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Abstract

In argumentation theory, Dung’s abstract framework providesaunifying view of several aternative
semantics based on the notion of extension. In this context, we propose a general recursive schema
for argumentation semantics, based on decomposition along the strongly connected components of
the argumentation framework. We introduce the fundamental notion of SCC-recursiveness and we
show that all Dung’s admissibility-based semantics are SCC-recursive, and therefore a special case of
our schema. On these grounds, we argue that the concept of SCC-recursiveness plays a fundamental
rolein the study and definition of argumentation semantics. In particular, the space of SCC-recursive
semantics provides an ideal basis for the investigation of new proposals: starting from the analysis of
several examples where Dung's preferred semantics gives rise to questionable results, we introduce
four novel SCC-recursive semantics, able to overcome the limitations of preferred semantics, while
differing in other respects.
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1. Introduction

Argumentation theory is a framework for practical and uncertain reasoning, where ar-
guments supporting conclusions are progressively constructed and compared in order to
identify the set of conclusions that should be considered justified according to the current
state of available knowledge. Since the construction of arguments proceeds by exploiting
incomplete and uncertain information, conflicts between them may arise and their man-
agement is regarded as an essential aspect of the theory. The ability to deal in this way
with uncertain and conflicting information plays an important role in a variety of appli-
cation contexts, such as legal reasoning [19,21,26], intelligent agents [17], planning [16],
inconsistency handling [1], negotiation and dialogue [3]. As a consequence, argumentation
theory is receiving an increasing interest both from the theoretical and application view-
points, and a variety of approaches have been proposed in the literature, e.g., [2,6,13,14,
25,27].

An extensive survey of this research field is provided in [22], where the literature
proposals are examined along five dimensions, i.e., the underlying logical language, the
definition of what an argument is, the criteria for identifying conflict between arguments,
the definition of the relevant relation of defeat between them, and, finally, the definition of
the justification status of arguments. As to the last point, each proposal is based on an ar-
gumentation semantiaghich defines in a declarative way the criteria to determine, given
a set of interacting arguments, which ones of them should emerge as justified from the
conflict. To this purpose, aimost all of the argumentation semantics rely on the notion of
extensionroughly consisting in a set of non-conflicting arguments: an argument is con-
sidered as justified if it belongs to all extensions prescribed by the semantics. As pointed
out in [22], two alternative approaches can be followed in this respect: in the unique-status
approachasingle extension is alwaysidentified, while in the multiple-status approacsev-
eral extensions may exist for a given set of arguments. Moreover, specific proposals also
differ in the form the underlying semantics is introduced. For instance, in [6,9,27] a fixed
point definition is exploited, whilein [13] the semanticsis defined inductively by means of
the notion of level.

A unifying framework, able to encompass a large variety of proposals, has been pro-
posed by Dung in [9]. Abstraction is achieved by leaving unspecified the origin and the
structure of arguments, and by modeling the interaction between them simply as a binary
relation indicating that an argument attacks another one. This way, Dung's approach is
generic with respect to the first four dimensions of the classification proposed in [22],
and, as pointed out in [1], it allows one to focus exclusively on semantics issues, without
getting entangled in the details of what arguments are. Thanks to its generality, Dung's
proposal has been recognized as a unifying framework encompassing most of the existing
approaches to argumentation and has also inspired subsequent proposals of argumentation
systems, e.g., [21,27]. Moreover, Dung’s theory is relevant in severa fields where con-
flict management plays a central role, ranging from logic programming to nonmonotonic
reasoning and game theory.

Asfar as semanticsis concerned, Dung's framework captures several alternative seman-
ticswhich areintroduced in [9] by means of fixed point definitions, and are all based on the
notion of admissible seAmong them, preferred semantids regarded asthe most satisfac-
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tory approach, able to overcome the limitations of the previously proposed groundedand
stablesemantics. However, we show in this paper that preferred semanticsis not exempted
from producing questionable results in some cases concerning cyclic attack relationships
(see[4,5] for apreliminary discussion on this problem). In the search of alternative propos-
als, able to retain the advantages of preferred semantics and, at the same time, to support
alternative treatments of such problematic cases, we carry out a broad conceptual analysis
aimed at identifying a set of basic principles that can be regarded as universally acceptable
in argumentation semantics and, in particular, underly all the approaches encompassed by
Dung's framework.

Thisanalysisleadsto the introduction of anovel genera recursive schemafor the defin-
ition of extensions, based on the graph-theoretic notion of strongly connected components
of an argumentation framework. Semantics adhering to this schema feature the property of
SCC-recursivenessvhich entails that a specific semantics can be characterized in terms
of a base functionwhich plays the role of a parameter in the recursive schema. SCC-
recursiveness can be assumed as a basic unifying concept in argumentation theory for two
reasons. on the one hand, al semantics captured by Dung’'s framework satisfy the SCC-
recursiveness property and, on the other hand, the SCC-recursive schema supports in a
rather straightforward way the definition of new semantics, since basic desirable proper-
ties of extensions—and therefore of the argumentation semanticsitself—can be guaranteed
by simple requirements on the base function. On these grounds, we introduce, to exemplify
the potential of the approach, four novel SCC-recursive semantics overcoming the above
mentioned limitations of the preferred semantics, while differing in other aspects.

The paper is organized as follows. In Section 2, we recall the basic notions of Dung’'s
theory and carry out a survey about argumentation semantics in this context, focusing on
the intuitive concepts underlying formal definitions and properties of extensions. Prob-
lematic cases that point out some questionable behaviors of preferred semantics are then
presented in Section 3. The general SCC-recursive schemaisintroduced in Section 4, while
Section 5illustratesitsrole as a unifying concept in argumentation semantics, showing that
traditional semantics adhere to the schema. Section 6 analyzes some general properties of
SCC-recursive semantics, while in Section 7 four novel SCC-recursive semantics are in-
troduced and compared. Finally, Section 8 concludes the paper.

2. Dung's theory

2.1. Argumentation framework

The general theory proposed by Dung [9] is based on the primitive notion of argumen-
tation framework

Definition 1. An argumentation framework is a pair AF = (A, —), where A isaset, and
—C (A x A) isabinary relation on A, called attack relation.

The idea is that arguments are simply conceived as the elements of the set A, whose
origin and structure are not specified, and the interaction between them is modeled by the



P. Baroni et al. / Artificial Intelligence 168 (2005) 162—-210 165

binary relation of attack. An argumentation framework AF = (A, —) can berepresented as
adirected graph, called defeat graphwhere nodes are the arguments and edges correspond
to the elements of the attack relation.

In the following, the nodes that attack a given argument « are called defeaterof o and
form a set which is denoted as parentsy(a):*

Definition 2. Given an argumentation framework AF = (A, —) and anode o € A, we
define parentsyr(a) = {8 € A| B — «}. If parentsyr(a) = @, then « is called an initial
node.

Since we will frequently consider properties of sets of arguments, it is useful to extend
the notations defined for the nodes:

Definition 3. Given an argumentation framework AF = (A, —), anode « € A and two
sets S, P € A, we define:

S—>a=3eS:B—a
oa—>S=3eSa—p
S—>P=3deeS,pePa—p

outparentsap(S) ={e e A|la ¢ SAa — S}

In Dung's framework, an argumentation semantics is defined by specifying the criteria
for deriving, for ageneric argumentation framework, the set of all possible extensions, each
one representing a set of arguments considered to be acceptabl e together. Given a generic
argumentation semantics S, the set of extensions prescribed by S for agiven argumentation
framework AF = (A, —) isdenoted as £s (AF).

The set of extensions is then used to compute the justification status of the arguments,
according to the following definition:

Definition 4. Given an argumentation framework AF = (A, —), the arguments of A can
be partitioned, with reference to a given argumentation semantics S, into three sets:

o the set of undefeatedrguments Us(AF) = {a € A |VE € E5(AF) o € E};

o the set of defeatedarguments Dg(AF) ={a € A|VE € Es(AF) a ¢ E};

e the set of provisionally defeatedrguments Ps(AF) = {@ € A | 3E1, E2 € Es(AF):
ae E1Nna ¢ Ed).

1 We use the graph-theoretical term parentsinstead of attackerssince, in the following, we will need to resort
to other related graph-theoretical notions, in particular that of ancestors.
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2.2. Argumentation semantics: a focused survey

In this subsection, we carry out a conceptual analysis of the basic intuitive princi-
ples underlying several extension-based argumentation semantics and identify their formal
counterpart by referring to definitions and propertiesin Dung'’s theory [9].

Starting from the intuition that an extension is a set of arguments considered to be
acceptable together, one may envisage as a first requirement the fact that no conflict is
alowed between arguments belonging to the same extension, since it should represent
an internally consistent choice (among possibly many) over the whole set of available
arguments. This amountsto require that an extension is conflict-free.

Definition 5. Given an argumentation framework AF = (A, —), aset E C A is conflict-
freeif and only if A, B € E such that « — B.

Clearly not all conflict-free sets are reasonable candidates for the notion of extension.
In fact, simply identifying the extensions with the conflict-free sets leads to consider the
empty set, which is of course conflict-free, as an extension and, therefore, according to
Definition 4, no argument would ever be justified in any argumentation framework. In
order to prevent this degenerate behavior, a completeness regquirement is needed, to ensure
that the largest consistent choi ces of arguments are taken into account for the determination
of the justification status. In the case of conflict-free sets, this amounts to require that an
extension is aso maximal with respect to set inclusion.

Definition 6. Given an argumentation framework AF = (A, —), aset E C A is maximal
conflict-freeif and only if it is maximal (with respect to set inclusion) among the conflict-
free sets of AF. The set made up of all the maximal conflict-free sets of AF will be denoted
as MCFar.

It is however easy to see that identifying extensions with maximal conflict-free sets
gives rise to undesired behaviors even in very simple cases. For instance, in the case of
an argumentation framework consisting of adefeat chain (see Fig. 1) it iswidely accepted
that the initial node, which has no defeaters (« in our example), and all other nodes in
odd positions, whose defeaters are defeated by undefeated nodes (only y in our example)
should be regarded as undefeated, while nodes in even positions (8 and §) should be re-
garded as defeated. This is an instance of the reinstatemenprinciple [22]. However, the
maximal conflict-free setsinthisexampleare {«, v}, {«, 8}, and {8, §}: no argument would
be included in al extensions and therefore the status of provisionally defeated would be
assigned to all arguments.

A first intuition to solve this problem is based on the idea that an extension should
not only be internally consistent but also able to reject the arguments that are outside the

Fig. 1. A chain of four nodes.
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Fig. 2. A three-length cycle.

extension, namely if an argument is not in an extension then it should be attacked by the
extension itself. This reasoning leads to the notion of stable extension [9,23].

Definition 7. Given an argumentation framework AF = (A, —), aset E C A isastable
extensiorof AF if and only if

E isconflict-free AVe e A: ¢ E, E—> «
The set of al the stable extensions of AF will be denoted as SE(AF) .

Note that the above definition implies that a stable extension is a maximal conflict-free
set. In the example of Fig. 1 there is only one stable extension, namely {«, '}, and the
desired result is thus achieved. However there are argumentation frameworks where no
stable extension exists, as in the case of odd-length cycles. In fact, considering the simple
argumentation framework of Fig. 2, it is easy to see that none of the conflict-free sets ¢,
{a}, {B}, {y} attacks al the arguments outside it. Therefore, a semantics based on stable
extensions fails to assign a justification status to arguments in these cases. A practical
example of thiskind of problem has been pointed out by Pollock in [14] and concerns the
case of three witnesses (Smith, Jones, and Robertson) which question each other reliability
in the following way: Jones says that Smith is unreliable, Smith says that Robertson is
unreliable, and Robertson saysthat Jonesisunreliable. In adefeat graph representation, this
correspondsto the three-length cycle shownin Fig. 3(a). Moreover suppose that Smith says
that it israining (node “rain” in Fig. 3(a)). Resorting to stable extensions, it is impossible
to assign a judtification status to the nodes of this graph. However, if we have four rather
than three witnesses (in general, an even-length rather than an odd-length cycle) stable
extensions exists. In fact, considering Fig. 3(b) there are two stable extensions, namely
{S, R,rain} and { P, J}, yielding al of the arguments provisionally defeated, as intuitively
should be. Pollock points out that thisis a serious drawback since “ surely, it should make

eO@ Géﬁ@

(@) (b)

Fig. 3. The witnesses example.
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Fig. 4. A problematic defeat graph for stable semantics.

no difference that the defeat cycleis of odd-length rather than even-length. We should get
the same result in either case” [14].

One might be tempted to apply alocal correction to stable semantics by prescribing that
when no stable extension exists, then the empty set should be considered as the unique
stable extension. Such a solution would however be unsatisfactory for several reasons.
First of al, it still gives different results for odd-length and even-length cycles (defeated
vs. provisionally defeated for all nodes). Moreover, it gives incorrect results in graphs
where nodes which should be undefeated are present along with odd-length cycles. For
instance, in the graph shown in Fig. 4 no stable extension exists, entailing that al nodes
are not justified, however node §, which has no defeaters and is not involved in the cycle,
should be undefeated. A more appropriate way to solve this problem consists in taking
a different perspective: rather than imposing the “aggressive” condition of attacking all
external arguments, it isenough to require that, more pacifically, the extensionisjust ableto
defend itself from external attacks. Thisintuition has been formalized in[9] by introducing
the notions of acceptable argument and admissible set.

Definition 8. Given an argumentation framework AF = (A, —), an argument o € A is
acceptablavith respect toaset E C A if and only if

VBeA:B—a, E— 8

The set of the arguments acceptable with respect to a set £ will be denoted using the

characteristic function Far(E):
Definition 9. Given an argumentation framework AF = (A, —), the function

Fap: 24 — 24
which, given aset E C A, returns the set of the acceptable arguments with respect to E is
called the characteristic functiorof AF.
Definition 10. Given an argumentation framework AF = (A, —), aset E C A isadmissi-
bleif and only if

E isconflict-freeandV8 e A: 8 — E,E — 8
namely it is conflict-free and each argument in E is acceptable with respect to E. The set
made up of all the admissible sets of AF will be denoted as AS(AF).

