7_ 1. The length l(a) of a ~ W is the minimum number of reflections 
with respect to simple roots with which ~ can be expressed as a product. 
The lattice of  weights A consists of all vectors 2 such that {2, ~ )  is an 
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integer for all e E R. It is invariant under W. The dominant weights A + 

consist for all , i~A such that (2, e )  is nonnegative for all c~, and the 
strictly dominant weights A ++ consist of all 2 such that (2, ~ )  is always 
positive. Let 6 be the unique vector such that (6, cq) = 1 for 1 ~< i ~< n. Then 
A ++ = A  + +6.  The dominant chamber is cg := {7: (7, ~) > 0  Vc~R}. A wall 
of the dominant chamber consists of the intersection of the closure ~ of the 
dominant chamber with one of the root hyperplanes {7: (7, a ) =  0}. 

In this paper we are concerned primarily with the root systems of types 
Bn, C n, and D n. The positive roots can be specified with respect to some 
fixed orthogonal basis {ei} of E n. First define four sets of vectors, where 
l ~ i ~ j ~ n :  R l : = { e  i - e j } ,  R = : = { e  i + e j } ,  R 3:={ei},  and R 4 : = { 2 e , } .  
Then R = R 1 u  Rz  u R 3 for Bn, R = RI ~ Rz  u R 4 for Co, and R = Rl  w R 2 
for Dn. The respective reflections with respect to these roots have the 
following effects on the n-tuple of coordinates (71,72 . . . . .  7n)  of a vector 7: 
reflection rij interchanges 7i with 7j, reflection f~ interchanges 7i with 7j and 
then multiplies each of those two coordinates by - 1, and corresponding to 
the roots in either R3 o r  R 4 the reflections ri multiply 7~ by - 1. Hence the 
Weyl groups for the root systems B,, and C,, are the same and are 
generated by r,> f0, and ri, while the Weyl group of type D, is generated 
by r o. and ?~. Next define 7/~ + 1/2 to be the set of all n-tuples of half- 
integers. Then the set of weight A is Z ~ for C, and Z" w (77 ~ + 1/2) for B~ 
and D~. The sets of dominant weights A + were described in Section 2. The 
vector 6 is ( n , n -  1 ..... 2, 1) for C, and ( ( n -  1)/2, ( n -  3)/2 ..... 3/2, 1/2) for 
Bn and ( n - 1 ,  n - 2  ..... 1, 0) for D,. Hence we see that A + + consists of 
strictly decreasing n-tuples 2 of the following quantities: positive integers 
for Cn; for B, also allow all positive half-integers; and for D,, further also 
allow such n-tuples but with Z, < 0  as long as [Z,[ < , t ,_~.  

One other geometric context is needed for the identity (A~Ay). The 
following setup is closely related to the A, 1 version of the above, which 
would normally be described in E ~-~. We call the following context S~, 
since the reflection group W is be nth symmetric group (as it would be for 
An 1). This version gives a nicer picture which also has cleaner coor- 
dinates. Let A be P", the set of all n-tuples of positive integers. Let A + be 
the set of all n-partitions with nonzero components, and let A + + be the 
subset of A + with strictly decreasing components. Let 6 = (n, n - 1, ..., 2, 1). 
The reflections r,j still act by interchanging two coordinates, and they 
generate the symmetric group S,. 

6. THE GESSEL-ZEILBERGER REFLECTION METHOD 

In 1887 Andr6 used a reflection argument to count the number of north- 
easterly lattice paths in the plane from (2, 1) to (m + 2, n + 1) with m >~ n 
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which never touch the line x = y. Zeilberger generalized this to n dimen- 
sions in 1983 [Zei].  Recently Gessel and Zeilberger further generalized this 
counting procedure to settings where the reflections come from Weyl 
groups or affine Weyl groups. The proposition below is a version due to 
Gessel of the methods in [ G Z ] .  

