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This paper discusses estimation of the semilinear model E{ y | x, z]1=x'f+ g(z)
using series approximations to the unknown function g(z) under much weaker con-
ditions than heretofore given in the literature. In particular, we allow for z being
multidimensional and to have a discrete distribution, features often present in
applications. In addition, the smoothness conditions are quite weak: it will suffice
for \/; consistency of E that the modulus of continuity of g(z) and E[x]z] be
higher than one-fourth the dimension of z and that the number of terms be chosen
appropriately.  © 1994 Academic Press, Inc.

1. INTRODUCTION

A regression model that is useful for estimating treatment effects while
controlling for covariates in a very flexible way is a semilinear model

Efylxz)=x8+g(2), (1)

where x and f are ¢ x 1 vectors of regressors and parameters respectively,
and g(z) is an unknown function of an r-dimensional vector z. In this
model § is the partial effect of treatment x given covariates z, where the
covariate effect has unknown functional form but is restricted to enter
additively. In this case § is the main object of interest. Alternatively, one
might use this model to allow the regression to depend nonparametrically
on a variable of interest z, while controlling for covariates x in a
parsimonious way, in which case g(z) is the main object of interest.
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The purpose of this paper is to discuss estimation of this model using
series approximations to g(z), under much weaker conditions than
heretofore given in the literature. In particular we allow for z to be multi-
dimensional and to have a discrete distribution, features often present in
applications. Also, the smoothness conditions we impose are quite weak: it

will suffice for \/n consistency of § that the modulus of continuity of g(z)
and h(z)= E(x| z) be higher than one-fourth the dimension of z and that the
number of terms be chosen appropriately. Bickel and Ritov (1988) showed
that for the case of a random vector of dimension one, a continuity
modulus of 1/4 is a minimal requirement for \/I; consistent estimation of
the squared density integral. This suggests that in the similar semilinear
model, where f can also be thought of as a functional of a nonparametric
distribution, our conditions may be nearly minimal. Furthermore, the
derivation of the convergence rate is straightforward, using simple results
on projection matrices and expectations that are familiar from analysis of
ordinary linear regression.

Previous work on semilinear regression models includes papers by Engle
et al. (1984), Heckman (1986), Rice (1986), Robinson (1988), Speckman
(1988), Chen (1988), Eubank and Speckman (1990), Eubank ef al. (1990),
Andrews (1991), and Chamberlain (1986). This paper is different from this
literature in the features described above, although Robinson (1988) and
Speckman (1988) have given some results for multivariate, continuously
distributed z. In addition, we allow for heteroskedasticity and several types
of series approximations, including splines, polynomials, and Fourier series.

2. THE ESTIMATORS

The model can be written as
yizx;ﬁ+g(zi)+£i’ (1219 seey n)

where x; is of dimension ¢, z, is of dimension r and El¢; | x;, z;,]=0.
The estimator is obtained by regressing y on x and functions that can
approximate g. Let

Pr(2) = (pix(2), oy Pri(2))

be a vector of approximating functions, such as power series or splines.
Also, let py be the nx K matrix with ith row p,,=pk(z;) and let Q=
Px(PxPx)” px be the projection matrix formed with the approximating
functions, where (p% px)~ denotes any generalized inverse. The estimator
of f§ are the coefficients of x in the (possibly) singular linear regression of
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y on x and p.{(z). By the usual “profile” or “partialing out” formula, the
estimator may be written as

f=x(I-Q)x)"'X(I-Q)y

when x'(/— Q) x is nonsingular, and the estimator is taken to be zero
otherwise. Under the conditions that follow this matrix will be nonsingular
with probability approaching 1, and E invariant to the g-inverse (px px) .
This is a series estimator like that considered in Chen (1988), Andrews
(1991), Chamberlain (1986), and Newey (1991). However, unlike Chen
(1988) and Andrews (1991), we allow for py pi being asymptotically
singular. This is a key feature of our analysis, because it allows for us to
be agnostic about the distribution of z,, e.g., z; may be discrete.