Building on these definitions, the notion of complete extension can be introduced, by
imposing that an admissible set al so satisfies a compl eteness requirement. Compl ete exten-
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Fig. 5. The ‘Nixon diamond’ example.

sions play akey role in Dung’s theory, since all semantics encompassed by his framework
select their extensions among the complete ones. Intuitively, a complete extension is an
admissible set such that no argument outside the set is acceptable with respect to the set
itself.

Definition 11. Given an argumentation framework AF = (A, —), aset E C A isacom-
plete extensioif and only if E isadmissible and every argument of A which is acceptable
with respect to E belongsto E, i.e.,

E ¢ AS(AF) AVa € FAr(E), «a € E

The set of complete extensions of AF will be denoted asCE (AF).

One might guess that the notion of complete extension entails maximality, since no
acceptable argument is left outside the extension. However, this is not the case. In fact,
the above property only states that nodes already defended by the extension are included,
but it does not impose that nodes (or sets of nodes) that defend themselves are added to
the extension. For instance, in the case of Fig. 5, the empty set is a complete extension,
while either of the nodes defends itself and therefore also {«} and {8} are complete exten-
sions.

As a consequence, a further notion of extension, called preferred extension, has been
introduced in [9] by directly requiring maximality of admissible sets.

Definition 12. Given an argumentation framework AF = (A, —), aset E C A isapre-
ferred extensiorof AF if and only if it is a maximal (with respect to set inclusion)
admissible set, i.e., a maximal element of AS(AF). The set of preferred extensions of
AF will be denoted as PE(AF).

Preferred semanticsis able to cope with the problematic examples involving odd-length
cycles presented above: in fact, in the graph of Fig. 2 there is a preferred extension (the
empty set), while for the case of Fig. 4 the only preferred extension is {§} as desired. It
can be noted however that the treatment of odd and even-length cyclesis still unequal (as
pointed out for instance by Pollock in [18]).

Note that al the proposals surveyed above belong to the area of multiple-statusap-
proaches, where multiple extensions may exist for a given argumentation framework. An
aternative research line has focused on unique-statuspproaches, that prescribe the exis-
tence of exactly one extension for each argumentation framework. Grounded semantics[9,
13] is probably the most representative proposal among unique-status approaches and has
played an important role in the development of argumentation theory.
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First of al, an alternative definition of justification statusis required [13], since Defini-
tion 4 is not appropriate in case of a unique-status approach:2

Definition 13. Given an argumentation framework AF = (A, — ), the arguments of A can
be partitioned, with reference to a given unique-status argumentation semantics S, into
three sets on the basis of the unique extension E € Eg(AF):

e the set of undefeatedrgumentsUs(AF) ={e € A|a € E};
o the set of defeatedarguments Ds(AF) ={a e A|a ¢ E A E — al;
e the set of provisionally defeatedrguments Ps(AF) ={a € A|a ¢ E A E 4 «}.

Formally, the (unique) extension of the grounded semantics, called the grounded exten-
sion, can be defined as the least fixed point of the characteristic function.

Definition 14. Given an argumentation framework AF = (A, —), the grounded extension
of AF, denoted as GE(AF), istheleast fixed point (with respect to set inclusion) of Far.

In more intuitive terms, the computation of the grounded extension can be understood
as the process of labeling the nodes of the defeat graph starting from the initial ones. Asa
first step, initial nodes are labeled as undefeated and the nodes attacked by them arelabeled
as defeated. Then the aready labeled nodes are suppressed and the step is repeated on the
resulting subgraph, and so on. If in an iteration no initial node is found, all the unlabeled
nodes are labeled as provisionally defeated, and the process terminates. Note in particular
that, since there are no initial nodes in the graphs of Fig. 3(a) and Fig. 3(b), al nodes are
labeled as provisionally defeated in the first step. In Fig. 4 node § is labeled undefeated in
the first step, then all other nodes are labeled provisionally defeated, as desired.

According to the above analysis, grounded semantics fits well al the basic intuitions
about the assignment of justification status and represents a sort of reference as far as
undefeated and defeated arguments are concerned. In a sense, these assignments are un-
questionable and should be agreed with by any alternative proposal. In Dung's framework,
this reference role has a formal counterpart in the following property: the grounded ex-
tension is contained in any complete extension, and therefore in the extensions of any
semantics (in particular in any preferred extension).

Proposition 15.Given an argumentation framewoA& = (A, —):

¢ the grounded extensioBE(AF) is the least{with respect to set inclusigrcomplete
extension oAF;

e the preferred extensions iRE(AF) are the maximal(with respect to set inclusijn
complete extensions AfF.

2 The existence of two alternative definitions of justification status is actually unsatisfactory. In [8], we have
proposed a unified definition overcoming this limitation and introducing a more articulated classification. The
considerations and the results presented in this paper are however independent of the choice of justification status
definition.
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Fig. 6. Argumentation framework with afloating argument.

For these reasons, as well as for its computational advantages, variants of grounded
semantics have been considered in several works[10,13,21].

Any unique-status approach is affected however by a limitation concerning the treat-
ment of the so-called floating defeatas pointed out in [12,24]. Consider the defeat graph
presented in Fig. 6: as it has no initial nodes, the grounded semantics directly labels all
nodes as provisionally defeated. On the other hand, preferred semantics (as well as stable
semantics) prescribes two extensions {«, §} and {8, §}, thusyielding § undefeated, o and 8
provisionally defeated, and y defeated. This seemsto be the intuitively correct result since
both & and 8, while preventing each other to be justified, defeat y, thus enabling in any
case the acceptance of §.

3. Preferred semantics: problematic behaviors

As discussed in the previous section, Dung’'s work has played an influential role on ar-
gumentation research in recent years, due to its generality, to the proposed unifying view
able to capture the most significant existing approaches, and to the importance of the spe-
cific results presented. In particular, preferred semanticsis able to overcome the limitations
of stable semantics asfar as the existence of extensionsin presence of defeat cyclesiscon-
cerned, and the limitations of grounded semantics in the treatment of floating defeat.

However, while preferred semantics can be considered a significant advancement with
respect to previous proposals, one can notice that the treatment of cycles does not appear
completely satisfactory, since it is not as elegant as the one of grounded semantics. As a
matter of fact, if the nodes of a defeat graph are arranged in a cycle of attack relationships,
then they are not justified: this seems to be the intuitively right result, since al arguments
in a cycle should be treated equally for obvious symmetry reasons and considering them
al justified would yield a contradiction. However, thisresult is obtained in rather different
waysin the two semantics. In the context of the grounded semantics, all argumentsforming
acycle are directly labeled as provisionally defeated, since the grounded extension turns
out to be the empty set. On the other hand, the preferred semantics features a sort of asym-
metry, since it treats odd-length cycles differently from the even-length ones. Considering
the argumentation framework of Fig. 5, consisting of a two-length cycle, two preferred
extensions exist, namely {«} and {8}, therefore both arguments are provisionally defeated
according to preferred semantics. With reference to the argumentation framework of Fig. 2,
consisting of athree-length cycle, Definition 12 identifies the empty set as the unique pre-
ferred extension, therefore all the arguments are defeated. More generally, with odd-length
cycles there is a unique empty extension, and then all arguments are defeated, while with
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Fig. 7. A simple variant of the withesses example.

even-length cycles non-empty extensions exist but their intersection is empty, and then all
arguments are provisionally defeated. This peculiar way of assigning a justification status
to odd-length cycles has recently been indicated as “ puzzling” by Pollock [18].

Sofar, thisdifference might be considered asamere question of symmetry and elegance.
However, as we show considering a smple variant of the witnesses example of Fig. 3,
it can be recognized that the different treatment of odd-length cycles is a real problem
since it gives rise to counter-intuitive results. Let us suppose that an additional source of
information, e.g., a weather report, suggests that it is not raining, contradicting the claim
made by Smith; in the case of three witnesses, the resulting argumentation framework is
shown in Fig. 7(a). In this case, it turns out that PE(AF) = {{—rain}}, therefore —rain is
undefeated while al the other arguments are not justified. On the other hand, in the case
of four witnesses we obtain the argumentation framework shown in Fig. 7(b): it admits
several preferred extensions whose intersection is empty, and therefore all arguments are
provisionaly defeated. Notice that similar situations arise, in genera, by replacing the
three-length and four-length cycle with any odd-length and even-length cycle, respectively.
Therefore, the justification status of the argument supported by the weather report turns
out to depend (in an alternating way) on the number of conflicting witnesses. Note that this
difference arises because an odd-length cycle has no extensions besides the empty one: asa
conseguence, in the argumentation framework of Fig. 7(a) thereis no extension where node
rain isin and —rain is out and, therefore, —rain emerges as the only justified argument.
Instead, such an extension exists with an even-length cycle and, therefore, both rain and
—rain turn out to be provisionally defeated.

This seems to be rather questionable: as remarked in [14] the length of the leftmost
cycle should not affect the justification status. More generally, it is counter-intuitive that
different results in conceptually similar situations depend on the length of the cycle: sym-
metry reasons suggest that all cycles should be treated equally and should yield the same
results.

Notice that, in the above example, the odd-length cycle is in a sense stronger than the
even-length one, sincein the case of Fig. 7(a) the status of rain isthe same asif it would be
attacked by an initial node. The opposite happens however in the variant of this example
shown in Fig. 8. Considering the argumentation framework of Fig. 8(a), it turns out that
there is only one preferred extension, namely {«, ¢}, therefore both « and ¢ are justified
according to the preferred semantics. In fact, the absence of non-empty extensions for the
three-length cycle prevents the existence of extensionswhere ¢ isout and y isin. Since ¢
attacks y, also o survives: as a conseguence, e and ¢ emerge (questionably) undefeated.
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Fig. 8. Problematic argumentation frameworks for preferred semantics.
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Fig. 9. A case of floating defeat and floating acceptance.

On the other hand, by replacing the three-length cycle with a four-length cycle, we obtain
the argumentation framework of Fig. 8(b), whose arguments are all provisionally defeated
(and a similar result is obtained with any other even-length cycle). In this case, therefore,
the odd-length cycle is in a sense weaker than the even-length one, since it is not able to
prevent ¢ from being justified.

In summary, we notice that odd-length cycles are problematic for preferred semantics
from two points of view: first of all, they give radically different results with respect to
even-length cyclesin situations where such a difference does not seem justified, moreover
they change their capability of defeating other arguments depending on the topology of the
defeat graph.

These problems have been first pointed out in our previous works [4,7]. Other specific
difficulties of preferred semantics related to the treatment of odd-length cycles have been
noticed in argumentation literature. In[22], aproblem in the treatment of the argumentation
framework shown in Fig. 9is pointed out. Thisisa case of floating defeat against argument
y by the nodes in the three-length cycle, namely it can be regarded as a variant of the argu-
mentation framework shown in Fig. 6, where the even-length attack oop has been replaced
by an odd-length loop. Again, regarding as irrelevant the distinction between even-length
and odd-length cycles would yield to consider y defeated and § justified: although § is
attacked by y, it isreinstated by arguments «, 8 and ¢ since any of them attacks y . How-
ever, it turns out that preferred semantics admits as preferred extension only the empty set
and, therefore, no argument is justified. The authors underline that “this seems one of the
main unsolved problems in argumentation-based semantics’ [22].

Problems aso arise when considering the extreme case of odd-length cycles, namely
self-defeating arguments, which have received a specia attention in the literature [14,22].
The argumentation framework AF shown in Fig. 10 is yet another problematic case for
preferred semantics, as observed by Dung himself [9]. In fact, the only preferred extension
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Fig. 10. The case of a self-defeating argument.

here is the empty set, though one can argue that since « attacks itself, 8 should be justi-
fied. Actually, both solutions are reasonable in some sense, since different treatments of
self-defeating arguments may be appropriate in different contexts: a discussion and some
examples about this point are provided in [15].

Before drawing any conclusion from the previous discussion, it is fair to recognize that
different points of view about the intuitive interpretation of the defeat graphs presented
above are possible as well. In [22], it is suggested that, while these examples are prob-
lematic if one adheres to an intuitive symmetry requirement, an alternative view can be
conceived where “odd defeat loops are of an essentially different kind than even defeat
loops’. For instance, one might state that odd-length cycles are like paradoxes, i.e., Sit-
uations where nothing can be believed, while even-length cycles are like dilemmas, i.e.,
situations where a choice needs to be made. While, in our opinion, this remark is not ap-
plicable to the above examples concerning witnesses, we agree that the matter is far from
admitting a univocal solution. In this perspective, one should not look for just oneright
semantics, since the correct behavior is a matter of interpretation. Similarly, in [11] exam-
ples are pointed out where the behavior of grounded semantics appears more appropriate
than the one of preferred semanticsin the treatment of so-called floating conclusions. From
a more general stance, in [20] it is remarked that using intuition about specific examples
to derive general considerations about defeasible reasoning may be risky and inappropri-
ate. Thisis due, in particular, to the specific nature of defeasible reasoning where it is a
fundamental standpoint that inferences are never conclusive and are always subject to be
invalidated in the light of additional information. For these reasons, aternative solutionsto
some puzzling examples can be obtained by making explicit some information left implicit
intheir original formulation. Moreover, it can be argued that in these problematic casesthe
topology of the defeat graph does not determine a univocal solution per se, since the same
abstract structure may give rise to different intuitively plausible justification status assign-
ments when instantiated on distinct common sense reasoning examples: thisis adownside
of the generality of abstract frameworks. As a consequence, Prakken suggests that “it is
better to use intuitions not as critical tests but as generators for further investigation” [20].

The work described in the present paper adheres to this suggestion. The problematic
cases discussed above point out that different solutions can be considered reasonable in
different contexts (or even in the same context by different people) and, in particular, pre-
ferred semantics may be regarded as problematic in some cases. As a conclusion of this
survey, we aim at investigating an extension of Dung’s theory able to capture alarger vari-
ety of argumentation semantics, so that none of the reasonableintuitionsarising in different
contextsis excluded. The framework we are looking for should therefore be ableto include
the traditional grounded, stable, and preferred semantics, as well as alternative treatments
of the problematic examples discussed above. To achieve such a level of generaity, we
need to single out a few basic principles which can be regarded as a sort of insuppressible
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conceptual core for any argumentation semantics. The relevant analysis is carried out in
the following section.