Let ~ be a lattice invariant under W, and let 50 be a subset of vectors 
fl which is also invariant under W and which generates ~ .  We say that 50 
is a step set for ~ and R if for each a e R there is a constant c(a) ~ ~ such 
that (fl ,  a } = 0  or +c (~ )  as fl runs over 50. Let ~ + +  be the intersection 
~c~Cg. Given two points q~, ~ , E ~  ++, we want to count the number 
F(~o,~k,t) of paths ~o, ~o+fle~, (p-~flilnLfli2,...,~l=fp~-Z;=lflij from q) to 

s ~ + + in t steps which never leave ~ + +. Such paths will be called good. 

PROPOSITION. Let ~o ~ ~ + +, and let 5 ° be a step set for ~ and R. Then 

[z l '  x # ~ (--1) '(~)x~(~)= ~ F(~o,~9, t) ~ ( - 1 ) ' ( ~ ) x  ~(~'). 

Proof. Theorem 3 of [ G Z ]  states that F(cp, ~9, t) is the coefficient of x ~' 
in the left-hand side for ~p ~ # + +. Since 50 is invariant under W, the left- 
hand side is skew-symmetric under W. Hence the rest of the right-hand side 
must be as stated. • 

Further Proof Remarks. The constant inner product requirement on 50 
is needed for the reflection argument in order to ensure that a path can 
never "jump" one of the walls of the dominant chamber: A wall 
{y: (?, cd)=0}  can be jumped with a step f l~50 only if there is some 
y E # +  + such that (y, c~) > 0 for all a but with (y + fl, cd) < 0. The condition 
implies ( % c d ) = m c ( a ' ) > 0  for some m~2_ while (fl, a')=c(a').  Hence 
(y + fl, a ' )  < 0 is impossible. 

For  the proof of the main result Theorem 1 of [ G Z ] ,  a total order 
should be put on the set of positive roots R +. Then when one is reflecting 
the beginning portion of a path to ~9 up to its last point 7 on a wall of cg, 
one would reflect with respect to the minimal positive root a for which 
(y, c¢) = 0. This resolves any ambiguity in the method caused by having y on 
more than one root hyperplane. The implicit assumption of [GZ]" that y 
can only be on a wall corresponding to a simple root is unnecessary. 

7. REFLECTION RESULTS 

For  the identity (AxAy), the proposition above is used in the S, context. 
The step set is 50 = {Zi~ r el: T _  { 1, 2 ..... n } }, which consists of 2 n vectors, 
including 0. The j t h  step is given the weight y~.-m. 
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For  the other identities listed in the following theorem, the proposition 
is used with the Weyl group BCn or D n. When either of these groups acts 
on F as in Section 5, it is not hard to show (Gessel, personal communica- 
tion) that the only possible choice for 5 p is either the 2n vectors 
{ +_ei: 1 <~i<~n} or the 2" vectors { ( + d ,  q2d,..., _+d)} for some choice of 
c or d. (Actually 0 can be adjoined to either choice.) We use the latter 
possibility with d =  1/2, i.e., 5 p = {( __. 1/2, +_ 1/2 ..... ± 1/2)}, and the lattice 
~ = A ( B D J .  If the first choice for 5 p is taken, then very similar work to 
that described here would prove the orthogonal and symplectic character 
sums for [xl  +x ; - I  + --. + x , + x ~ - l ]  ' which appear in [Okl ;  Pr2; Pr3].  

Is it possible to modify the reflection technique in order to obtain proofs 
of the two variable forms of the identities other than (AxAy)? 

P P THEOREM. The identities (AxA~), (CxC), (BxCJ), ( D x B D ) ,  and 
( D s B D + ) can be proved with the reflection method. 

Proofs. Roughly speaking, we apply the reflection proposition with ~o 
chosen to be the 5 for the root system appearing with subscript x in the 
identity label and with ~ = 2 + 6. In each case we need to construct a set 
of tableaux for each 2 e ~ + + which label each possible good path counted 
by F(6, 2 + 6 ,  t). Then dividing both sides by the alternating Weyl 
denominator will give the desired identity, after we easily check that the 
sum condition accurately describes the set of all 2 + 6 that can be reached 
from 6 in t steps. In each case the paths start at 6 with 2 = 0  being 
described with the empty shape 2 = ~3 and the single tableau Q being the 
null tableau of shape ~Z~. Then using induction on t we assume that a 
pair (2, Q) as in the statement of the identity has been constructed for 
each good path with t -  1 steps from 5 to 6 + 2, where the shape of Q is 
determined by 2. 