In the homoskedastic case where E[&? | x;, z;] =0 we will be able to
show that variance estimation is possible. The usual estimator of the
variance covariance matrix in that case is

¢*(x'(I—Q) x/n)~,

where

1 - .

a2 ’
G =——(y—x I— —xf).
TR U= 0= xB)
Although in the context of the partially linear model one is often
interested in estimating § while g is treated as a nuisance parameter, there
are cases where an estimate of g is needed. If one is interested in estimating

the function g, then an obvious estimator is

§(2)=px(2) (Pk k)™ Pr(y—xB),

which is a nonparametric projection estimator, where one projects the
residual y — x§ on basis functions of z. The estimator will not be invariant
to the choice of g-inverse, although g(z,) will be. Of course if § was known
exactly then we would be in the situation of a fully nonparametric
regression since

y—xf=g(z)+e

We will provide results for two types of basic functions. The first are
power series,

Pk (@)= [T (z)%®,
=1

where (1,(k), ..., 4,(k)) is a vector of nonnegative integers, distinct for
different k, equal to any vector of nonnegative integers for some k& and



ESTIMATION OF SEMILINEAR MODELS 33

3.7_, 4;(k) increasing in k. The second are interaction splines where we
assume that the bounds on the support of z are known, which without loss
of generality is assumed to be the cube [T7_, [ -1, 1]. We will also assume
L +1 fixed evenly spaced “knots,” denoted Z; ; for I=1,2,.., L+ 1. If the
knots are evenly spaced then

_ (=1
A=Y

An mth degree spline sequence can be defined by

j(z)_{( z,)* 7Y for 1<k<m,

Pz = {(zj zjk m)+}ms for k>m+1,

where (-), = 1(->0)(-). To obtain multivariate splines one mulitplies the
univariate splines

Pix(2) = H 2 ENY for k=1,2,...

3. CONVERGENCE RATES

The convergence rates we derive will depend on approximation error
bounds for g and h. We specify that there are functions e (K) and e,(K)
satisfying magnitude restrictions specified below, such that there are = and
n with

n 172
sup { Y. E[{g(z)—pk(z)) n}zl/n} < e (K)

nzl \i=1

n 172
max sup { S! E[{h(z)— prlz) n}"]/n} <en(K),

J o nz2l l=1

where h;(z;)= E(x; | z;) with x; being the ith observation on the jth
regressor. We will assume throughout that h;(z) is the same for different
observations.

For specific approximating functions, the magnitude of these approxima-
tion errors will be determined by the degree of smoothness of the functions
being approximated. Define a function f(z) to be smooth of degree d, if it
is continuously differentiable of order equal to the largest integer [d,],
strictly less than d, and there is a constant C such that for each partial
derivative of(z) of order [d,],

[0f(z) — f(2)| S C |2 —z| ¥~ 4],
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The following assumption is made regarding the unknown functions g and
4 and the support.

Assumption 1. The support of z is compact and there are extensions of
g(z) and A(z) to a compact cube, containing the support such that the
extensions are smooth of degree d, and d,, respectively. Also, p,x(z) are
either power series or splines.

Under Assumption 1, it follows from Lorentz (1986, p.90) for power
series, and from Schumaker (1981, Thm. 12.8) for splines, that

e (K)= O(K~%").

Note that one advantage of the power series is that one does not need to
know the support of z. Splines, however, may be more robust to extreme
points in the z data. Similar approximation rates for trigonometric polyno-
mial approximations also follow from Lorentz (1986, p. 90), but we do not
discuss such approximations here.

Let

u;=x;—h(z;)

and let u; be the jth element of u,. We make the following assumption
regarding the data generating process. In the statement of the assumption
¢ and 4 will be used to denote generic small and large positive constants,
respectively.

Assumption 2. The data are independent observations and

(1) Var(y;|x,,z,)< 4 < o0 for all i;

(ii) (1/n)37_, E(u;u})= A, is uniformly positive definite;
(iit) (1/n) X7, E(e?u,u])= B, is uniformly positive definite;
(iv) Var(x;|z;)< 4 < oo is bounded for all i;

(v) (/myT7_, E(luze;|**?) <A< oo for each j=1,.. g for some
6>0;

(viy (1/m)X7_, E(Ju;)**°)< 4 < oo for each j for some 6> 0.

Conditions (i) and (iv) guarantee that the unknown functions g and 4 can
be consistently estimated using the series (spline) approximations and allow
for heteroskedasticity in the residuals ¢; and u,. Conditions (ii), (iii), (v),
and (vi}) will allow one to apply the Central Limit Theorem of Liapunov to
the estimator one obtains when & is known, given by

B=(uwu)""w(up+e),
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where u=(u,, ..., u,)’. Condition (ii) is required for identification of 8. As
is usually the case, x should not include a constant, otherwise this condi-
tion will fail. The results will be stated both in terms of the order of
approximation for the unknown functions and in terms of restrictions on
the way that K is allowed to increase and on the degree of smoothness of
the unknown functions. In stating the second set of conditions it is under-
stood from the above discussion that the condition relates to both spline
and power series approximations. The first result concerns the convergence
rate for f.