4. A general recursive schema for argumentation semantics

In our search for aminimal set of fundamental principles of argumentation semantics,
we depart from the common practice of characterizing extensions by means of a set of
global properties they should respect: rather, we adopt a sort of constructive approach,
where the structure of the defeat graph drives the incremental definition of extensions. In
this perspective, an argumentation semantics can be viewed as the definition of a mecha
nism for constructing all possible extensions of an argumentation framework, and this, in
turn, can be understood as an incremental process that step-wise chooses which nodes of
an argumentation framework should be included into an extension.

We draw inspiration from the way the justification status can be computed according
to the grounded semantics: as described in Section 2.2, computation proceeds from the
frontier of the defeat graph towardstheinside. Considering, asan example, the chain shown
inFig. 1, theinitial node « isassigned the status of undefeated, causing 8, which isattacked
by «, to be assigned the status of defeated; thisin turn causes y to be assigned the status of
undefeated, and so on. This node labeling procedure suggests that edgesin the defeat graph
represent not only the attack relation, but also a dependency relation in the assignment of
justification status: roughly, the status of anode depends on those of its defeaters. However,
thisintuition hasto berefined in order to cope with the case of cyclic attack relations, where
mutual dependence would prevent this reasoning to be applicable. To this purpose, let us
consider the case of floating defeat shown in Fig. 6. In a sense, the subgraph {«, 8} plays
therole of initial node with respect to y; in fact, the status assignment within this subgraph
determines the judtification status of y. For instance, in the case of preferred semantics
the construction of the extensions might proceed by selecting either o or g within the
subgraph, and then propagating the effect of this choice on the subsequent nodes. For each
of these choices y is attacked and then left out from the extension; as a conseguence, the
attack from y to § isineffective and § isincluded in both the extensions.

This example brings to light a fundamental aspect: the dependency relation introduced
at the level of single nodes may also hold at the level of subgraphs, that play, in a sense,
the role of single virtual nodes in the propagation of defeat. However, in order to derive a
concrete result from thisintuition, it is necessary to identify a decomposition of the defeat
graph which appropriately reflects the dependency relation mentioned above. It turns out
that such decomposition is provided by the graph-theoretical notion of strongly connected
components

Definition 16. Given an argumentation framework AF = (A, —), the binary relation of
path-equival ence between nodes, denoted as PEar C (A x A), is defined as follows:

o Va € A, (x,a) € PEAF,
e giventwo distinct nodes «, 8 € A, («, B) € PEAE if and only if there is a path from «
to 8 and a path from 8 to «.



176 P. Baroni et al. / Artificial Intelligence 168 (2005) 162-210

The strongly connected componemfsAF are the equivalence classes of nodes under the
relation of path-equivalence. The set of the strongly connected components of AF is de-
noted as SCCSaf. Given anode « € A, the strongly connected component « belongstois
denoted as SCCar(a).

A particular case, to be considered in the following, is represented by the empty argu-
mentation framework: when AF = (@, @) we assume SCCSar = {#}.

To exemplify Definition 16, in the graph of Fig. 1 therearefour strongly connected com-
ponents each consisting of asingle node (i.e., SCCSar = {{«}, {8}, {v}, {8}}), since there
is not any couple of mutually reachable nodes. On the other hand, the graphs of Fig. 2,
Fig. 5, Fig. 8 consist of exactly one strongly connected component coinciding with the
whole set of nodes, since they are all mutually reachable. The graphsin Fig. 3, Fig. 4 and
Fig. 10 include two strongly connected components. one consisting of a cycle (a degener-
ate one in the case of Fig. 10), the other one of a single node. Three strongly connected
components are present in the graph of Fig. 6, namely {«, 8}, {y}, and {8}, and a sSimi-
lar decomposition applies to the graph of Fig. 9. Finaly two distinct strongly connected
components can easily be identified in the graphs of Fig. 7: for instance in the graph of
Fig. 7(a), the nodes R, S, and J form afirst strongly connected component S1, since they
are mutually reachable being arranged in a cycle, while the nodes rain and —rain form a
second distinct strongly connected component S», since they are mutually reachable while
there is not any path leading from them to any node of S;.

We extend to strongly connected components the notion of parents, denoting the set
of the other strongly connected components that attack a strongly connected component
S as sceparents,(S), and we introduce the definition of proper ancestorsdenoted as
sccancage(S):

Definition 17. Given an argumentation framework AF = (A, —) and astrongly connected
component S € SCCSar, we define

sceparentsy(S) = {P € SCCSag | P # S and P — S}
and

sccancar(S) = sceparentSy(S) U U sccancap(P)
P esceparentsy g (S)

A strongly connected component S such that sccparents,g(S) = @ is called initial .

It iswell-known that the graph obtained by considering strongly connected components
as single nodesis acyclic: this confirms that considering a dependency relation at the level
of SCCSaFr is a sound starting point. Recalling the basic example of Fig. 1, where the
strongly connected components consist of single nodes, clearly the dependency among
justification states of nodes has a direct counterpart in terms of strongly connected com-
ponents. Turning to the example of Fig. 6, a similar consideration applies: the subgraph
{, B} isactually the only initial strongly connected component of the graph. The choices
concerning extension construction carried out in this first strongly connected component
clearly do not depend on those concerning the other ones and directly affect the choice
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about the subsequent strongly connected component (actually consisting of {y}), whichin
turn affectsthe last strongly connected component, namely {§}. Similar considerations can
be easily applied to other examples.

Generalizing thisintuition, we assume afirst basic principle, called directionality prin-
ciple: with reference to a given extension E, for any strongly connected component S of
AF, the choice of the subset of S to be included in E (i.e., (E N S)) only depends on the
choices made in the strongly connected components of sccancar(S), i.e., those that are
antecedent to S in the acyclic graph made up of strongly connected components.

In particular, the choices in the antecedent strongly connected components determine a
partition of the nodes of § into three subsets:3

Definition 18. Given an argumentation framework AF = (4, —), aset EC A and a
strongly connected component S € SCCSaf, we define:

e Dap(S, E) ={a €S| (E Noutparentsy(S)) — a};

o Par(S,E) = {o € S | (E N outparentsa(S)) /& a A 3B € (outparentsy(S) N
parentsyp(@)): E /> B}

e UAr(S, E) =S\ (DAr(S, E) U PAR(S, E)) ={a € S | (E Noutparentsy(S)) A o A
VB € (outparentsy () N parentsag (o)) E — B}.

Inwords, theset Dap(S, E) consistsof thenodesof S attacked by E from outside S, the
set Uar(S, E) consists of the nodes of S that are not attacked by E from outside S and are
defended by E (i.e., their defeaters from outside S are all attacked by E), and Par(S, E)
consists of the nodes of S that are not attacked by E from outside S and are not defended
by E (i.e, at least one of their defeaters from outside S is not attacked by E). It iseasy to
verify that Dap(S, E), Par(S, E) and Uapr(S, E) are determined only by the elements of
E that belong to the strongly connected components in sccancag(S).

To exemplify the above definitions, consider again the defeat graph presented in
Fig. 7(a), which consists of two strongly connected components S1 = {R, S, J} and
S» = {rain, —rain}, where clearly Sy precedes S». Accordingly, let us now show how dif-
ferent choices of E N S1 determine different partitions of S».

Let us first consider the case that (E N S1) = {J}: then the node rain receives an
external attack coming from a node included in E. Therefore it satisfies the condition
for membership in Dap(S2, E), while the node —rain does not receive externa attacks
from E, and thus satisfies the condition for membership in Uag(S2, E). Therefore it turns
out that Dap(S2, E) = {rain} and Uar(S2, E) = {—rain}. Note that the condition about
—rain does not depend on the choice of E N S1, therefore it will always be the case that
—rain € Uar(S2, E).

Let us turn to the case (E N §1) = {S}: now rain does not receive external attacks
from E, but is attacked from outside S»> by the node J, which is not included in E nor

3 The symbols D, P and U are meant to recall the terms “Defeated”, “Provisionaly defeated” and “Unde-
feated” respectively. It has to be noted, however, that here they refer to a relationship between arguments and a
particular extension E, rather than to the overall justification status of arguments.
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isattacked by E. Thusrain satisfies the condition for membership in Pap(S2, E) yielding
Par(S2, E) = {rain}, and, of course, again Uag(S2, E) = {—rain}.

Finally, if (E N S1) = {R}, the node rain is defended by E since its only externa at-
tacker J isin turn attacked by R € E, so rain satisfies the condition for membership in
Unr(S2, E), yielding Uap(S2, E) = {rain, —rain}.

Now, we need to investigate further principles which drive the selection of £ N S onthe
basis of the above three sets. First of al, as aready discussed in Section 2.2, a conflict-free
principleis universally accepted: an extension cannot include conflicting arguments. This
entails that arguments in Dar(S, E), being attacked by nodes in E, cannot be chosen in
the construction of the extension E (i.e., do not belong to E N §). Selection of arguments
tobeincluded in E isthereforerestricted to (S \ Dag(S, E)) = (Uar(S, E) U Par(S, E)),
which, for ease of notation, will be denoted in the following as UPar(S, E).

Asfar asthis selectionis concerned, we recall that it is generally agreed that undefeated
nodes are able to make ineffective the attacks of nodes they attack, i.e., of defeated nodes.
This reinstatement principlgrescribes that nodes defeated by an extension E play no
role in the selection of nodes to be included in E. Taking into account the decomposition
into strongly connected components, the application of this principle can be examined
considering separately, for a given strongly connected component S, the nodes defeated
by E inside and outside S. Inside S, the principle entails that the nodesin Dag(S, E) and
the relevant attack relations can be suppressed. This implies that the selection within S
of the nodes to be included in an extension E has to be carried out on a sort of reduced
argumentation framework, consisting in UPAr(S, E), completely neglecting the nodes in
Dar(S, E).

To formalize this concept, we provide the definition of restriction of an argumentation
framework to a given subset of its nodes:

Definition 19. Let AF = (A, —) be an argumentation framework, and let S € A be a set
of arguments. The restrictionof AF to S is the argumentation framework AF| s = (S, —
NS x S)).

Combining this definition with the reinstatement principle, we obtain that the selection
of nodes within a strongly connected component S has to be carried out on the restricted
argumentation framework AF| up,(s, £y Without taking into account the attacks coming
from Dap(S, E).

L et usturn to the suppression of nodes defeated by E outside S. For ease of description,
let uscall inthefollowing outer attackeof astrongly connected component S, with respect
to an extension E, any node @ suchthat & ¢ S, @ ¢ E, « — UPag(S, E). Note that any
outer attacker o of S necessarily belongs to a strongly connected component parent of S,
i.e., SCCar(a) € sceparents,(S). Wewill also refer to the outer attackersof anode 8 € S
to denote the subset of the outer attackers of § attacking 8. In general some of the outer
attackers of S with respect to E arein turn attacked by E, while others are not.

Asto the first ones, according to the reinstatement principle the nodes of UPag(S, E)
should be treated as if the outer attackers that are attacked by E did not exist. To clarify
this point, consider the particular case where all outer attackers of S are in turn attacked
by E (formally, UPAr(S, E) = Uar(S, E)): according to the above considerations, the se-
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lection of nodes to be included in the extension is carried out in AF| up,q(s, £) neglecting
the suppressed outer attacks and therefore following the same principles which are applied
to an unrestricted argumentation framework, i.e., selection is carried out in the same way
as if the argumentation framework was not the result of a restriction. For instance, using
again the example of Fig. 7(a), when UPAr(S2, E) = Uar(S2, E) = {rain, —rain} the re-
instatement principle entails that the selection of E NS> isanalogous to the case of Fig. 5,
namely to the case of a defeat graph featuring the same topology and not resulting from
restriction.

On the other hand, outer attackers that are not attacked by E may play arole in the
construction of the extensions. Accordingly, the nodes of UPAr(S, E) can be partitioned
into defended nodese., nodes which have no outer attackers or whose outer attackers are
al attacked by E, and undefended nodgesuch that at least one of their outer attackersis
not attacked by E.

Summing up, on the basis of the principles we have identified, the selection of (E N S)
turns out to depend only on:

o therestricted argumentation framework AF|upac(s, £);
o thedistinction between defended and undefended nodes within UPag(S, E).

A direct way to formalize these ideas consists in stating that the nodes to be included in
the extension are selected by means of a generic selection functiopwhich will be denoted
as GF. Thefunction GF takesin input two parameters:

e ageneric, possibly restricted, argumentation framework AF = (A, —) to which selec-
tion has to be applied;
e theset C C A of defended nodes?

and gives as output a set of subsets of .4, which represents all possible choicesfor E N A.
Accordingly, wewill usethe notation GF (AF, C) for the function. For the sake of general-
ity, besides specifying its input and output, we do not make any a priori assumption about
GF and, in particular, about whether and how the parameter C is taken into account.

Now, the next step isto define GF (AF, C) for ageneric argumentation framework AF =
(A, —) and aset C C A, representing the defended nodes of AF: two cases have to be
considered in this respect.

If AF consists of exactly one strongly connected component, it does not admit a de-
composition where to apply the directionality principle, therefore it has to be assumed that
GF(AF, C) coincidesin this case with abase functiondenoted as BF s(AF, C), that must
be assigned in order to characterize a particular argumentation semantics S. The definition
of this base function is, at least in principle, unconstrained.

On the other hand, if AF can be decomposed into several strongly connected com-
ponents, then, according to the directionality and reinstatement principles, GF(AF, C)

4 Thisisjust one of the ways of formalizing the distinction between defended and undefended nodes: this for-
malization turned out to enable a more elegant and compact technical treatment with respect to other alternatives.
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is obtained by applying recursively GF to each strongly connected component of AF,
deprived of the nodes in Dar(S, E). Formaly, this means that for any S € SCCSaf,
(ENS) e GF(AF|up,es.E), C), where C’ represents the set of defended nodes of the
restricted argumentation framework AF| up,e(s.£)- The set C’ can be determined taking
into account both the attacks coming from outside AF (which can be actually present only
if AF results in turn from restriction) and those coming from other strongly connected
components of AF, namely from sccparents,(S). Since the set C consists of the nodes
defended from the former kind of attacks at the level of AF, while Uag(S, E) consists of
those defended from the latter, it turns out that C’ = Uar(S, E) N C.

