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Summary

The major histocompatibility complex (MHC) is widely

assumed to be a primary determinant of individual-
recognition scents in many vertebrates [1–6], but there

has been no functional test of this in animals with nor-

mal levels of genetic variation. Mice have evolved an-
other polygenic and highly polymorphic set of proteins

for scent communication, the major urinary proteins
(MUPs) [7–12], which may provide a more reliable iden-

tity signature ([13, 14] and A.L. Sherborne, M.D.T.,
S. Paterson, F.J., W.E.R.O., P. Stockley, R.J.B., and

J.L.H., unpublished data). We used female preference
for males that countermark competitor male scents

[15–17] to test the ability of wild-derived mice to recog-
nize individual males differing in MHC or MUP type on

a variable genetic background. Differences in MHC
type were not used for individual recognition. Instead,

recognition depended on a difference in MUP type, re-
gardless of other genetic differences between individ-

uals. Recognition also required scent contact, consis-
tent with detection of involatile components through

the vomeronasal system [6, 18]. Other differences in
individual scent stimulated investigation but did not

result in individual recognition. Contrary to untested
assumptions of a vertebrate-wide mechanism based

largely on MHC variation, mice use a species-specific
[12] individual identity signature that can be recognized

reliably despite the complex internal and external fac-
tors that influence scents [2]. Specific signals for ge-

netic identity recognition in other species now need
to be investigated.

*Correspondence: jane.hurst@liv.ac.uk
Results

To establish the genetic basis of scents underlying in-
dividual recognition, we focused on two requirements
that have not previously been addressed. First, animals
must recognize genetic differences between individuals
within the context of the normal genetic heterogeneity
and behavior of the species concerned. Therefore, we
used wild-derived outbred house mice (Mus musculus
domesticus) rather than genetically homogeneous in-
bred strains of laboratory mice that derive from only
a very small pool of founders and have very abnormal
genetic backgrounds and social experience [19, 20].
Second, tests must demonstrate that an individual’s
identity has been recognized (a perceptual process).
Traditional habituation or training tests demonstrate
only that a difference between scents has been discrim-
inated with unknown meaning, if any, to the animals con-
cerned [21]. To demonstrate perceptual recognition of
individual identity, we need to demonstrate in behavior
toward equivalent individuals a predictable functional
difference that will only be shown if individuals are rec-
ognized [21, 22]. In this study, we make use of female
preference for males whose scent marks they have pre-
viously encountered, because a male’s scent marks
advertise his dominance and territory ownership [14,
23–25]. We create an illusion of a status difference be-
tween two equivalent individual males, an illusion that
causes test females subsequently to be more attracted
toward one of the two males, demonstrating that they
recognize which individual is which. Under natural con-
ditions, such attraction may provide females with the
direct benefits of a well-defended male territory and/or
indirect benefits of good genes for their offspring if suc-
cessful territory owners are preferred as mates.

Contact with Involatile Scent Components
We first tested whether females recognize familiar ver-
sus unfamiliar individual males on the basis of airborne
volatiles alone or whether they require contact with invo-
latile scent components. As a test of recognition, we
used the preference shown by females for males whose
scent marks they have previously encountered relative
to males whose scent is unfamiliar [23–25]. Female
mice were presented with urine streaks from an unre-
lated male (the identity-learning phase) and then given
a choice between the scent owner and an equivalent un-
familiar male placed behind mesh barriers that allowed
some physical contact (the recognition phase; see
Experimental Procedures). We measured three distinct
behavioral responses (see Movies S1–S3 in the Supple-
mental Data available with this article online). Time spent
sniffing through the barrier reflects the need to gather in-
formation from the scent source (usually most pro-
longed toward novel scents) but gives no indication of
the meaning of any information gained [21, 22]. Attrac-
tion, indicating whether females were able to correctly
identify individual males from the information gained,

https://core.ac.uk/display/82763309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jane.hurst@liv.ac.uk


Current Biology Vol 17 No 20
1772
was reflected by two behaviors: gnawing and pulling at
the barrier to gain access to the male (an unambiguous
measure of attraction), and time spent in close proximity
but not interacting with the male.