THEOREM 1. Given Assumption 2, and assuming that K= K(n)— oo in
such a way that K(n)/n — 0, and either
(i) e,(K(n))— 0 and e,(K(n))—0, or
(ii) Assumption 1 is satisfied with d,>0 and d, >0, then

B—B=0,n"")+0,(e,(K) e,(K)) + O,(e,(K)n~ ')
+0,(e)(K)n~ ")+ O (K"*n ")

The hypotheses on K here are imposed to give consistency of
x'({— @) x/n. Given the expansion implied by Theorem 1 it is then easy to
prove the following result regarding the limiting distribution of .

THEOREM 2. Given the conditions of Theorem | and either

(1) /neK(n)) ex(K(n)) -0 or
(ii) Assumption 1 is satisfied and \/;K(n)“dl”"’/’ — 0, then
J/n(B—B)=0,(1) and

(A;'B, ;) /n(B~B) -5 N(O, I,).
In addition, if E[&?| x,, z;] =62, then

1 .
~((I=Q)x)"* (f~ ) -5 N, 1,).

This result requires weaker restrictions on the distribution of the
regressor and the rate of increase of K than the resuit of Eubank et al.
(1990). In particular it is only required that K/n — 0 which is somewhat
weaker than the requirement that X%/n — 0, used in Eubank et al. (1990),
and the requirement that K*/n — 0 for some y > 1, used in Chen (1988}. In
addition, all the results except the last one allow for heteroskedasticity in
the residuals, and z is not required to be continuously distributed or even
have a continuous component.
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Under Assumption 1, K(n) satisfying the hypotheses of Theorem 2 will
exist if d, + d,, > r/2. For example, if z is univariate (so r=1), then if g and
h are both Lipschitz of order 1/4 and either one is Lipschitz of slightly
higher order then this condition is satisfied. Also, for the case considered
by Eubank er al. (1990), the functions g and s were assumed to be con-
tinuously differentiable with a second derivative of bounded variation. In
our notation this corresponds to a smoothness index of 2. Then require-
ment (ii) of Theorem 2 is K®n — oo, which is weaker than the condition
K®n— oo that appears in that paper.

Next we consider convergence rates for the estimator of g defined in the
previous section. The difference between g and ¢ will be measured by the
square root of the sample MSE defined as

_i__ i B l n . 5 1/2
N & — gl —{n 2 (8(z)—g(z) } -

The convergence rate result is contained in

i=1

THEOREM 3. Under the conditions of Theorem 1,
1
T

and hence if Assumption 1 and K= cn"”%%*") then

1€ —8ll=0,(K"*n™"2)+ 0, (e,(K)),

1
—= &gl = 0,(n=%/®4%+")

N

Under Assumption 1 the optimal rate of convergence is that given in the
second conclusion. By comparing Theorems 2 and 3 we can see that the
optimal rate of growth of K for estimation of g will result in \/-r;-con-
sistency of f§ if d,>r/2, a condition similar to that of Chen (1988).
However, it is interesting to note that the optimal rate of growth of KX for
estimation of g may not be the same one that minimizes the remainder
terms in f — B. From Theorem 1 it is apparent that the optimal rate for the
B remainder also depends on d,. Also, even if d, =d,, the growth rate for
K that will minimize the remainder terms in Theorem 1 is n%7/4%+")_ which
is faster than the optimal rate for estimation of g. Thus, for this estimator,
although \/;-consistency can be obtained when K grows at the optimal
rate for estimation of g, a faster rate for K can reduce the remainder. Since
a larger K tends to reduce bias (analogously to a smaller band-width in a
kernel estimator), the larger K for minimizing the remainder corresponds

to undersmoothing. This under-smoothing is not required for \/r_t-con-
sistency, but may be optimal.
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4. PrROOFs OF RESULTS

The proofs proceed by using the Cauchy-Schwarz and Markov
inequalities to bound remainders. This approach works well because of the
regression form of the estimator. It avoids the use of the complicated cen-
tral limit theorem used by Chen (1988), while producing sharper resulits.

Proof of Theorem 1. Throughout the proof the notation C and 4 will
be used for generic positive constants. Define the n x ¢ matrix,

h=(h(zy), ..., h(z,))"

We use a subscript j to indicate an »n vector of all observations on the jth
component, Thus, for example, x; will refer to the n vector of all observa-
tions of the jth regressor. The notation M is used for 7~ Q. A fact used
throughout the proof is that Mp = 0, where we suppress the K subscript for
notational convenience.