The above considerations suggest to introduce a new notion for argumentation seman-
tics, called SCC-recursiveness

Definition 20. A given argumentation semantics S is SCC-recursivaf and only if for
any argumentation framework AF = (A, —), Es(AF) = GF(AF, A), wherefor any AF =
(A, —) and for any set C C A, the function GF(AF, C) C 24 is defined as follows:
forany E C A, E € GF(AF, C) if and only if

e incase |SCCSar| =1, E € BFs(AF, ),
e otherwise, VS € SCCSar (E N S) € GF(AF|upae(s.E), UAR(S, E) N C),

where BF s(AF, C) isafunction, called base functiornthat, given an argumentation frame-
work AF = (A, —) such that |[SCCSar| = 1 and aset C C A, gives asubset of 24,

In particular, the set of al the extensions of the original unrestricted argumentation
framework AF coincides with GF(AF, A), since obvioudly there are no attacks from out-
side and, therefore, the set C coincides with the set A of all arguments.

Note that the definition of GF(AF, C) is recursive with respect to the decomposition
of AF into strongly connected components. Since GF (AF, C) is applied to progressively
more restricted argumentation frameworks, the definition iswell founded: in particular the
base of the recursion is given by the function BF s(AF, C), which returns the extensions
of a generic argumentation framework consisting of a unique strongly connected compo-
nent. Therefore, in order to define a SCC-recursive semantics, it is sufficient to specify its
behavior only on single-SCC argumentation frameworks.

The definition given above has also a straightforward constructive interpretation: it
suggests an effective (recursive) procedure for computing all the extensions of an argu-
mentation framework AF = (A, —) according to a given SCC-recursive semantics, once
a gpecific base function is assigned. A particular role in this context is played by the
initial strongly connected components. In fact, for any initial strongly connected com-
ponent I, since by definition there are no outer attacks, UPar(I, E) = Uar(l, E) =1
for any E and the set of defended nodes coincides with 1. This gives rise to the invoca
tion GF(AF|, I), for any initia strongly connected component /. Since AF| ; obviously
consists of a unique strongly connected component, according to Definition 20 the base
function BF s(AF|,, I) isinvoked, which returns the extensions of AF|; according to
the semantics S. Therefore, the base function can be first computed on the initial strongly
connected components, where it directly returns the extensions prescribed by the seman-
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Fig. 11. An argumentation framework with two strongly connected components.

tics, then the results of this computation are used to identify, within the subsequent strongly
connected components, the restricted argumentation frameworks on which the procedure
isrecursively invoked.

To support a better understanding of the concepts introduced above, we describe in
detail their application to the argumentation framework presented in Fig. 11, which consists
of two strongly connected components, namely S1 = {«, 8, v} and S2 = {8, ¢, , ¢}. Inthe
example we refer to a generic unspecified semantics S. The set of extensions of the whole
argumentation framework is given by GF(AF, A) and, since AF consists of more than
one strongly connected component, the function G.F isinvoked recursively on them (with
C = A), following their order. Formally, we have that E € Es(AF) iff

o (ENS1) € GF(AF|UPAr(s1,E)s UaF(S1, E)),
o (ENS2) € GF(AFLUPA(S2.E)> UAF(S2, E)).

As explained above, for the initial strongly connected component S1 it holds that
UPar(S1, E) = Uar(S1,E) = S1 for any E: this gives rise to the invocation
GF(AFls,, S1). Since AF| s, consists of a unique strongly connected component, the
base function BF s(AF| s;, S1) isinvoked, which returns the extensions of AF s, accord-
ing to the semantics S. For the sake of the example, let us assumethat BF s(AF|s,, S1) =
{{ae}, {B}. {¥}}, i.e, that, according to S, the extensions of AF|g, are the singletons in-
cluded in S1. At the level of the whole argumentation framework, they represent the
alternative choices for E N S1. Now, each of these alternative choices for E N S1 has
an impact on the subsequent strongly connected component S, and determines a distinct
UPAE(S2, E), since, for any E, UPAr(S2, E) = UPAR(S2, E N S1). Thus, GF has to be
applied to AF{ upar(Sa. fal)» AFLUPAR(S2,(8)) and AFLUPAR(S2.(y)) ) TO determine which sub-
setsof S2 can bejoined with {«}, {8}, and {y} respectively to form extensionsat the level of
the whole graph. If other strongly connected components were present, the same reasoning
would apply to them.

To continue our example, let us now consider the case where

ENS1={a}

As to the partition induced on S, by this choice, since only node § is attacked by « € E,
Dapr(S2, {a}) = {8} and, therefore, UPar(S2, {a}) = {&, n, ¢}, which determines the first
parameter for the recursive invocation of GF. Within UPar(S2, {«}), the only node which
receives an outer attack is ¢. Sinceits attacker y isnot included in E N Sy nor is attacked
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by E N S1, we have Pap(S2, {a}) = {¢}, which entails Uar(S2, {«}) = {e, n}. Therefore,
the recursive invocation on the second strongly connected component of the graph has the
form (E N S2) € GF(AF , {e,n}), where AF = AF| (s ;.-

Now, let us identify the sets E’ ¢ GF(AF, {e, n}) which represent the possible values
for (E N S): the function GF is applied to AF following the same reasoning lines as
above. First, note that AF' is actually a chain of three nodes, therefore it consists of three
simple strongly connected components S; = {e}, S5 = {n}, S5 = {¢}. S7 isthe only initial
strongly connected component of AF', therefore UPp (S, E') = Upp (S, E') = §1 = {¢}
for any extension E’ of AF'. Following Definition 20, the possible values for (E’' N §})
are given by GF(AF | (s, {e} N {e, n}) = GF({{e}, B), {e}). Since ({e}, ¥) consists of a
single strongly connected component, the base function BF s({{e}, @), {e}) is in turn
invoked: let us (reasonably) assume that it returns {{¢}} as result. Then, as it was intu-
itively evident, there is only one possibility for E’ N S}, whose effects on subsequent
strongly connected components of AF have to be determined. It is immediate to note
that Dap (S5, E' N S7) = S5 = {n}, therefore UPp (S5, E' N S7) = @, and also the set
of defended nodes is empty. Formally, the possible values for E' N S, are given by
GF(AF |y, 8N {e,n}) = GFD, ), ). The base function is then invoked on the empty
argumentation framework, giving reasonably {#} as result. Now we are ready to consider
the situation of S3: within AF' it receives an attack only from S, and it is clear from above
that E' N S, = 0. Therefore Upp (Sg, E') = Upp (S5, @) = S5 = {¢}. Then Dap (S5, E') =
Pap (85, E') = and UPpp (S5, E') = Upp (S5, E'). Applying Definition 20, the possi-
ble values for E’ N S5 are given by g]-“(AF’¢Sé, Sz N {e,n}) = GF(({¢},9),9). Note
that, in this case, the second parameter of the function GF, namely the set of defended
nodes, differs from Upp (S5, E”), due to the attack coming from y and considered at a
previous level of recursion. Again, AF | s, consists of a single strongly connected com-

ponent, therefore the possible values of E’ N S; are given by BF s({{¢}, ), ). In this
case, the result of the function is no more obvious since different semantics might ascribe
a different role to the set of defended nodes, as it will be discussed later. Supposing that
the result is {{¢}}, we have a unique E’ € GF(AF, {e, n}), and therefore a unique value
for (E N Sp), i.e, {&, ¢}. Summing up, we obtain {«, ¢, ¢} as an extension of the origi-
nal AF.

For the sake of brevity we do not carry out such a detailed analysis for the cases E N
S1={B},and E N S1 = {y}, rather asketch is provided for the interested reader.

In the case E N S1 = {B}, there are no attacks from E to Sy and 8 defends ¢, there-
fore it turns out that Dap(S2, E) = @, Pap(S2, E) = {8}, Uar(S2, E) = {e, n, ¢}, which
coincides with the set of defended nodes within S2. Then UPAr(S2, E) = S2 giving
rise to the following invocation: GF(AF|s,, {e, n, ¢}). Now, AF| s, consists of a unique
strongly connected component, therefore the possible completions of extensions at the
level of the whole graph are given by BF s(AF|s,, {¢, 1, ¢}), whose outcome depends
on the specific semantics S considered and is not specified here: joining the elements of
BFs(AF|s,, {e,n, ¢}) with {8}, we obtain a set of extensions B C £s(AF), such that
VB e B, BN S1={B).

Finally, in the case E N S1 = {y}, E attacks the node ¢ and defends the node
8 within So. Therefore Dap(S2, E) = {¢}, Pap(S2, E) = @, and Uapr(S2, E) =
UPAr(S2, E) = {8, ¢, n}, which coincides also with the set of defended nodes. Letting
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AF = AF| 5.6, GF(AF . {38, ¢,n}) isinvoked. AF isachain of three nodes, therefore
its strongly connected components are the singletons S; = {8}, S; = {¢}, and S5 = {n}.
S; is the initial one and we have g}'(AFwSi,S’l N {8,e,n}) = GF({8},0),{8}) =
BFs(({8},9), {8}), which reasonably gives {{5}} as only possible choice for £’ N S;. Tak-
ing thisinto account, UPAp (S5, E') = ¢ and then we have GF (AF |4, #) = GF (8, ¥), D)
=BFs({#,9),9), which reasonably gives {/} asonly possible choicefor E'NS;. Thisen-
tails UPpp (S5, E') = S5 and we have Q]—‘(AF’¢Sé, SzN {8, e,n) =GF({n}, ), {n}) =
BFs({{n},¥).{n}), which reasonably gives {{n}} as only possible choice for E’ N 5.
Summing up, we obtain {y, 8, n} as an extension of the original AF, and finally Es(AF) =
{{a. &, 0} {y, 8.0} UB.

Partly dueto their recursive nature, Definition 20 and its detail ed application may appear
complex.® We argue, however, that the underlying basic ideas are relatively simple and can
be summarized as follows:

(1) the argumentation framework is partitioned into its strongly connected components;
they form a partial order which encodes the dependencies existing among them ac-
cording to the directionality principle;

(2) the possible choices for extensions within each initial strongly connected component
are determined using a semantic-specific base function which returns the extensions of
argumentation frameworks consisting of a single strongly connected component;

(3) for each possible choice determined at step 2, according to the reinstatement princi-
ple, the nodes directly attacked within subsequent strongly connected components are
suppressed and the distinction between defended and undefended nodes is (possibly)
taken into account;

(4) thesteps1-3 aboveare applied recursively on therestricted argumentation frameworks
obtained at step 3.

One may now wonder whether the property of SCC-recursiveness characterizes a suit-
ablefamily of semantics. On the one hand, such family should be general enough to include
all traditional approaches to argumentation semantics in Dung'’s framework, on the other
hand it should be constrained enough to support the definition of novel proposals based on
reasonable definitions of the base function.

Asfar asthefirst requirement is concerned, it is reasonable to expect a positive answer
since SCC-recursiveness has been derived using a very essential set of largely accepted
principles in argumentation semantics. Thisintuition is formally backed up in the follow-
ing section, where it is shown that al the semantics encompassed by Dung’s theory are
SCC-recursive. As to the second requirement, in Section 6 we show that SCC-recursive
semanti cs sati sfies two desirable properties under very general constraints on the base func-
tion, while in Section 7 we exploit SCC-recursiveness to introduce four novel semantics
able to cope in different ways with the problematic casesillustrated in Section 3.

5 Other examples of application of the recursive schemawill be given in Section 7.
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Fig. 12. A ‘Nixon diamond’ attacking a node.

5. SCC-recursive characterization of traditional semantics
5.1. Generalizing Dung'’s theory

In order to develop an SCC-recursive characterization of traditional semantics, it is
necessary, first of all, to redefine Dung's theory in generalized terms, by restating its
fundamental concepts with reference to a specific subset C C A, from which acceptable
arguments (that compose the extensions) are selected, since it represents the subset of de-
fended nodes within A, as explained in the previous section. Origina Dung's definitions
can be recovered letting C = A. Proofs are omitted throughout this subsection as they are
straightforward extensions of thosein [9].

Given an argumentation framework AF = (A, —) and aset C C A, we define admissi-
blesetsin C asfollows:

Definition 21. Given an argumentation framework AF = (A4, —) and aset C C A, a set
E C Aisanadmissible seti€ if andonly if E C C A E € AS(AF). The set of admissible
setsin C isdenoted as AS(AF, C).

Note that, in general, AS(AF, C) # AS(AF| ). For instance, in the argumentation
framework of Fig. 12, with C = {y} we have that AS(AF, C) = {#}, since y is hot an
admissible set because of the attack coming from 8, while AS(AF|¢) = {{y}}.

We introduce now the notion of stable, complete and preferred extensions in the context
of the generalized framework.

Definition 22. Given an argumentation framework AF = (A, —) and aset C C A, a set
E C Aisastable extension i if and only if E C C and E € SE(AF). The set of stable
extensionsin C isdenoted as SE(AF, C).

Definition 23. Given an argumentation framework AF = (A4, —) and aset C C A, a set
E C Aisacomplete extension i@ if and only if E € AS(AF, C), and every argument
a € C which is acceptable with respect to E belongsto E, i.e, Va € C: «a € Fap(E),
a € E. The set of complete extensionsin C isdenoted as CE(AF, C).

Definition 24. Given an argumentation framework AF = (A, —) and a set of arguments
C C A, apreferred extension i@ is amaximal element (with respect to set inclusion) of
AS(AF, C). The set of preferred extensionsin C isdenoted as PE(AF, C).

In other terms, E € PE(AF, C) if and only if E isamaximal set such that £ C C and
E isadmissiblein AF.
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Given these definitions, an important question concerns the existence of a preferred
extension for any argumentation framework AF and for any set C € A. The following
theorem provides a positive answer to this question, extending Dung’s results:

Theorem 25.Given an argumentation framewoBd¢ = (A, —) and a setC C A:

e The elements oiS(AF, C), i.e., the admissible subsets®fform a complete partial
order.
e Forall F € AS(AF, C), there isk € PE(AF, C) such thatF C E.

Corollary 26. Given an argumentation framewokF = (A, —) and a setC C A,
PE(AF, C) is non empty, i.e., there is always a preferred extengianPE (AF, C).

Also in the generalized framework, the grounded semantics can be defined in terms of
the least fixed point of the characteristic function.