As predicted, after contact with urine marks from one
of the two males, females correctly identified and were
more attracted to the familiar-scent owner. This was
evident both from more prolonged gnawing or pulling
at the barrier in front of the familiar-scent owner and
from more time in close proximity to but not interacting
with the familiar male (Figure 1A). Sniffing tended to be
biased toward the unfamiliar male (Figure 1A); females
predictably spent more time gathering information from
the novel scent. We then tested whether females were
able to recognize a familiar-scent owner after exposure
only to airborne volatiles from male urine during the
learning phase (see Experimental Procedures). Without
full contact with a male’s scent, females failed to recog-
nize the familiar-scent owner, and the expected prefer-
ence for the familiar male disappeared. They spent no
more time trying to get through the barrier or remain in
proximity to the familiar-scent male than to the unfamil-
iar male. Both males were also investigated equally
(Figure 1B).

Individual Recognition
To extend our assay from recognition of familiar versus
unfamiliar males to a test of individual recognition, we
used the well-established preference of females for
males that have countermarked a competitor’s scent
[15–17]. Some species discriminate countermarks de-
posited on top of, or partially overlapping, a bottom
scent [15], but house mice recognize urine counter-
marks as the freshest, most recently deposited scent
[16]. To assess female recognition of individual males
when both scents were familiar, we allowed females
contact with urine from two males to simulate fresh
scent marks from one male that countermarked 24-hr-
aged scent marks from the other male (female mice
can recognize males from fresh or 24-hr-aged urine
marks compared to an unfamiliar-scent owner in similar
tests [S.A.C., R.J.B., and J.L.H., unpublished data]).
Preference between the two familiar-scent owners was
tested after 15 min scent exposure. There was greater
attraction (gnawing and proximity) to the owner of the
fresh countermarks when males were unrelated to
each other and differed in major histocompatibility
complex (MHC), major urinary proteins (MUPs), and ge-
netic background, indicating that females could recog-
nize the individual males (Figure 2A). The owner of the
aged scent marks induced more sniffing investigation
(Figure 2A), suggesting that females initially gained
less information from the aged scent. However, as dis-
cussed above, a difference in sniffing signifies only
that females discriminated a difference in scent between
the males that stimulated them to gather further infor-
mation. This provides no evidence that mice recognized
the individual identity of the owner.

Individual Recognition Using MHC Type

To assess whether MHC type was used to recognize in-
dividual males, we presented females with scents from
two captive-bred males that were full sibs (unrelated to
the female) and had inherited either the same MHC
type (both haplotypes shared between the males) or
a different MHC type (one or both haplotypes differed be-
tween the males) but on variable genetic backgrounds. If
females can recognize individual males, they should be
more strongly attracted to the countermarking (fresh)-
scent owner, as above. When the two males shared the
same MHC type, which could not then be used for indi-
vidual recognition, females discriminated a difference
in their scents and spent longer sniffing the owner of
the aged scent as if this was less familiar, as seen before
(Figure 2B). This simple discrimination was expected in
view of the large number of genetic and nongenetic fac-
tors that influence an individual’s scent [1–3]. However,
when males shared the same MHC type, females failed
to show the usual strong attraction to the fresh-counter-
mark owner; thus, there was no evidence of individual
recognition (Figure 2B). Considered in isolation, this
might suggest that MHC differences were essential to
identify the individual males. However, when sib males
differed in MHC type, females still failed to recognize

Figure 1. Recognition of Familiar Males with or without Scent

Contact

Female recognition of familiar (solid bars) and unfamiliar (open bars)

males behind mesh barriers depended on whether they had previ-

ous full contact with the familiar male’s urine scent or only with

airborne volatiles.

(A) After full scent contact, female attraction to the familiar male was

clearly evidenced by more prolonged gnawing or pulling at the mesh

barrier to gain access to the male. Females also spent more time in

proximity to the familiar male without interaction. As expected, in-

vestigation behavior (sniffing) tended to be directed more toward

the unfamiliar scent male.

(B) Without prior contact with nonvolatile scent cues, females failed

to show the expected preference for a familiar male, demonstrating

that nonvolatiles are essential for the recognition of the familiar male.