Note that (ii) implies (i) so that it is sufficient to prove the result under
(i). First,

B=8+(xMx/n)"! x’M(g +e¢)/n.
Thus it suffices to prove (x'Mx/n)~'=0,(1) and
X'M(g+e)n=0,n"""7)+ 0,(e,(K) e,(K)) + O,(e,(K) n~'?)
+0,(en(K)n ")+ O,(K'*n ).
The first of these follows by
X'Mx/n—u'ujn=o0,1) 2)

and

wuin—A4,=o0,1), (3)

since A4, is uniformly positive definite and finite given Assumptions 2(ii)
and 2(vi). Note that (3) follows from the law of large numbers given
Assumption 2(vi). To show (2), note that since x=#h+ v,

1 | 1 1 1 1
-xX’Mx—-vuu=—hMh+-h"Mu+-uMh+-u'Qu.
n n n n n n

We show that each of the terms on the right hand side is 0,(1) and then
(2) will follow. By the Cauchy-Schwarz inequality it is sufficient to show
that the elements of the diagonals of these four matrices is 0,(1). To show
that the result holds for the first term, by the Markov inequality
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1, 1 ,
~hiMh, =~ (h;—pn,)" M(h;~pn))
1 .
<= (hy=pn))' (b= pny) = O,(en(K(m)) = 0,(1). (4)
For the second term the result holds by Markov’s inequality since
1 ’ 1 ’
r—'thuj:; {h;—pn;) Mu;

and

enK(m)*
n

1
B( b=y MELu 21,21 M0, =) ) < 0o ©)

using independence of the data and Assumption 2(iv). The same applies to
the third term. For the fourth term, the result follows from Markov’s
inequality since

%E(“fQ“j)=%E(tf(QE[ujuf | 2150 2,] @) < Ci—(a 0.

Next, we can write
x'M(g+e)n=u's/n+h Mg/n+h'Me/n+uMg/n—u'Qe/n

We need only consider each element of each term separately. For the first
term, we have by Chebyshev’s inequality that

i ji

nda? ’

"_, E(el?

P(luje//n| > 4) <

hence w’e/\/n=0,(1), so that w's/n=0,(n""?). The second term can be
shown to be O,(e,(K(n))) O,(e,(K(n))) by using a method similar to (4).
Using a method similar to (5) and Chebyshev’s inequality, one can show
the third term to be O (e,(K) n~"/2). The fourth term is O (e (K) n~'?) by
using a similar argument. The final term 1’Q¢/n has conditional expectation
zero, so by Chebyshev’s inequality

1 1
E(;l—2 W QE(EE | Xy wis Xy Z1s wees Zn) Q’u,-) < CE (F u}Qu,) <C—

so that the last term is O,(K"*n™1). QED.



ESTIMATION OF SEMILINEAR MODELS 39

Proof of Theorem 2. It follows from Theorem | and the Liapunov
Central Limit Theorem (which applies given (iii) and (v) of Assumption 2)
that

(4;7'B, A, ") /n(B—B)=B; "u's//n+o0,1)
-4 N(O, I,).
To show the final conclusion it suffices to show that > %+ ¢ since B, =
6’4, hence
(A7 'B,A-1) " V=g 1412

and

(A, (x'Mx/n)'?) = 1

Qo

by ¢ >0 and the proof of Theorem 1. Note that n/(n— g — K) —~ 1, so that
it suffices to show the result with » replacing #» — g — K in the denominator
of 2. Using the proof of Theorem 1 and the law of large numbers applied
to &£'e/n, it follows that

(y—xBY M(y —xB)/n—*> o>,
Thus it suffices to show that
(= xBY M(y —xp)/n—(y—xBY M(y—xB)in=o0,(1).
But this follows by using the result that
Hlall? = 16171 < lla—b11* + 2 ja— &Il 1161,

where | -|| is the Euclidean norm with distance matrix M, and the fact that
(B—BY x'Mx(f—B)/n=o0,1),
which follows from the proof of Theorem 1. Q.E.D.

Proof of Theorem 3. Note that
§~8=0h(p—B)+Qu(f~ )~ Mg+ Qe.

The result follows from the triangle inquality and the following results.
First,

1 ” N

. (B—B) hQh(B—B)
=0,(n""+e,(K) e)(K) +e,(K)n~'+e,(K)n '+ K/n?)
= 0,(K/n + e (K)?)
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by #'Qh/n bounded in probability and Theorem 1. Similarly,
% (B—BY w'Qu(B— B)=0,(Kin+e,(K)).
For the third term,
% g'Mg <e (K(n))?
and for the last term,
% e'Qe=0,(K/n),

and the first result follows. The second result then follows trivially. Q.E.D.
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