Definition 27. Given an argumentation framework AF = (A, —) and a set of arguments
C C A, thefunction

FAF,C . ZC — 2C
Far,c(Q) ={a | a € C, a acceptable with respect to O}
is called the characteristic function oAF in C.

Itiseasy to seethat Far, ¢ iSmonotonic (with respect to set inclusion).

Definition 28. Given an argumentation framework AF = (A, —) and aset C C A, the
grounded extension &F in C, denoted as GE(AF, C), is the least (with respect to set
inclusion) fixed point of Fag, c.

Notice that by definition GE(AF, C) € C. Also in this case we provide a positive result
concerning the existence of the grounded extension:

Lemma 29. For any argumentation frameworKF = (A, —) and for all setsC C A,
GE(AF, C) exists and is unique.

Finally, the following relations between grounded, preferred and complete extensions
can be drawn:

Proposition 30.Given an argumentation framewof = (A, —) and a set of arguments
C C A, GE(AF, C) is the leas(with respect to set inclusigrcomplete extension i@ (i.e.,
the least element IGE(AF, C)).

Proposition 31.Given an argumentation framewoA# = (A, —) and a set of arguments
C C A, the preferred extensiorRE (AF, C) are the maximafwith respect to setinclusion
complete extensions i (i.e., the maximal elements @€ (AF, C)).
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Since Dung's original definitions are recovered by letting C = A, a SCC-recursive for-
mulation of the extended definitions also covers the original ones: this is achieved in the
following subsections, where we show that all the traditional semantics covered by Dung's
theory allow a definition of extensions recursively characterized along strongly connected
components.

5.2. Stable semantics

The following proposition shows that stable extensions are in correspondence with a
decomposition aong strongly connected components: the intersection of a stable extension
with any strongly connected component S isitself a stable extension of the restriction of
the argumentation framework AF to UPAfr(S, E).

Proposition 32.Given an argumentation framewof& = (A, —) and a set of arguments
E C A, E e SEAF) ifand only ifVS € SCCSar

(ENS) € SEAFLUPAR(s.E))

Proof. First, let usprovethat if E isastable extension of AF then it satisfieslocal stability
relevant to a generic strongly connected component S € SCCSar, corresponding to the
following conditions:

(1) (ENS) S UPAR(S, E);
(2) (ENS)isconflict-free;
(3) Va e UPAR(S, E): a ¢ (ENS), (ENS) — .

Notice that, by definition, the second and third conditions should be verified with reference
to the argumentation framework AF|up,e(s,£), however it is easy to see that, according
to the first condition and the definition of AF|up,:cs,E), it is sufficient to verify them in
AF. Asfor thefirst condition, we havethat Vo € (E N S) @ ¢ Dap(S, E), otherwise by the
definition of Dar(S, E) we would have that E — «, therefore E would not be conflict-
free contradicting the hypothesis that E is a stable extension of AF. As far as the second
condition is concerned, it directly follows from the fact that E is conflict-free, entailed
by the hypothesis that E is a stable extension of AF. As for the third condition, let us
consider a generic argument o € UPar(S, E) such that o ¢ (E N S). Since a € S and
a ¢ (ENS), a¢ E, therefore by the hypothesis that E is a stable extension of AF we
havethat E — «, i.e, 38 € E. B — «. Since a € UPAE(S, E), taking into account the
definitions of UPAr(S, E) it turns out that 3y e (E N outparents,(S)) such that y — a.
Asaconsequence, it must bethecasethat 3 € E, € S: 8 — «, thus (EN S) — «, and
thefirst part of the proof is complete.

Turning to the other direction of the proof, we have to show that, with reference to the
argumentation framework AF:

(1) E isconflict-free;
(2) Vee A: « ¢ E, E — «.
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Let us prove the first condition by contradiction, assuming that 3o, 8 € E: o« — 8, and
let usindicate SCCar(B) as S. Let us notice that o cannot belong to S, since in this case
(E N'S) would not be conflict-free in AF as well asin AF|up,q(s.E), thus contradicting
the hypothesis that (E N S) € SE(AF|upae(s.E))- AS a consequence, « € E and o ¢ S,
therefore 8 € Dap(S, E) by the definition of Dag(S, E). However, this contradicts the
fact that 8 € (E N S), which by the hypothesisis contained in UPAE(S, E).

Let us finally turn to the second condition, considering a generic o € A: « ¢ E, and
let us indicate SCCar(x) as S. We can distinguish two cases for «. If « € DaAp(S, E),
then E — « directly follows from the definition of Dap(S, E). In the other case, o €
UPAER(S, E). Since o ¢ E, we have that o ¢ (E N S), therefore the hypothesis (E N S) €
SE(AFLUPAr(s,E)) entails that (E N S) — o in AR upaecs, ). Obviously, (ENS) — «
holds also in AF, and the proof iscomplete. O

Exploiting the following lemma, the above result can be extended to the generalized
definition of stable extensions, yielding the desired recursive characterization in Proposi-
tion 34.

Lemma 33.Given an argumentation framewoft = (A, —) and a stable extensioA
of AF, VS € SCCSar, Par(S, E) = 0.

Proof. Let us assume by contradiction that 35 € SCCSag: Par(S, E) # @, i.e, Ja €
Pap(S, E). According to the definition of Par(S, E), wehavethat 38 ¢ E, 8 — «a: E A
B, contradicting the hypothesisthat E isastable extension of AF. O

Proposition 34.Given an argumentation framewoA# = (A, —) and a set of arguments
ECAVCCA EecSEAF,C)ifand only ifvS € SCCSar

(ENS) e SS(AFiupAF(S,E), Uap(S,E)N C)

Proof. Let us start from the first direction of the proof, assuming that £ € SE(AF, C).
According to the definition of SE(AF, C), we havethat E € SE(AF), thus Proposition 32
entailsthat V.S € SCCSar

(ENS) € SE(AFLUPA(S, E))

In order to prove the thesis, we have only to show that (E N S) C (Uar(S, E) N C). Firdt,
the hypothesisthat E isstable and therefore conflict-free entailsthat (E N DaAp(S, E)) = @.
Moreover, according to Lemma 33 Par(S, E) = . As aconsequence, it must be the case
that (E N S) C Uar(S, E). Furthermore, according to the hypothesis E C C, it holds that
(ENS) S (Uar(S, E)NC).

Let usturn to the other direction of the proof, assuming that VS € SCCSar

(ENS)e SS(AFi,UPA,:(S,E)’ Uar(S,E)N C)

Taking into account the definition of SE(AF|upccs.E), UAE(S, E) N C), Proposition 32
entailsthat £ € SE(AF). Moreover, sinceVs € SCCSar (ENS) C C wehavethat E C C,
thus E € SE(AF, C), and the proof iscomplete. O
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It can be noted that, on the basis of Lemma 33, the same result would have been achieved
by adopting an alternative definition of SE(AF, C), namely SE(AF, C) = SE(AF). Infact,
in the case of stable extensions C has no concrete role, since all arguments outside an
extension are attacked by the extension itself, and therefore all argumentswithin astrongly
connected component S are defended against attacks from outside S.

5.3. Admissible sets

Since admissible sets play a key role in Dung’s theory, their characterization accord-
ing to SCC-recursiveness is needed as a basis for the analysis of other semantics. Thisis
achieved by Proposition 38, which requires three preliminary lemmas.

Lemma 35 (from [9, pp. 327]). Given an argumentation framewokF = (A, —), an
admissible set of arguments e AS(AF), and an argument € Fap(E) acceptable with
respect toF, E U {«} is admissible, i.e(E U {a}) € AS(AF).

Lemma 36.Given an argumentation framewoA& = (A4, —), an admissible set of argu-
mentsk € AS(AF), and an argument € Faor(E) acceptable with respect t8, denoting
SCCar(a) as S, it holds that

e « € Uar(S, E); and
e « is acceptable with respect (& N S) in the argumentation frameworkF| up,c (s, E)
i.e.,ae FAFiUPA,:(S,E)(E n.s).

Proof. First of all, on the basis of Lemma 35 (E U {a}) € AS(AF), and in particular
(E U {a}) is conflict-free: as a consequence « ¢ Dar(S, E), otherwise by the definition
of Dar(S, E) it would be the case that £ — «. Moreover, o ¢ Pap(S, E), otherwise by
the definition of Pap(S, E) we would have that 38 € E: 8 — « and E 4 8, thus con-
tradicting the fact that « € Fap(E), namely the acceptability of o with respectto E. Asa
consequence, the only possibility for « isthat @ € Uag(S, E).

Turning to the second part of the proof, let us first note that, on the basis of the hy-
pothesis that E € AS(AF), all the elements of E are acceptable with respect to E, i.e,
Vy € E,y € Fap(E). Thus, the above result entailsthat (E N S) C Uar(S, E), therefore
(ENS) isactually aset of argumentsin the argumentation framework AF| up,q(s,£)- Let
us consider now ageneric argument 8 that attacksa in AF| up,rcs. £y : We haveto provethat
(E N S) — B holdsin this argumentation framework. Of course, 8 — « also in AF, there-
fore the acceptability of o with respect to E, i.e., o € Fap(E), entails that thereisy € E
such that y € parentsyg(8). Now, since 8 € UPAr(S, E), by definition of UPAg(S, E) al
of its defeaters outside S do not belong to E, thus y € S and therefore y € (E N S). As
a consequence, (E N S) — B holds in AF, and obvioudly it aso holds in the restricted
argumentation framework AF|upae(s,£). O

Lemma 37.Given an argumentation framewokF = (A, —), let E C A be a set of
arguments such tha¥,S € SCCSar

(ENS) € AS(AFLupae(s.£). UAr(S, E))
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Given a strongly connected compog@wt SCCSaF and an argumentr € UAF(§, E)
which is acceptable with respectt&' N S) in the argumentation framewok=| yp, 5 £)»

i.e,ae FAFiupAF<§ 5 (E NS), ais acceptable with respect t6 in AF, i.e.,a € Far(E).

Proof. With reference to the argumentation framework AF, we have to prove that Vg8 €
A: B— «,thenaso E — B. We distinguish two cases for S.

First, let us suppose that SCCar(8) = SCCar(er) = S. If B € Dar(S, E), then E — 8
holdsin AF by definition of DAF(§, E). If, onthe other hand, B UPAF(§, E),then g —
o holdsin AF| yp, . 5. ) therefore according to the hypothesis of acceptability concerning
« it must be the case that (E N'S) — g holdsin AF| Upae(3. - Obviously, such relation
holdsasoin AF, and entailsthat E — 8.

Let us consider the other case, i.e., SCCar(8) # SCCar(a) = S. In this case, B e
(outparentsy(S) N parentsy(«)), while by the hypothesis o € Uar(S, E): on the basis
of the definition of Uag(S, E), it must be the case that £ — B in AF, and the proof is
complete. O

Proposition 38.Given an argumentation framewol = (A, —) and a set of arguments
ECANVCCA, EcASAF,C) ifand only ifvS € SCCSar

(ENSYS) e AS(AF»LUPA;:(S,E)a Uar(S, E)N C)

Proof. First, let us prove that if E is admissible then it satisfies the conditions relevant
to a generic strongly connected component S € SCCSag. According to the definition of
AS(AF,C), EC C andVa € E, o is acceptable with respect to E, i.e., o € Fap(E). As
a consequence, on the basis of Lemma 36 we have that Vo € (E N S), o € Uar(S, E),
therefore (E N S) C (Uar(S, E) N C). Moreover, by the same lemma « is acceptable
with respect to (E N S) in the argumentation framework AF|upaecs,£). This, as well
as the fact that E is admissible and therefore conflict-free, entails that (E N S) is ad-
missible in the argumentation framework AF|up,e(s,£), and therefore that (E N S) €
AS(AF|uPae(s.E)» UAR(S, E) N C).

As far as the other direction of the proof is concerned, we first notice that, by the hy-
pothesis, VS € SCCSar (ENS) C (Uar(S, E)YNC) C (SNC), therefore E C C: in order
to prove the claim, we have only to show that E isadmissiblein AF.

Let usfirst show that E isconflict-free by reasoning by contradiction, i.e., let us suppose
that 3o, B € E: B — «. Let us denote SCCar(a) as S. Clearly, it cannot be the case that
SCCar(x) = SCCafr(B), sinceinthiscase (E N S) would not be conflict-free, thus contra-
dicting the hypothesis concerning its admissibility in AF| upg(s,£). AS a consequence,
B € (E N outparentsa(S)), therefore @ € Dag(S, E) by the definition of Dag(S, E).
However, this contradicts the fact that « € (E N S), which according to the hypothesis
iscontained in Uapr(S, E).

In order to complete the proof, we have to prove that a generic « € E is accept-
able with respect to E, i.e, a € Far(E). If we denote SCCar(a) as S, we have that
a € (ENS), and by thehypothesis (ENS) € AS(AFL 5, s 1> UaF(S, E)NC). There-
fore, o € Uar(S. E), and « is acceptable with respect to (E N'S) in AF|yp, 5 z)-
Since the hypothesis entailsthat VS € SCCSar (E N S) € AS(AF| upaecs.E). Uar(S, E)),
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Lemma 37 can be applied to «, entailing that « is acceptable with respect to E in AF, i.e,,
aeFap(E). O

5.4. Complete semantics

Exploiting the results in previous subsection, the following proposition shows that also
complete extensions are in correspondence with a recursive decomposition along strongly
connected components.

Proposition 39.Given an argumentation framewold = (A, —) and a set of arguments
ECA,VCCA, EcCEAF,C)ifand only ifvVS € SCCSar

(ENS) € CE(AFLUPae(s. E)» UAF(S, E)N C)

Proof. As for the first direction of the proof, if E € CE(AF, C) then in particular E €
AS(AF, C), therefore Proposition 38 entails that

VS e SCCSag (ENS) e AS(AF»LUPA,:(S,E)» Uap(S, E)N C) (D]

As a consequence, we have only to show that Ya € (Uagr(S, E) N C) such that « is
acceptable with respect to (E N S) in AF|upaes.E), @ € (E N S). First, we notice
that Lemma 37 can be applied to «, since (1) entails that VS € SCCSar (E N S) €
AS(AF|upars, By, Uar(S, E)). Onthebasis of thislemma, « is acceptable with respect to
E inAF,i.e, a € FaAp(E). Moreover, a € (Uar(S, E) N C), therefore in particular « € C.
As a consequence, from the hypothesis that E € CE(AF, C) it follows that « € E and
thereforea € (E N S).