For  (AxA j take W = S n ,  6 = 6 ( S j ,  N = A ( S , ) ,  and N + + ( S J  as at the 
end of Section 5, and 5 ~ as above. Assume that after t - 1  steps we are at 
a 2 + 5 such that 2 is an n-partition, and that for each good path to 2 + 5 
we have a ( t -  1)-semistandard tableau Q of shape # such that 2 w # =  
n x ( t -  1). Place 2 in the upper left-hand corner of an enlarged rectangle 
n x t and Q in the lower right-hand corner of n x t (as in Section 2), leaving 
one unassigned square of n x t in each row between 2 and Q. The only 
steps/? from 2 + 5 which stay in ~ + + are those such that 2 +/? is still an 
n-partition. If such a / ~ = Z i ~ r e i ,  adjoin a square to 2 at the end of the 
ith row for each i e T, thereby creating 2'. The remaining unassigned 
squares occur at the bottoms of the j th  columns of Q for each j ¢  T. Place 
a "t" in each of these to create Q'. Clearly Q' is t-semistandard of shape #' 
such that 2 ' w k t ' = n x  t. The weights y y - l n  are preserved under the 
action of W, and so the reflection proposition can be extended in this 

582a/62/1-9 
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case from an integer coefficient F(6, 2 +  6, t) to a polynomial coefficient 
F(6, 2 + 6 ,  t;y) (=su(y) when 2 ~ # = n  x t). 

For  (CxC) take W =  W(BC,), 6 = 6(C,), ~ = A ( B D , ) ,  ~ + +  = A + + ( B , ) ,  
and 50 as above. Assume that after 2 r -  2 steps we are at a 2 + 6 such that 
2_ __nx ( r - 1 ) ,  and that for each good path to 2 + 6  we have a ( 2 r - 2 ) -  
symplectic tableau Q of shape # such that 2 u # = n x (r - 1). Consider the 
next two steps from 5e together. Do the following procedure for each 
extension of (2, Q) to a new 2' via a good path extension with two steps. 
Start the accounting update by placing 2 in the upper left-hand corner of 
n x r and Q in the lower left-hand corner of n x r. The length of each row 
of 2 will change by - 1, 0, or + 1 when passing from 2 to 2'. Give this new 
square to 2' if the row change was + 1. If the row change was - 1, place 
2r and 2 r -  1 in the two empty squares (left to right) of n x r in that row 
and give these two squares to Q'. If a row change of 0 resulted from a 
+ 1/2 at the ( 2 r -  1)th steps followed by a - 1/2 at the 2rth step, place 2r 
in the empty square and give it to Q'. Otherwise, if the 0 change came from 
a - 1/2 followed by a + 1/2, place a 2 r -  1 in the square to be adjoined to 
Q'. This process is clearly injective from the set of good extensions of the 
paths to a set of (possibly bad) extensions of Q; we must check that this 
process produces good (2r)-symplectic extensions of Q and is bijective with 
all such good extensions. When checking the symplectic conditions for Q 
keep in" mind its flipped and rotated position and the conventions 
regarding prepositions and nouns given in Section 2. Both 2 and 2' are 
good shapes, and so by construction we have 2 w # = n x ( r - 1 )  and 
2' w #' = n x r with Q and Q', respectively, of good shapes # and #'. Hence 
the shape #' /# is that of a good skew tableau, and the new entries 2 r -  1 
and 2r are bigger than all existing entries of Q. By constuction, the entries 
strictly decrease left to right within a column of Q'. Given the procedure for 
filling in two new squares within a row, and given that #/#' is a good skew 
shape, the only conceivable problem could be one new square in each of 
rows i and i + 1 directly above and underneath each other, with the respec- 
tive new entries being 2 r - 1  and 2r. However, this would mean that the 
( 2 r -  1)th step subtracted 1/2 from the ith coordinate while adding 1/2 to 
the (i + 1)st coordinate, which is impossible since the two coordinates of 2 
were equal before the ( 2 r - 1 ) t h  step. (The impossibility arises because 
2 i + 6 i -  1/2=2~+n-i+ 1/2 and 2~+1+6i+1+ 1/2=)ti+~ + n - i +  1/2 and 
so ,~=2~+1 would imply that these two coordinates are equal after the 
(2r - 1 )th step, which is not allowed in ~ + +.) There are no special problems 
with the last row; it is actually possible for the last coordinate of 2 to be 