Data are median durations + 75% range, compared via Wilcoxon

matched-pairs tests with exact probabilities.
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Figure 2. Recognition of Individual Males When One Male’s Scent Countermarks the Other

After full contact with scent marks from two males genetically unrelated to each other (A), females were reliably more attracted to the owner of

fresh scent marks (solid bars) over the owner of 24-hr-aged scent marks (gray bars). Attraction was evident from more prolonged gnawing of the

barrier and time in proximity without interaction.

(B–E) Females were given a choice between two male scent owners that either had (B) identical MHC or (C) different MHC types or had (D) iden-

tical MUP or (E) different MUP types. Random variation in genetic background was insufficient to allow individual recognition, because females

failed to show greater attraction to the fresh-scent owner when the two males shared identical MHC (B) or MUPs (D). Females also failed to iden-

tify the fresh-scent owner when the males had different MHC types (C), but correctly identified the males with different MUP types (E). Across all

tests (with the exception of MHC different [C]; see main text), females investigated the donor of aged urine for longer, indicating that as expected,

females detected differences between the male scents regardless of individual recognition. Data are median durations + 75% range, compared

via Wilcoxon matched-pairs tests with exact probabilities.
the individual males (no difference in gnawing or proxim-
ity, Figure 2C). Thus, MHC was not used for individual
recognition. Further, despite differing in MHC type and
genetic background, both male scent owners were
investigated equally (Figure 2C, discussed further
below).

Individual Recognition Using MUP Type

The same tests were conducted with sib males of the
same or different MUP type on variable genetic back-
grounds. These showed that a difference in MUP type
was essential for individual recognition. When males dif-
fered in MUP type, females recognized and were at-
tracted to the countermarking male, spending more
time trying to gain access through the barrier and
more time in proximity to this male (Figure 2E). When
sib males shared the same MUP type, there was no func-
tional recognition: Females were not significantly more
attracted to the owner of the fresh countermarks
(Figure 2D; not significant even when gnawing of the
barrier and time in close proximity were combined:
z = 21.37, p = 0.18). Females predictably discriminated
differences in the scents of these genetically diverse
males regardless of any difference in MUP type, sniffing
the owner of the aged scent more (Figures 2D and 2E), as
in control tests with unrelated males. However, the infor-
mation gained through sniffing only led to functional
recognition of the countermarking male when males dif-
fered in MUP type. Interestingly, when males had differ-
ent MHC types, and thus can be presumed to have
readily discriminable differences in their scent profiles
[2, 3, 6, 26–28], differential investigation of the two scent
owners disappeared (Figure 2C). This might be because
an obvious difference in MHC-associated scent profiles
but not in the MUP signals used to recognize individual
owners stimulated close inspection of both fresh and
aged scents, such that both scents were then perceived
as of equal familiarity or interest when females met the
two scent owners.

If MUP, not MHC, provides the main genetic basis for
individual recognition in mice, we predicted that females
would recognize individual males in tests that manipu-
lated MHC similarity when the two males differed in
MUP type but not when they were the same (MUP type
was originally ignored when assigning males to MHC
same or different tests). To confirm this, we reanalyzed
data from MHC tests (same and different) according to
whether stimulus males shared the same or different
MUP type (n = 32 tests). Combining both MUP and
MHC datasets to maximize statistical power to detect
individual recognition, there was still no evidence that
females could recognize the fresh-scent owner when
males shared the same MUP type (median duration
of gnawing at barriers to fresh-countermark owner =
25.3 s, to aged-scent owner = 21.4 s; z = 21.35, n = 31,
p = 0.18) but were strongly attracted to the countermark-
ing male when males differed in MUP type (gnawing at
barriers to fresh-countermark owner = 22.7 s, to aged-
scent owner = 12.3 s; z = 23.01, n = 40, p = 0.003). We
saw no evidence of stronger recognition when males
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differed in MHC as well as MUP type. Females clearly
discriminated differences between scents that were un-
related to MUP type in these genetically variable wild-
derived males. This stimulated greater sniffing of the
aged-scent owner as if this scent were more novel,
whether the males’ MUP patterns were different (median
duration of sniffing at aged-scent owner = 32.1 s, at
countermark owner = 17.9 s; z = 24.01, p < 0.0001) or
the same (aged-scent owner = 30.6 s, countermark
owner = 17.5 s; z = 23.25, p = 0.001). Nonetheless, this
resulted in recognition of the individual males only
when they differed in MUP type.