As for the other direction of the proof, according to Definition 23 we have that VS e
SCCSar the following conditions hold:

(ENS) € AS(AFLupae(s. E). Uar(S, E) N C) ()
Va € (UaR(S, E)NC): a € FaRjupy s (ENS), @€ (ENS) ©)

Thus, on the basis of (2) Proposition 38 entails that £ € AS(AF, C), therefore we have
only to prove that Yo € C such that « is acceptable with respectto E, « € E, i.e, Yo €
C: a e FAR(E), a € E. Denoting SCCar(x) as S, on the basis of Lemma 36 we have that
a € Upp(S, E), sothat o € (Uap(S, E) N C), and « is acceptable with respect to (E N S)
iNAFLUPAR(s, ) 1-€ & € FAR yp, (5.5, (E N S). Then, taking into account (3) we have that
ae(ENS),thereforea € E. O

5.5. Preferred semantics

Also preferred extensions fit the decomposition schema along strongly connected com-
ponents, as shown by Proposition 41 based on the following lemma.

Lemma 40. Given an argumentation framewokF = (A, —), an admissible seE <
AS(AF), and a strongly connected componéht SCCSar, let E be a set of arguments
such that



P. Baroni et al. / Artificial Intelligence 168 (2005) 162—-210 191

¢ (ENS)CE C Unr(S. E): R
e E is admissible in the argumentation framewo&F|yp,.(s,r), i.€., E €
AS(AFLUPAr(s. E))-

It holds that(E U E ) is admissible inAF, i.e.,(EU E ) € AS(AF).

Proof. First, we prove that (E U E ) is conflict-free. Of course, E is conflict-free in
AFlupacs.E) by the hypothesis, and, as a consequence, E is conflict-free also in AF.
Since aso E isconflict-freein AF by the hypothesis of admissibility, we have to prove that
E\7L> E and E 4~ E.Since E is admissible in AF, E — E entailsthat E — E, therefore
we have only to prove that E 4 E. Smce EC UAr(S, E), (E Noutparentsy(S)) 4 E,
therefore E— E onIy if(ENS) — E. However, this situation is not possible since
(ENS)C E and E is conflict-free.

Now, with reference to the argumentation framework AF we have to provethat Vg € A
such that 8 — (E U E), it is the case that (E U E) — B.In case B — E, the con-
clusion follows from admissibility of E. On the other hand, if 8 — E, we have that
B € (outparentsy(S) U S) since E C S; wedidti nguish three cases for B:

(1) if B € outparents,e(S), then, taking into account that 8 — EandEC Uar(S, E), it
must be the case according to the definition of Uar(S, E) that E — B;

(2) if B € DaAp(S, E), then according to the definition of Dag(S, E) it must be the case
that £ — B;

(3) if B € UPAE(S, E) then g — E holds also in AF¢UpAF(S £). As a consequence, the
hypothesis that E e AS(AFJ/UPAF(S E)) entails that £ — B holds in AFLUPAE(S,E)»
and, of course, that E — B asoholdsin AF.

Inany case, (E U E)— B, and the proof iscompleted. O

Proposition 41.Given an argumentation framewoA = (A, —) and a set of arguments
ECA,YC C A, EcPEAF,C) ifand only ifvS € SCCSar

(E N S) € PE(AFLUPAe(s.E)» UAF(S, E) N C)
Proof. As far as the first direction of the proof is concerned, let us assume that £ €

PE(AF, C). By definition, E € AS(AF, C), therefore, on the basis of Proposition 38, we
havethat VS € SCCSar

(ENS) € AS(AFLUPAr(s.E)» UAF(S, E)NC)

Let us now reason by contradiction, assuming that 35 € SCCSag such that (E N S) is
not maximal among the sets included in AS(AF| yp, 3. ) UAr(S, E) N C). According
to Theorem 25, there must be aset E such that

° (EﬂS)CEC(UA[:(S E)ﬂC) and
° E GAS(AF‘LUPAF(S E)» UAF(S E)ﬂC)
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Taking into account that, according to the definition of AS(AF,C), E € AS(AP),
Lemma 40 entails that the set £/ 2 E U E is admissible in AF. Moreover, since both
E and E are contained in C we havethat E’' C C, therefore E/ € AS(AF, C). However, it
is easy to see that E is strictly contained in E’, contradicting the maximality of E among
the sets of AS(AF, C).

Let us turn now to the other direction of the proof, assuming that VS € SCCSaF,
(ENS) € PEAF|uPar(s,Ey. Uar(S, E) N C). On the basis of Proposition 38, E €
AS(AF, C): in order to prove that E is also a preferred extension, we reason again by
contradiction, supposing that 3£’ C C, E C E’: E' € PE(AF, C) (notice that the exis-
tence of E’ isimposed by Theorem 25). Since E C E’, there must be at least a strongly
connected component S € SCCSar such that (E N S) C (E' N S): taking into account the
acyclicity of the strongly connected components, there exists in particular S € SCCSar
such that

VS € SCCSag: S € sccancar(S), (E'NS)=(ENS) (4)
(ENS)C(E'NS) (5)

Note that condition (4) istrivialy verified if Sisinitial.

Since E' € AS(AF, C), on the basis of Proposition 38 we have that (E' N S) e
ASAF] Upae3 £ Uar(S, E') N C). Taking into account (4), it is easy to see that
Uar(S.E") = Unr(S.E) and Pap(S.E') = Pap(S.E), therefore (E' N S) e
AS(AHUPAF(S E) Uae(S, E) N C). However, on the basis of (5) we havethat (E N S) C
(E’OS) and this contradicts the hypothesis that (EOS) ePE(AHUPAF(S E) UAF(S E)
NnC). O

5.6. Grounded semantics

Finally, in this subsection, we prove that the decomposition schema also holds for
grounded semantics, as shown by the following Proposition 42.

Proposition 42.Given an argumentation framewol& = (A, —) and a set of arguments
ECA,VC C A, E=GEAF,C) ifand only ifVS € SCCSar

(E NS) = GE(AF|Upye(s, ), UAR(S, E)N C)

Proof. Letusconsider thefirst part of the proof, by supposing that E = GE(AF, C). Onthe
basis of Proposition 30, E isin particular acomplete extensionin C, i.e., E € CE(AF, C),
therefore Proposition 39 entailsthat V.S € SCCSar (ENS) € CE(AF| uPacs,E)» Uar(S, E)
N C). Taking into account Proposition 30, we haveto provethat VS € SCCSar (E N S) is
the least element (with respect to set inclusion) in CE(AF|upes, £y, Uar(S, E) N C). We
reason by contradiction, supposing that there is at least one strongly connected component
where the thesis is not verified. In particular, since the strongly connected components of
AF make up an acyclic graph, we can choose S € SCCSar such that

VS e sccancAF(§), (ENS)= GE(AF\LUPAF(S,E)s Upe(S,E)N C) (6)
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and
JEC(ENS), E=GE(AFlyp,.s.p) Uar(S. E)NC) 7

Note that condition (6) istrivialy verified if Sisinitial.

Moreover, the second condition follows from the fact that, on the basis of Lemma 29,
GE(AF¢UPAF(§’E), UAF(§, E) N C) must exist, and according to Proposition 30 it is in-
cluded in all the elements of CE(AF | yp, 5. £)- UAF(S. E) N C).

Now, taking again into account that the strongly connected components of AF make up
an acyclic graph, it is easy to seethat it is possible to construct aset E’ such that:

e VSe sccancAF(S) (E'NS)=(ENSY);
e (E'N S) =
e VSe SCCSAF, (E'N'S) = GE(AFuppe(s.57)» UaR(S, EN N C).

To this purpose, it is obviously possible to construct a set E/, contained in the strongly con-
nected components of (S U sccancAF(S)) which satisfies the first two conditions. Thus,
it turns out that VS € (S U sccancAF(S)) UAr(S, E}) = Uar(S, E) and Pap(S, E}) =
Pap(S, E). Therefore, taking into account (6) and (7), E/, satisfies the third condition too
forany such S, i.e,

VS € (SUsccancar(S))  (ELNS) = GE(AF|upye(s.e1)» UAR(S, EL) N C)

Now, E’ can be obtained constructively from E’, by proceeding along the other strongly
connected components of the defeat graph: in fact VS € SCCSar GE(AF|upaes.E')s
Uar(S, E') N C) dways exists by Lemma 29.

On the basis of Proposition 30, we have that VS € SCCSar (E' N S) €
CE(AF{ups(s.E)» UAR(S, E') N C). Asaconsequence, by Proposition 39 it turns out that
E’' € CE(AF, C),whilesince (E' N S) =F C(EN S)itisnot truethat E € E’. However,
this contradicts the hypothesis that £ = GE(AF C), which according to Proposition 30 is
the least element of CE(AF, C), i.e., theleast complete extension in C.

Let us turn now to the other direction of the proof, by supposing that VS € SCCSaF,
(E N S) =GE(AF{uUpAe(s,E), UAF(S, E) N C). On the basis of Proposition 30, we have
that VS € SCCSar, (ENS) € CE(AF|upaes.E)» Uar(S, E)NC), therefore Proposition 39
entails that £ € CE(AF, C). As a conseguence, taking into account Proposition 30 we
have only to prove that E isthe least element of CE(AF, C). We reason by contradiction,
assuming that the grounded extension E’ = GE(AF, C), which must exist by Lemma 29
and is a subset of E by Proposition 30, is strictly included in E. Thus, there must be at
least a strongly connected component S such that (E’ N S) C (E N S): since the strongly
connected components form an acyclic graph, there is in particular a strongly connected
component S such that:

VS e sccancap(S), (E'NS)=(ENYS) (8)
(E'NS)C(ENS) ©)

Moreover, since E' = GE(AF, C) ¢ CE(AF C), Proposition 39 applied to S entails that
(E'N S) € CE(AF Uppr L) UAF(S E’) N C). Taking into account (8), it is easy to



194 P. Baroni et al. / Artificial Intelligence 168 (2005) 162-210

see that Uar(S. E') = Uar(S. E) and Pap(S. E') = Pag(S. E), therefore (E'NS) €
CEAF| Uprr5.E) UAF(S,AE) N C). However, according to (9) we havf that (E' N E) is
strictly included in (£ N ), contradicting the hypothesis (referred to S) that (E N S) =
GE(AfiupAF(ﬁ,E)’ Uar(S, E) N C) and therefore, on /t\he basis of Proposition 30, that
(ENS) istheleast element of CS(AF¢UPAF(§’E), Upr(S,E)YNC). O

5.7. Traditional semantics as SCC-recursive semantics

Asdiscussed in Section 4, each specific SCC-recursive semanticsisidentified by itsown
base function. On the basis of the results obtained in the previous sections, it is possible
to identify the base functions corresponding to the traditional semantics introduced in [9]
and, thus, to definitely prove that these traditional semantics fit the general SCC-recursive
schema

Theorem 43.The stable, complete, preferred and grounded semantics are SCC-recursive,
characterized by the following base functigiaefined for generic argumentation frame-
worksAF such tha SCCSar| = 1):

BFs71(AF, C)=SE(AF, C);
BFco(AF, C) =CE(AF, O);
BFpr(AF, C)=PE(AF, C);
BFgr(AF, C) = {GE(AF, C)}.

Proof. Let us prove the claim with reference to stable semantics. First, £ € SE(AF)
if and only if E € SE(AF, A), since as noticed in Section 5.1 Dung's original defi-
nitions are recovered from the extended ones in case C coincides with the set of all
arguments. Now, it is easy to see that SE(AF, C) for generic AF and C adheres to Defin-
ition 20: if |SCCSafr| = 1, then SE(AF, C) coincides by definition with the base function
BFs7(AF, C), otherwise the decomposition schema along the strongly connected com-
ponents follows from Proposition 34.

Asfar as complete, preferred and grounded semantics are concerned, proofs are similar
and are based on Propositions 39, 41 and 42, respectively. O

For the grounded semantics, the base function admits a simple explicit formulation.

Proposition 44.For any argumentation framewobkF = (A, —) such thai SCCSafr| = 1,
and for anyC C A, we have that
BFgr(AF, C) = {GE(AF, 0)}
| {{a}), ifC=A={a}and—=0;
| {2}, otherwise.

Proof. According to Definition 28, GE(AF, C) is the least fixed point of Fagc. Let us
consider its computation in the following exhaustive cases.
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First, if C =@ then VE € A Far.c(E) = ¢ by definition, obviously entailing that the
empty set is the least fixed point of Far ¢ and BFgr (AF, C) = {#}.

Second, if |.A| > 1 then it must be the case that Yo € A, parentsyg(a) # @, since AF
is made up of a unique strongly connected component, while an initial node would not be
reachable from another one. As a consequence, taking into account the definition of Far ¢,
itturnsthat, VC C A,

Farc@) ={eeC|VBe A B—a, #— B}
={a € C | parentsyg(or) = 0}
=0

As a consequence, the least fixed point of Farc is the empty set, therefore again
BFgr(AF, C) ={0}.

The remaining case to be considered is A = C = {«}. There are only two possibili-
ties for the attack relation, namely either —= {(«, )} or —= . The first situation can
be treated as in the previous case, since the unique node « is not initia, yielding again
BFgr(AF, C) = {#}. Inthe other situation, i.e., C = A= {«} and —=0, itiseasy to see
that Far,c ({a}) = {«} and Fafr,c (¥) = {«}, therefore the least fixed point of Far, ¢ ismade
up of theunique node o and BFgr (AF, C) = {{a}}. O

6. General properties of SCC-recursive semantics

Having proved that SCC-recursiveness is general enough to include traditional seman-
tics, we now show that it is also restrictive enough to ensure that the basic desirable
properties of an extension are satisfied by any SCC-recursive semantics, provided that very
simple and intuitive constraints on the base function are respected.

6.1. Conflict-free property

Asstated in Section 2.2, abasic requirement of any extension isthe absence of conflicts,
as expressed by the following definition:

Definition 45. A semantics S satisfies the conflict-free propertyf and only if VAF, VE €
Es(AF) E isconflict-free.