- 1/2 temporarily after the (2r - 1)th step, since then 2 + 6 would still have 
its last coordinate positive. If all of the preceding is understood, then it is clear 
that this accounting process is bijective with a// possible good symplectic 
extensions Q' of Q. Hence F(6, 2 + 6, 2r) = sPzr(#) when 2 ~ # = n x r. 
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The t = 2r case of (Bx CJ ) is proved in the last paragraph. There are two 
ways to arrive at the t = 2r + 1 case. In the first way, one chooses & = &(C~) 
as above, but then realizes that one cannot stop the path after an odd 
number of steps since one will not then be in A(C,), which is needed to end 
up with a Cn character. So one simply multiplies (CxC) by A(x) on both 
sides and uses the simple identity S~Ozn+~(J[+ 1/2;x)=A(x)Sp2n(2; X). In 
the second way, one chooses 6=g(B,)=((n-1)/2, ( n - 3 ) / 2  ..... 3/2, 1/2). 
Note that the only first step possible is to choose/~ = (1/2, 1/2 .... ,1/2) and 
go to (n, n -  1, ..., 2, 1 )=  6(C.).There is no need to "account" a forced step, 
so one just proceeds from &(C,) as in the preceding paragraph. Then divide 
by the Weyl denominator alternating sum for B~ at the end to get (BxC). 

For  the t=2r case of (DxPBDP), take W=W(D~) ,  6=&(Dn), ~ =  
A(BD,), ~ + +  =A++(Dn) ,  and J as above. The paths start at 6, which 
has &n = 0. Let k be the number of later points 7 on the path, possibly 
including the end Z + &, which have 7n = 0. Map every good path to a path 
in A+(B~) be replacing 7~ by [%[ for every point 7 in path. Paths in 
A+(B,,) which touch the ~ = 0  hyperplane k times after 5 have 2 k paths 
mapped onto them by this process. Hence if 2 +& e A+(Bn), the count 
F(&, 2 + &, 2r) is obtained by summing the quantity 2 ~ over the set of all 
good paths which lie entirely in A +(Bn). Note that if Z, :~ 0, we must group 
together the two D, Weyl quotients with _+2n in order to obtain the 
character OP,(2; x) in the identity. Nothing need be done if 2 n = 0. Now 
follow the proof of (C~C). Normally in :~++ =A++(D~)  the last coor- 
dinate of a point can be negative. Here, however, replace 2~ by 12,,I when- 
ever this happens as the pairs (2, Q) are being constructed as with (CxC). 
The portion of the path following the last incidence of 7n = 0 (which can be 
possibly empty) need not be given special accounting for the replacing of 
2, by [2~1 because of the character grouping noted above. We only need to 
count how many times we return to 7 ~ - 0  in order to account for the 
replacing of Z, by [Z,I elsewhere. In terms of the construction of Q', this 
happens whenever the last row length 2n of 2 is reduced from 1 to 0 and 
two boxes containing 2r and 2 r -  1 are adjoined to Q to from Q'. However, 
this factor of 2 in the weight 2* is exactly one of the ways in which the 
combinatorial definition of o~n(/~ ) differs from the combinatorial definition 
of sp2~(#). We now only need to check that the other special condition Q'~, 2 ¢ 
2 r -  1 arises in the reflection construction of Q'. In order for Q'r, 2 = 2 r -  1 
to happen, we would have had to have 2~_ 2= 0 and hence 2~ = 0 as well. 
Also, the ( 2 r -  1)th and 2rth increments in the ( n -  1)th coordinates must 
have been - 1 / 2  followed by +1/2. But it is impossible to have 
2~_ ~ + &._ 1 - 1/2 = 1/2 > [Z~ + 6~ + fl.[ = [//n[ = 1/2 for any value of fin, as 
is required to be in ~ + +  = A + + ( D . ) .  We leave it to the reader to confirm 
that there are no other differences between this case and (CxC). If so, then 
F(&, Z + 6, 2r) = opt(#) when 2 w # = n x r. 