Discussion

Our results demonstrate that mice use polymorphic pat-
terns of MUPs to recognize individuals, regardless of
other genetic differences that influence an individual’s
scent, including MHC. Further, recognition requires di-
rect contact with these urinary protein signals. Previous
assumptions that any genetically determined differ-
ences in individual odor type must contribute to individ-
ual recognition (e.g., [1, 3, 26, 29]) are based only on the
ability of animals to discriminate differences between
scents, such as the increased investigation of novel
scents in habituation-dishabituation tests. Like many
other animals, mice sniff closely at the source of any un-
familiar airborne (volatile) scent to gain further informa-
tion, but this response is nonspecific. The same re-
sponse is induced whether scent is from animals of
unfamiliar genetic identity or from familiar animals
whose scent profiles have been altered, for example
as a result of changed physiological status, diet, or bac-
terial flora [2, 14, 21]. This close-contact sniffing implies
that animals do not acquire sufficient information from
the airborne scent profile alone to interpret a novel scent
signal. In most nonhuman tetrapods, close-contact in-
vestigation allows animals to detect involatile as well
as volatile scent components through the vomeronasal
system, which responds specifically to conspecific and
heterospecific chemical stimuli with important intrinsic
meaning for the species [6, 18, 30]. It is only after acquir-
ing scent information through contact that mice are able
to identify individual scent owners. This is not driven by
any discriminable difference in individual scents but
by MUP type as a specific signal of individual identity.
This is consistent with earlier findings that male mice
recognize their own scent marks or those from other
males entirely on the basis of contact with MUP pattern,
with recognition disrupted by addition of a recombinant
MUP [13, 22, 31]. Importantly, our current study extends
this to the genetic basis for recognition between equiv-
alent individuals and demonstrates that the same recog-
nition signal is used in these different social contexts.
Why should animals focus on a specific signal to identify
individual conspecifics regardless of other scent differ-
ences between them? This allows animals to use a fixed
indicator of genetic identity that is easily recognized and
distinguishable from variation caused by current state or
environment. For example, the species-specific facial
characteristics used for visual individual recognition by
primates including humans [32] are robust to changes
in facial expression that reflect emotional state or behav-
ior rather than identity [33].
Polymorphic urinary MUPs have evolved exclusively
for scent communication, with specialized characteris-
tics to fulfill this role. Mice excrete a high concentration
of 8–14 electrophoretically separable MUP isoforms in
their urine. These MUPs provide each individual with
a distinctive signature that is highly resistant to degra-
dation in scent marks and can be distinguished regard-
less of the complex internal and external factors that in-
fluence volatile scent profiles ([9, 13]; A.L. Sherborne,
M.D.T., S. Paterson, F.J., W.E.R.O., P. Stockley, R.J.B.,
and J.L.H., unpublished data; and present study). The
central cavity of MUPs binds low-molecular-weight
volatile pheromones, integrating identity and status
information [8, 9]. Some MUP polymorphic variants dif-
fer in their affinity for ligands bound in the central calyx
[8, 34, 35], although most heterogeneity resides on the
surface of the protein rather than at the ligand-binding
site [36]. Further, the proteins themselves appear to be
detected given that both MUPs stripped of ligands and
synthetic MUP peptides trigger ovulation through the
vomeronasal system [10]. Thus, the individual signature
could consist of MUP-ligand complexes or MUPs alone.
Once individuals are identified through this involatile
fixed identity signature, a learned association with air-
borne volatiles detected simultaneously through the
main olfactory system would allow familiar scents to
be recognized from airborne volatiles without the need
to recontact the fixed identity signature [14]. Given that
many nongenetic and genetic factors (including MHC)
contribute to an animal’s airborne volatile profile, these
are likely to play an important role in drawing attention
to unfamiliar scents or allowing animals to quickly rec-
ognize familiar scents that are associated with known
MUP identity signatures. However, such recognition of
familiar airborne scents represents the recognition of
‘‘familiar’’ versus ‘‘novel,’’ not individual recognition
per se. Individual recognition will still depend on prior
contact with the involatile MUP identity signature, re-
quiring reinvestigation whenever the animal’s more
labile volatile profile changes or the association is for-
gotten.