Clearly, a necessary condition for a given SCC-recursive semantics to be conflict-free
isthat its base function is conflict-free:

Definition 46. The base function G of a SCC-recursive semantics S is conflict-freeif
and only if VAF = (A, —) and VC C A each element of BF s(AF, C) is conflict-free.

We also prove that thisis a sufficient condition.
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Proposition 47.LetS be a SCC-recursive semantics identified by the base fungtidh
If GF% is conflict-free, thertvAF = (A, —) and VC C A the elements of the function
GF(AF, C) based org 75 are conflict-free as well.

Proof. Let us consider a generic argumentation framework AF = (4, —) and a generic
set C € A: we haveto prove that, given ageneric E € GF (AF, C), E isconflict-free.

Given the recursive characterization of E asin Definition 20, wefirst provetheclaimin
the base case, namely |SCCSar| = 1, then we assume as an inductive hypothesis that the
claim holdsfor any S € SCCSaF at thelevel of AF| up,e(s, £y and show that this hypothesis
entailsthe claim at the level of AF.

If |SCCSaf| = 1, then, by Definition 20, E € BF s(AF, C), and therefore is conflict-
free by the hypothesis.

In the other case, namely |SCCSafr| > 1, the inductive hypothesis can be expressed as

VS € SCCSar (E N S) isconflict-freein AF| upae(s, E) (20

Let us reason by contradiction, assuming the existence of two elements «, 8 € E such that
a — B, and let usindicate SCCaAp(B) as S. Clearly, « ¢ S, otherwise (E N S) would not
be conflict-free in AF{up,c(s,E). AS a consequence, o € outparentsa(S) N E. However,
this would entail that 8 € Dar(S, E) by definition of Dap(S, E), while since 8 € E this
would contradict the fact that (E N S) C UPAr(S, E), prescribed by (10). O

Theorem 48.Given a SCC-recursive semantigsif its base functiorg]-‘:g is conflict-free
thenS satisfies the conflict-free property.

Proof. Since, according to Definition 20, any extension E € £s(AF) belongsto GF(AF,
A), the claim easily follows from Proposition 47 applied withC = A. O

6.2. Agreement with the grounded semantics

As discussed in Section 2.2, the grounded semantics represents a sort of lower bound
among argumentation semantics, since in Dung’s framework the grounded extension is
the least among all conceivable extensions, namely complete extensions. More generally,
the agreement with grounded semantics can be regarded as a fundamental requirement
for any argumentation semantics, as it appears evident considering the constructive char-
acterization of grounded semantics recalled in the same subsection. As a confirmation of
the well-foundedness of the property of SCC-recursiveness, we prove in Theorem 52 that
for any SCC-recursive semantics each of its extensions includes the grounded extension,
provided that a very simple condition on the base function is satisfied.

First, we prove a general property of the SCC-recursive schema showing that inclusion
between extensions entails inclusion relations between the elements of the partitions of
strongly connected components introduced in Definition 18.

Lemma 49.Given an argumentation framewofd = (A, —), let E1, E> € A be two sets
of arguments such thai; C E» and E> is conflict-free(and therefore alsd'1). For any
strongly connected componehitc SCCSar, it holds that
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o Dar(S, E1) € DaAp(S, E2);
o UPAr(S, E2) S UPAF(S, E1);
o Unr(S, E1) C Uar(S, E2).

Proof. As to the first point, we have by definition that Dar(S, E1) ={a € S| (E1 N
outparentsa(S)) — «}. Since E1 C E», it must be the case that Dar(S, E1) C{x € S|
(Ez Noutparentsyg(S)) — o} = Dap(S, E2).
The above result easily entails the second one, taking into account that UPAE(S, E2) =
(S\ Dar(S, E2)): by thefirst point, (S\ Dar(S, E2)) S (S\ Dar(S, E1)) = UPar(S, E).
Asto the third point, let usfirst prove that

Ya € Uar(S, E1),  (E2Noutparentsyg(S)) 4 o (11)

We reason by contradiction, assuming that 3o € Uar(S, E1), B € (E2 NoutparentSye(S)):
B — «a. In this case, we have in particular that 8 € (outparentSy(S) N parentsyg(a)),
therefore, according to the definition of Uar(S, E1) appliedto o, E1 — B. However, since
E1 C E»,dso E2 — B holds, with 8 € E», contradicting the hypothesisthat E- is conflict-
free.

Now, it is easy to see that

Va € Uar(S, E1), VB € (outparentsy£(S) N parentsag(@)),  E2 — B (12)

since by definition of Uap(S, E1) applied to « we havethat E1 — g and E1 C E>.

Finaly, on the basis of (11) and (12) it turns out that Yo € Uapr(S, E1) (E2 N
outparents,(S)) 4 a A VB € (outparentsye(S) N parentsyp(a)) E2 — B, ie, a €
Unar(S, E2). O

The following lemma shows that an inclusion relation between two sets C; and C2 also
holds between the grounded extensions in C1 and Ca, even if the latter is referred to a
restricted argumentation framework.

Lemma 50.LetAF; = (A1, —1) andAF; = (A2, —2) be two argumentation frameworks
such thatAF, = AFy| 4,. Given two set<C; and C> such thatCy € C2 € Ay € Ay,
GE(AF1, C1) C GE(AR,, C)).

Proof. First, let us consider the characteristic functions Far,,c, and Far,,c,, respectively
defined in 2€1 and 2¢2 (with 261 C 2¢2). We prove that, given two sets E; € C; and
E>c (2

if E1C E> thenFar, c;(E1) € Far,,c,(E2) (13)

Let us consider a generic element o € Far, ¢, (E1): by definition, « € C1 and « is ac-
ceptable with respect to E1 in AF1. Since C1 € Co, a € C», therefore to prove that
o € Far,,c,(E2) we have only to show that « is acceptable with respect to E in AF,. To
this purpose, let us consider a generic argument 8 € A2 which attacks o in AR, i.e, B €
parentsap, (). Clearly, since Az C A3, B attacks « also in AFy, i.e,, B € parentsyg, ().
Since « is acceptable with respect to E1 in AF1, E1 — B in AF1, and taking into account
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that E1 C C1 C Ay itiseasy to seethat Eq1 — B holds aso in AF,. Moreover, E1 C Eo,
therefore we get the desired conclusion that E; — B in AF».

Now, by extending an analogous result proved by Dung (see [9], pp. 342) in case
AF; and AF; are finitary, i.e, such that every argument has a finite number of de-
featers, GE(AF1, C1) and GE(AF», C2) can be respectively expressed as Ui>1 FfAFl, Cl(w)
and Ui>1Fj\F2’C2((/)): in order to prove the thesis, we show by induction on i that
Vi>1 F;Fl’cl(ﬂ) c FQFZ’CZ(VJ). The proof can be extended to the general case by us-
ing transfinite induction on ordinal numbers instead of ordinary induction, however we
resort to the latter for simplicity.

As for the base case, according to (13) Fary,c1(9) € Far,c,(V), since obviously
# C ¢ C C1. In the induction step, we assume that FkFl’Cl(ﬂ) C FlAFz,cz(”): as a con-
sequence, on the basis of (13) it turns out that FAFLCl(FiAFl,cl @) < FAFZvCZ(FfAFZ,CZ(M))’

ie, Fj:j:i 0@ < ij,:i ¢, ), and the proof is complete. O

We now show that the agreement with grounded semantics is ensured if the base func-
tion properly deals with the simplest possible case of argumentation framework, i.e., a
single node which does not attack itself and therefore should be justified.

Proposition 51.LetS be a SCC-recursive semantics identified by a conflict-free base func-
tion GF such that

BFs(({a}, 0), {a}) = {{a}}
For any argumentation framewokF = (A, —) and for any seC C 4, it holds that
VE e GF(AF,C), GE(AF,C)CE

whereGF (AF, C) is the recursive function of the SCC-recursive schema characterized by
the base functiog 7.

Proof. Given ageneric AF= (A, —) andaset C C A, let us consider ageneric set E €
GF(AF, C): we have to prove that GE(AF, C) C E. Let us distinguish two cases for the
argumentation framework AF.

First, if SCCSar = 1, then the base case of the recursive definition appliesto E, i.e,
according to Definition 20 E € BF s(AF, C). Of course, if GE(AF, C) is the empty set
then the thesis trivially holds for E. On the basis of Proposition 44, GE(AF, C) is non
empty only if AF = ({a}, ¥) and C = {«}, and it turns out that GE(AF, C) = {«}. By the
hypothesis, inthiscase BF s(AF, C) = {{a}}, thusthe only possible casefor E is E = {«},
obvioudly entailing that GE(AF, C) C E.

Let us now consider the case where SCCSaF > 1. Taking into account the recursive
definition of E according to Definition 20 and the proof for the case |[SCCSar| = 1, we
can recursively assume that, if |[SCCSafr| > 1, the thesis holds at the level of restricted
argumentation frameworks:

VS € SCCSaF, GE(AF\LUPAF(S,E)s Uar(S, E)N C) C(ENLS) (14
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In order to simplify the notation, let usindicate GE(AF, C) as E*: we proceed inductively
along the strongly connected components of the argumentation framework, by proving that

VS € SCCSar, (E*NS)C(ENS)
which obviously entailsthe claim. Let usfirst notice that, according to Proposition 42
VS e SCCSAF, (E* N S) = GE(AFi«UPAF(S,E*)a UAF(S, E*) N C) (15)

Inthebasis case, we consider theinitial strongly connected components, namely werefer to
ageneric S € SCCSar such that sccparents,p(S) = @, entailing that outparentsyg(.S) = @.
This, in turn, entailsthat, for any set E, Dar(S, E) = Pap(S, E) =@ and Uar(S, E) = S.
As aconseguence, according to (15) we havethat (E* N S) = GE(AF} s, SN C), whichis
in turn equal to GE(AF|upaecs,E), UAF(S, E) N C). Since by (14) the latter is contained
in (ENS),weget thedesired result that (E*N S) C(ENS).

In the inductive step, we can assume that

VP e sccancar(S), (E*NP)C(ENP)

Now, since E is conflict-free by Proposition 47 and the definitions of Uag(S, E) and
Pap(S, E) only depend on the subset of E contained in the strongly connected compo-
nents of sccancar(S), Lemma49 can be applied obtaining

Unr(S, E*) CUAF(S, E)
and
UPAF(S, E) € UPAR(S, E¥)
On the basis of these results, it is possible to apply Lemma 50 with

— AF1=AF| UPse(s. E¥),
— AF2 = AF] uPar(s.E) = AF1LUPAR(S. E),
— C1=Uar(S,E*)NC,
— Co=Uar(S,E)NC
obtaining
GE(AF}UPar(s, E*)» UAF(S, E*) N C) € GE(AFupar(s, ), UAF(S, E)N C)
Now, on the basis of (15) we have that
(E* N S) = GE(AF| upar(s, %), Uar(S, E*) N C)
while by (14)
GE(AF)UPar(s, ), UAF(S, E)NC) S (ENS)
entailing that (E*NS)C(ENS). O
Theorem 52.LetS be a SCC-recursive semantics identified by a conflict-free base function
GF% such that

BFs(({a}, 9), {a}) = {{a}}
For any argumentation framewoikF = (A, —), VE € Es(AF), GE(AF) C E.
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Proof. Thetheorem directly followsfrom Proposition 51 appliedinthecase C = A, taking
into account that £s(AF) = GF(AF, A) and GE(AF) = GE(AF, A). O

Thanks to the above properties, defining an SCC-recursive semantics which is sound,
i.e., conflict-free and in agreement with the grounded semantics, turns out to be a rela-
tively easy task. In fact, in order for these properties to be satisfied it is sufficient that
the base function is conflict-free and correctly treats the case of a single node without de-
featers. In the following section we exploit the SCC-recursive schema to introduce four
novel semantics which can cope in different ways with the problematic examples affecting
preferred semantics. These semantics are introduced mainly for the purpose of demon-
strating the potential of SCC-recursiveness: the possibility of defining novel semanticsin a
rather straightforward way confirms that our formalism is a sound basis for further studies
in the spirit of the analysis of Section 3, where the need of a framework encompassing a
large variety of semantics has been pointed out. In this sense, the semantics presented in
the following section can be regarded more as illustrative than as definitive achievements:
they represent an initial excursion in the space of SCC-recursive semantics, whose deeper
and more compl ete exploration isindeed an interesting subject for future work. The defin-
ition of the semanticsis deliberately example-driven; however, at a more general level, the
four semantics are related by an underlying conceptual analysis, whose outcome seems to
suggest that, in the SCC-recursive context, simpler base functions are better.

7. Supporting the definition of novel argumentation semantics

The results of the previous section suggest that relatively simple base functions are
appropriate in the context of our SCC-recursive schema. Therefore, our search of novel
interesting SCC-recursive semanticsis driven by the idea of defining base functions based
on progressively simpler concepts. Accordingly, we adopt preferred semantics as astarting
point, and we use the focused survey presented in Section 2.2 as a guideline, by following
it backward from more articul ated concepts to the basic ones.

7.1. Beyond preferred semantics

In this subsection, we explore solutions which preserve the fundamental notion of
defense, formally represented by the property of admissibility in Dung’s framework; com-
plete admissible sets, i.e., complete extensions, are regarded as the most general family
of conceivable extensions in this context. As shown by Theorem 43, the recursive schema
turns out to completely include this framework, since all complete extensions are recur-
sively characterized. Therefore, considering the recursive schema does not introduce any
limitation in this respect.

Since preferred extensions are maximal admissible sets, in order to devise an aternative
admissibility-based proposal the only possible way is giving up the requirement of max-
imality. Let us start our analysis by recalling the argumentation framework of Fig. 7(a),
where the argument —rain turns out to be questionably justified according to preferred se-
mantics. First of al, note that in any semantics based on the concept of admissibility, none
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of the arguments S, R, or J can beincluded in any extension, since any of them attacksits
only possible defender. As a consequence, also rain cannot be included in any extension,
sinceit cannot be defended against its defeater J . Therefore, the only compl ete extensions
of the argumentation framework AF of Fig. 7(a) are {—rain} and ¥. While preferred se-
mantics prescribes {—rain} as the only extension, we aim at finding a semantics S whose
definition admits the empty set as extension. Adopting the general SCC-recursive schema
to identify such definition, we are led to investigate E N S for al S € SCCSar = {51, S2},
where S1 = {R, S, J} and S» = {rain, —rain}, asexplained in Section 4. In particular, since
for any complete extension E we have that (E N S1) = @, it is necessarily the case that
Pap(S2, E) = {rain} and Uap(S2, E) = {—rain}. As a consequence, Definition 20 yields
(E N S2) € BFs(AF|s,, {—rain}), and, therefore, we must look for a base function such
that BF s(AF|s,, {—rain}) = {#}.