126 ROBERT A. PROCTOR 

For  the t = 2 r  case of  s + ( D x B D ) ,  take W = W ( D n ) ,  6 = 6 ( D n ) ,  N =  
A(BDn), ~ +  + = A ÷ +(Dn), and 5 ~ as above. N o w  allow the last coordinate 
of  2* to become negative. If  the same construct ion of Q '  is used as for 
(C x C), we pass from 2" u #* = n x (r - 1 ) to 2 "  u #* '  = n x r. D r o p  the *'s 
for the rest of this paragraph.  N o  problems are presented by the possible 
negative row length 2,  in the allocation of  the new square in the last row. 
The only new aspect here are the O~r-tableau conditions that the sum of 
the first two column lengths a~r + fl~r of  Q'  cannot  exceed 2r, and also that 
c ~ r - l +  f l ~ r - l ~  < 2 r - 1  for Q'. The first condit ion is obviously satisfied if 
2"~>0. So assume that  ~ r + f l ~ < 2  is violated with 2 " < 0 .  Then 
r +  12"1 + ( r - 2 , _ ~ ) > 2 r ,  implying that 12"1 > 2 ~ _ 1 ,  which would be a 
violation of the condit ion for ~ + + .  Since ~ 2 r _ 2 + f l z r _ 2 ~ < 2 r - 2  for Q, 
the other condit ion a ~ _ ~ + f l ~ r _ ~ < 2 r - 1  can be violated only if 
~2r- 2 + ]~2r 2 ~ 2 r - -  2 and a 2 r - -  1 occurs in each of the last two rows of  
n × r. When  2,  ~> 0 this can happen only when Q'r, 2 = 2 r -  1; the a rgument  
against this is as in the preceding paragraph.  So suppose that the second 
condit ion is violated with 2,  < 0. Then in each of  the last two rows of 2, 
the ( 2 r - 1 ) t h  and 2r th  increments were - 1 / 2  followed by +1/2 .  But 
0~2r 2 "~ ]~2r 2 = 2r - 2 (i.e., the first two columns of Q had a total of 2r - 2 
squares), and so ( r -  1 + 12.1)+ ( r -  1 - 2 ,  1 ) = 2 r - 2 .  Thus 12,1 = 2 ~ _ , ,  
which means [ 2 , - 1 / 2 1  > 2 n  1 - 1 / 2  after the ( 2 r - 1 ) t h  step, a violation of  
the condit ion for ~ + +. So the second O~n-tableau condit ion is satisfied as 
well and F(6, 2 + 6, 2r) = o2~,(# *) when 2* w #* = n x r. 

The t = 2 r  case of  (B~CJ)  and the t = 2 r - 1  cases of (DPBD p) and 
(D~ B D +) are now confirmed. In  each case, start with the t -  1 version of 
the same identity and take one more  step. Account  this step as follows. Add 
a half square to each row between 2 and Q. If  the ith coordinate  of 2 
increases by 1/2, give the half square to 2. If the ith coordinate  of  2 
decreases by 1/2 remove a half square from 2 and give Q'  a full square with 
entry t. N o w  remove a half square from the end of each row of 2', creating 
2". Note  that  2" w # '  = n x (r - 1) (and also analogously 2*" u #* '  = 
n x ( r - 1 ) ) .  Also note that the difference between Q and Q' is just a 
"horizontal  strip" of  t's, which is exactly the difference in the first case 
between Spar 2 tableaux and sp2r_~ tableaux and in the last two cases 
between ( 2 r - 2 ) - t a b l e a u x  and ( 2 r -  1)-tableaux. • 

Note added in proof Two closely related recent papers are [Ok2] and [-GM ]. Our assertion 
at the beginning of Section 7 that there are only two possible step sets of type D n is wrong; 
see Section 4.5 of [GM] for some other possibilities. 
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