The ability to discriminate differences between MHC-
associated scents derived from laboratory mice is well
established [2, 3, 6, 26, 37], but we found no evidence
that MHC variation among wild mice contributes to the
recognition of individuals. Other studies have not exam-
ined responses to normal variation in MHC types de-
rived from wild mice, and very few have used a functional
test of individual recognition. Pregnancy block in labora-
tory mice (the Bruce effect) in response to males with
different MHC signals from the familiar sire has been
widely interpreted as signifying individual recognition
[6], although the perceptual meaning of differences
that induce pregnancy block is still unclear. After fe-
males have learned the scent of a male during mating,
exposure to scent from a male of an unfamiliar labora-
tory strain causes abortion through failure of embryo im-
plantation [4, 38]. Foreign peptides that cannot bind to
the familiar sire’s MHC proteins produce the same effect
when added to urine from genetically identical males,
suggesting that females may recognize urinary peptides
corresponding to the owner’s MHC type [27]. However,
pregnancy is not blocked by MUP differences between
strains [39] even though this signal clearly underlies
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individual recognition in more general social contexts
among wild mice. One possibility is that mice use a dif-
ferent system for recognizing individual males in the
context of pregnancy block. However, an extensive
study of wild mice failed to demonstrate pregnancy
block simply in response to unfamiliar individuals; in-
stead, this depended on the t complex genotype of the
unfamiliar male [40]. This structurally variant segment
of chromosome 17 includes the MHC [41], and t haplo-
type carriers have unique MHC alleles with unusually
low polymorphism [41, 42]. The response of wild mice
is thus consistent with sensitivity to variation in this
area of the genome, but it is not yet known how this in-
fluences urinary peptides that induce pregnancy block.
It is essential to define the repertoire of peptides in the
urine of individual wild mice and their origins to further
understand the functional significance of pregnancy
block and the signals that induce this response.

To our knowledge, this is the first study to establish
the genetic basis of signals used to recognize individual
identity in any vertebrate by using appropriate functional
tests and natural variation between animals. This reveals
that mice depend on a specialized set of highly polymor-
phic signaling proteins (MUPs) to recognize individuals.
Recently, we have also shown that the same genetic
identity signal is used to avoid inbreeding with very
close relatives (A.L. Sherborne, M.D.T., S. Paterson,
F.J., W.E.R.O., P. Stockley, R.J.B., and J.L.H., unpub-
lished data), contrary to the suggestion that MHC-asso-
ciated odors provide a vertebrate-wide mechanism for
recognition of individuals and kin. However, other fac-
tors that influence scents (including MHC) may contrib-
ute to the recognition of familiar animals (rather than
individuals), which might be important in other social
contexts such as mother-offspring recognition. The ex-
treme polymorphism in MUP patterns expressed by
house mice may have evolved as a result of a need for
reliable individual and kin recognition as an adaptation
for living in dense aggregations [43]. In common with
MHC genes used for self/nonself recognition at the mo-
lecular level, MUP genes are inherited as a tightly linked
cluster or haplotype [14]. Inbreeding avoidance, promis-
cuity, and offspring dispersal are all likely to contribute
to maintaining the substantial individual variation found
in MUP patterns in natural mouse populations. At pres-
ent, little is known about how widespread MUP-like or-
thologs are in animal scents, although these appear to
be common across murid rodents [12]. Further research
is required to understand the evolution and maintenance
of this MUP polymorphism, and the extent to which
MUP-like orthologs have evolved to allow reliable ge-
netic identity recognition through scent or through alter-
native signaling modalities in other species.

Experimental Procedures

Subjects and Stimulus Animals

Female subjects were selected from a pool of wild house mice (Mus

musculus domesticus) caught from populations in the northwest of

England several months prior to the experiment (n = 68) or were

first-generation captive bred (n = 27). Male stimulus animals were

first- to third-generation captive-bred mice (n = 143) or captured

from the wild (n = 17). Females were tested with males that were un-

related and unfamiliar. Females were housed in small groups of two

to four (cages 40 3 23.5 3 12.5 cm). Males were weaned into single-
sex groups at 4 weeks of age and then individually housed from 8–10

weeks (cages 43 3 11.5 3 12 cm) because wild-derived adult males

frequently become highly aggressive and intolerant of cage mates.

All mice were provided with water and food ad libitum (TRM9607,

Harlan Teklad) and were maintained on a reverse 12 hr:12 hr light

cycle. Mice were 6–18 months old at the time of testing.

To bring females into a sexually receptive state [44] and ensure

that all subjects and stimulus animals had prior experience of odors

from the opposite sex, we primed all mice with soiled bedding from

the opposite sex in their home cages 3 days prior to their use in

a test. Soiled bedding was not from individuals that would be en-

countered during tests. Female estrus state was confirmed by vag-

inal smear immediately after testing for a subsample of females used

in this and a related study in our laboratory (96% of 90 females

tested had > 50% cornified cells and were in estrus or proestrus).

Tests were carried out during the dark phase under dim red light.

If females were used in more than one test condition, these were

conducted at least 4 weeks apart and involved different stimulus

males. Urine was obtained by holding a stimulus male by the scruff

of the neck over a clean 1.5 ml Eppendorf tube. Urine was collected

up to 2 weeks prior to testing and stored at 218�C until use.

Recognition with or without Scent Contact

We tested recognition of the owner of a familiar scent by presenting

females with urine streaks from an unrelated male in the identity-

learning phase of the test; they were then given a choice between

the scent owner and an equivalent unfamiliar male to test whether

they recognized the familiar-scent owner in the recognition phase

of the test (males presented behind mesh barriers [minimum 4 3

3 mm mesh size] to allow olfactory, visual, and some physical con-

tact while preventing further contact with scent marks). Male stimu-

lus animals were used as the familiar-scent donor for one female and

as the novel individual for another female, to control for any variation

in individual male quality. To test whether recognition depended on

contact with a male’s scent marks, we either allowed females to con-

tact the urine streaks during investigation in the identity-learning

phase (n = 12) or prevented contact by using a double layer of

mesh so that only volatile information from the scent was available

in the identity-learning phase (n = 12). Male urine (20 ml) was depos-

ited in two 10 ml streaks on glass microfiber filters (Whatman circles,

grade GF/C, 70 mm) placed in the center of a clean cage (29 3 11.5 3

12 cm), and a female was introduced for 15 min. The female was then

transferred to a clean test arena (40 3 23.5 3 12.5 cm high with clear

perforated acrylic lid) in which the scent owner and an unfamiliar

male were held in two mesh-capped Perspex tubes (190 3 40 mm

diameter) inserted into opposite walls of the arena (the mesh caps

protruded approximately 2 cm into the arena). Each test (15 min)

was video recorded remotely under dim red light. As an unambigu-

ous measure of attraction to each male, we recorded the time

that females spent gnawing and pulling at the mesh barriers actively

trying to get to each male over the 15 min test. This is a measure of

attraction to the male rather than aggression because females in

this species rarely show overt aggression toward males unless

pregnant or lactating. We also recorded the time spent investigating

each male through the barrier to gain further information (sniffing at

or through each barrier) and time spent in proximity without interact-

ing with the male or barrier (within a 24 3 10 mm rectangle in front of

the barrier, marked on Benchkote lining the arena floor).

Individual Recognition

Females were presented with urine streaks from two males depos-

ited as if one male had countermarked the other in the identity-learn-

ing phase in order to test whether they could recognize individual

males from their scents when both scents were familiar. They were

then given a choice between the two male scent owners in the test

arena described above in the recognition phase of the test. Urine

(20 ml) from the first male was deposited in two 10 ml streaks on

a glass microfiber filter, and the scent marks were left in the open

at room temperature (21�C) for 24 hr. The same amount of urine

from a second male (the countermarking male) was then deposited

as fresh scent in four 5 ml streaks, 5 mm on either side of the 24-hr-

aged scent marks. Females were presented with the scent marks in

a clean cage for 15 min with full contact before transfer to a test
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arena containing both scent owners behind mesh barriers for a 15

min choice test as described above.

We first confirmed that females could recognize which of two

scent-mark owners had deposited the fresh countermarks when

males were unrelated and thus genetically distinct at MHC, MUP,

and genetic background (n = 12). To assess whether MHC or MUP

were necessary for individual recognition of scent owners, we tested

females with pairs of males that either had the same or different

MHC type (with random differences in MUP and genetic back-

ground) or had the same or different MUP type (with random differ-

ences in MHC and genetic background). Because both MHC and

MUPs are so genetically heterogeneous among wild mice, only

some closely related males share the same MHC or MUP types. In

these tests, stimulus males were pairs of full sibs that were unrelated

and unfamiliar to the test female. Litters containing three or more

males were used in which one male (assigned as the countermarking

male) could be paired with a sib of the same type and with a sib of

a different type in separate tests using different females. The sample

size was increased to n = 20 for the four tests using sib males in case

discrimination between two sibs was more difficult than between

two unrelated males.

MHC and MUP Typing

MHC and MUP type were established by genotyping parents and

male offspring to identify haplotypes using microsatellite markers

(six markers across the MHC region on chromosome 17 and eight

markers surrounding the MUP region on chromosome 4). DNA was

extracted from a 1–5 mm tail snip with mouse-tail extraction kits

(Tepnel life sciences). Twelve markers were originally selected for

the MHC region (chromosome 17) with the ENSEMBL mouse ge-

nome database. Three markers were deemed outside the MHC

region (confirmed by crossover events in test samples, F.J. and

W.E.R.O., unpublished data) and were removed from the analysis.

Three other markers were excluded from analysis because of ampli-

fication problems. Eleven markers were identified in the putative

MUP 4 locus (chromosome 4). Three of the markers failed to amplify

or were found to be monomorphic in wild mice and were removed

from the data set. The 14 chosen loci are listed in Table S1. The

primer sets were designed so that markers would fall into one of

three size groups with nonoverlapping allele lengths with the for-

ward primer in each group 50-end-labeled with a fluorescent phos-

phoramidite (6-FAM, HEX, or NED). The loci were organized into

four multiplex loading groups, containing mixed loci from both the

MHC and MUP regions.

PCR amplification reactions were performed in a final 10 ml volume

containing 10 ng of DNA, 0.1 mM of each primer, 0.2 mM of each

dNTP, 0.05 units of Taq DNA polymerase (Hotstar Taq, QIAGEN),

and 2.5 mM MgCl2 in the supplied reaction buffer. PCR amplification

was performed on a thermal cycler (GRI) with a touchdown PCR pro-

gram at one cycle of 95�C for 15 min to activate the Taq polymerase

and then 94�C for 20 s, 30 s at 66�C, 20.5�C per cycle for 14 cycles,

and then 60�C for 20 cycles and 72�C for 30 s, followed by 72�C for

10 min. For each individual sample, PCR products from each multi-

plex group were diluted 1 ml for 6-FAM-labeled products and 2 ml for

the other labeled products into 200 ml ddH20. The multiplexed mix-

ture (1.2 ml) was combined with 5 ml deionized formamide and 0.1 ml

internal lane standard (ROX400, Applied Biosystems). Samples were

electrophoresed on a 3100 Genetic Analyzer capillary electrophore-

sis system with a 22 cm array (Applied Biosystems). The fluores-

cence emission for each dye was collected and analyzed for size

variation with the Applied Biosystems GENESCAN (version 3.7)

and GENOTYPER (version 3.7) DNA-fragment analysis software.

We confirmed that same or different MUP genotypes corre-

sponded with same or different phenotypes by isoelectric focusing

of urine samples from each mouse to compare the patterns of

MUPs expressed [13].

Data Analysis

The durations of gnawing or pulling at the mesh barriers to get to

each male, investigation of the barrier or male, and time spent in

proximity without interaction were transcribed from video tapes

with an event recorder program (written by R.J.B.). The observer

was blind to the identities and genotypes of the stimulus males.

The difference in response to the two stimulus males was assessed
with nonparametric Wilcoxon matched-pairs tests (two tailed)

because behavioral data were not normally distributed.

Supplemental Data

One table is available at http://www.current-biology.com/cgi/

content/full/17/20/1771/DC1/.
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