A hint to obtain this property in general comes from the local correction to stable se-
mantics sketched in Section 2.2, where the empty set is selected as an extension when there
isno set of nodes able to attack all the others. Similarly, we might select the empty set as
an extension when the nodes of arestricted argumentation framework are not all defended,
i.e., do not al belong to the set C. Formally, we impose to the base function that if C C A
then BF s(AF, C) = {#}. Taking this for granted, to complete the definition of the base
function only the case where C = A remains to be specified. To this purpose, the more
direct approach is to consider the set of preferred extensions, thus obtaining the following
base function (we denote the corresponding semantics as ADL):

PEAFC) ifC=A
BFap1(AF, €)= { 1) otherwise

It is easy to see that AD1 semantics solves the problem related to the argumen-
tation framework of Fig. 7(a). In fact, on the first strongly connected component,
BFap1(AF]s,, S1) is invoked, which returns the set of preferred extensions of AF|g;:
PE(AF, S1) = {#}. Then, as explained above, BF ap1(AF| s,, {—rain}) isinvoked, which
also returns {#} as result. Summarizing we have that, for any possible extension E,
ENSi=¢and EN Sy =0, yielding the empty set as the unique extension of the whole
argumentation framework.

However, AD1 fails with the argumentation framework presented in Fig. 8(a). In fact,
in this case we have a single strongly connected component, and, therefore, AD1 inherits
from preferred semantics the counter-intuitive behavior discussed in Section 3, identifying
as the unique extension the set {«, ¢}, which is also a stable extension. To overcome this
problem, we need to rule out {«, ¢} as an extension. Note that the only defeater of both
a and ¢ is y, therefore the node y should retain the capability of preventing « and ¢ to
be justified. Noting that one of the defeaters of y, actually 8, is not included in the exten-
sion, to obtain the desired behavior we take a further step going back to a notion of more
“aggressive” behavior, which strengthens the requirement of attacking all external nodes,
typical of stable semantics. More precisely, we require that an extension fully attacks its
defeaters, i.e., it includes all the defeaters of its defeaters. In particular, {«, ¢} does not
satisfy this condition since it does not include 8, while ¢ trivialy satisfiesit. These consid-
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erations lead to define the following base function (we denote the corresponding semantics
as AD2):

{E | Emaxima in ASpg} ifC=A

BF ap2(AF, €) = { {7} otherwise

where
ASpr = {F € AS(AF) | Ya € A: a — F, parentsyp(a) € F}

It can be verified that AD2 preserves the desired behavior in all cases presented in
Figs. 1-8.

Considering first the problematic example for AD1 of Fig. 8(a), the argumentation
framework consists of a unique strongly connected component, and BF ap2(AF, A) is
therefore invoked. Now AS, - = {#}, as explained above, and therefore its only maximal
set is ¥ which coincides with the unique extension.

On the other hand, the behavior of AD1 is preserved in the case of the argumentation
framework of Fig. 7(a). After recalling that it consists of two strongly connected compo-
nents S1 = {R, S, J} and S, = {rain, —rain}, it can be seen that the only admissible set in
AF| s, istheempty set, which obviously belongsto AS;‘;HSl . Then Uap(S2, ¥) = {—rain},
PAr(S2, ¥) = {rain}, and, asfor AD1, (E N S,) isdetermined by BF ap2(AF| s,, {—rain}),
which yields the empty set since C # A.

In the other cases, it turns out that AD1 and AD2 prescribe the same extensions as
preferred semantics, whose behavior is fully justified from an intuitive point of view. We
describe in the following the treatment of these casesin order to provide other examples of
application of the SCC-recursive schema: sincein all these cases BF ap2(AF, C) coincides
with BFap1(AF, C), we will refer to AD2 only.

Thetreatment of the argumentation framework of Fig. 3(a) issimilar to that of Fig. 7(a),
since, again, E N S1 = @ with S1 ={R, S, J}, and, letting S, = {rain}, then Par(S2, ¥) =
Sz and (E N S) isdetermined by BF ap2(AF s,, ¥), yielding the empty set as the unique
extension.

As for the argumentation framework presented in Fig. 1, recall that its strongly con-
nected components coincide with all the singletons. First, the base function will be invoked
on the initial strongly connected component, obtaining BF ap2(AF| (e, {a}) = {{a}}.
Then, Dar({8}, {a}) = {8} and the base function will be invoked in the trivial case of
an empty argumentation framework: BF ap2(AF| g, ¥) = {4}, thus excluding g from any
extension. Then, for any E, Uar({y}, E) = {y}, and iterating the same reasoning as above
we obtain the inclusion of y and then the exclusion of § from the (unique) extension of
AF.

The argumentation frameworks presented in Figs. 2, 5, and 8(b) consist of a unique
strongly connected component, therefore in all these cases the following invocation of the
base function applies. BF ap2(AF, A). It iseasy to seethat, in al cases, the set of maximal
elements of AS} ¢ coincide with the set of preferred extensions.

A very similar reasoning applies to the argumentation framework of Fig. 4, whose two
strongly connected components are both initial. Letting S1 = {«, 8, ¥} and S2 = {8} and
applying the base function to both of them we obtain, for any possible E, E N S; = ¢ and
E N Sy = {8}, therefore {8} isthe unique resulting extension.
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As to the argumentation framework of Fig. 3(b), first the base function is applied to
the initial strongly connected component S; = {P, R, J, S}. Also in this case it is easy
to see that the sets {R, S} and {P, J}, besides being the preferred extensions of the re-
stricted argumentation framework AF| s, are the maximal sets of AS, ¢ Vs Considering

the propagation of the two possible choices to the second strongly connected component
S> = {rain}, we have in the former case Uar(S2, {R, S}) = S» and therefore the invoca
tion BFap2(AFls,, S2) returning {rain}, while in the latter case Dap(S2, {P, J}) = S2
and therefore the invocation BF ap2(AF| g, ¥) returning {#}. Thus the same extensions
{R, S,rain} and { P, J} are obtained asin preferred semantics.

A similar reasoning applies to the example of Fig. 7(b). Given the partition S; =
{P,R,J,S} and S> = {rain, —rain}, the possible choices for E N §1 are {R, S} and
{P, J}. In the former case, Uar(S2, {R, S}) = S» and since S is a Nixon diamond,
analogoudly to the case of Fig. 5, the possible choices for £ N S, are {rain} and
{—rain}. In the latter case Dar(S2, {P, J}) = {rain} and Uap(S2, { P, J}) = {—rain}, then
BF ap2(AF (—rain}, {—rain}) isinvoked, obviously giving {—rain} as result. Summing up,
again the same extension as in preferred semantics are obtained, namely: {R, S, rain},
{R, S, —rain}, and {P, J, —rain}.

In the argumentation framework of Fig. 6 the initial strongly connected component
S1 = {«, B} isaNixon diamond, thus, analogously to the case of Fig. 5, the possible choices
for EN Sy are {«} and {B}. Independently of this choice, considering the second strongly
connected component Sy = {y}, it holds that Dap(S2, E) = S therefore E N S = @.
Consequently, for the last strongly connected component S3 = {§}, Uar(S3, E) = S3 and
E N S3 = S3. Therefore also in this case the same extensions {«, §} and {8, §} are obtained
asin preferred semantics.

It is interesting to note that the requirement of including in an extension al of the de-
featers of anode which attacks the extension, imposed in the base function of AD2, would
be harmful rather than useful outside the SCC-recursive schema: examples can easily be
found where even initial nodes would not be justified. However, the SCC-recursive defini-
tion rulesthe behavior of the semanticsin such away asto exploit this constraint correctly.

Finally, we show in Proposition 53 that both AD1 and AD2 fit in Dung’s framework, as
all their extensions are actually complete extensions.

Proposition 53. For any argumentation frameworAF = (A, —), the extensions pre-
scribed by ADD and ADR are complete extensions.

Proof. According to the characterization of complete semantics as SCC-recursive given
in Theorem 43, any set E which is decomposable according to Definition 20 with a base
function whose elementsbelong to CE (AF, C) isacomplete extension. Therefore, to prove
the claim it is sufficient to show that the base functions introduced for AD1 and AD2 give
elements belonging to CE(AF, C) for any AF (consisting of a unique strongly connected
component) and C.

Considering first AD1, we distinguish two cases for the base function. If C = A, then
BFap1(AF, C) = PE(AF, C), and the conclusion directly follows from Proposition 31. In
the other casg, i.e,, C C A, BFap1(AF, C) = {#}, therefore we have to prove that ¢ is a
complete extension in C: since @ is obviously admissible in C, the only thing to show is
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that any « € C isnot acceptable with respect to . Thistrivialy holdsif C = @. Otherwise,
ageneric o € C could only be acceptable with respect to ¢ if parents, (o) = 3. However,
this is impossible, since « € C and C C A: taking into account that the argumentation
framework admits a unique strongly connected component, there must be an argument
B e A, B#asuchtha 8 — «.

Let us turn now to AD2-semantics, and let us notice that, if C C A, the relevant base
function coincides with that of AD1-semantics, therefore the proof proceeds asin the pre-
vious case. If instead C = A, then by definition any E € BF ap2(AF, C) is a maximal
element of AS,p, i.e, itisamaximal set suchthat it isadmissiblein AF and the following
property holds:

VBe A: B — E, parentsag(B) C E (16)

Since C = A and E is admissible, we have only to prove that Yo € A which is acceptable
with respect to E, @ € E. We reason by contradiction, assuming that 3¢ € A: @ ¢ E and
a is acceptable with respect to E. In case E = ¢, the acceptability of & would entail that
parentsyg(@) = ¥, and therefore the set {&} would be admissible. However, {&} would
clearly belong to AS, g, contradicting the maximality of E = ). Therefore, let us now
assume that E # ). Recalling that & ¢ E and that |SCCSaf| = 1, there must exist a path
between @ and any element of E. In particular, there must be an element y € E such that
the path from « to y does not include other elements of E. In fact, since & is acceptable
with respect to E, Lemma 35 entails that & 4 E, and the above mentioned path must
have the following structure: ¢ — 1 — --- — B, — v, withn > 1, suchthat y € E and
Bi ¢ E forali: 1<i<n.Inparticular, thisentailsthat 8, — E and parentsag(8,) € E,
contradicting (16). O

7.2. Beyond admissibility

In the previous subsection, we have identified the suppression of the requirement of
maximality among complete extensions as a possible way to solve the problems affecting
preferred semantics, while preserving the notion of admissibility. As aready explained,
in any admissibility-based semantics odd-length cycles admit only the empty extension,
while handling floating defeat as in Fig. 6 requires multiple extensions for even-length
cycles. As a consequence, both AD1 and AD2, as well as other possible proposalsinspired
to the same ideas, feature an asymmetry in the treatment of cycles. In this subsection,
we follow the idea that this asymmetry is the primary cause of questionable behaviors of
preferred semantics and should be avoided to allow alternative treatments of cycles.

L et usinvestigate the definition of a semanticsdriven by this perspective. Consider again
the simple case of a three length-cycle shown in Fig. 2: in order to enforce a symmetric
treatment of cycles, we need to look for a possible set of hon-empty extensions for this
argumentation framework. To this purpose, note that, in order to preserve the conflict-free
property, each extension has to include exactly one node. Moreover, obvious symmetry
reasons entail that all nodes should be treated equally, therefore the only possibility is to
identify as extensions the three sets {«}, {8} and {y}.

Two genera hints can be drawn from this simple example. First, it appears that our di-
rection of investigation cannot be constrained by the admissibility requirement, since, in
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the considered example, the only sets that can be identified as extensions are not admissi-
ble. Second, it turns out that these extensions coincide with the maximal conflict-free sets
of the argumentation framework (see Definition 6), and the same holds in the even-length
cycle case. This suggests to exploit the notion of maximal conflict-free set as a basis for
a new definition of extension. In a sense, this corresponds to the final step in our route
from articulated concepts to basic ones, since the notion of conflict-free set has been the
starting point of the survey in Section 2.2 and the conflict-free property is, actually, the
most fundamental assumption underlying any definition of extension, that could never be
removed.

The above intuition is confirmed by the fact that, by identifying the extensions as the
maximal conflict-free sets, the problematic cases shown in Fig. 7 and Fig. 8 are handled
correctly, sincein all casesthe intersection of maximal conflict-free setsis empty yielding
al arguments not justified. However, as aready discussed in Section 2.2, this intuition
alone would not represent a satisfactory solution, since, due to the increased number of
extensions prescribed, it would tend to assign the status of provisionally defeated to alarge
number of arguments, often to al of them. In other words, replacing the admissibility
reguirement with the less demanding notion of maximal conflict-free set requires some
further condition in order to properly constrain the set of extensions prescribed by the
semantics, i.e., to capture only a subset of the maximal conflict-free sets.

As amatter of fact, the SCC-recursive schema directly offers the solution to this diffi-
culty: asit will be shown in the following, simply requiring that the semantics S is SCC-
recursive represents an appropriate additional condition. To this purpose, let us consider
again the example of Fig. 2 involving the three-length cycle. In this case, |[SCCSag| = 1,
therefore, according to Definition 20, the base function, applied to the set of all argu-
ments, directly returns the set of the extensions. As a consequence, identifying exten-
sions as the maximal conflict-free setsyields BF s (AF, A) = MCFar. Generaizing this
idea, we obtain the specification of the base function for the case where C = A4, i.e,
BFs(AF, C) = MCFar. Taking this for granted, to complete the definition of the base
function only the case where C C A remains to be specified. In this respect, it seems
reasonable to exploit again the notion of maximal conflict-free set to provide a uniform
conceptual basis to the approach. Two ways of applying this notion can be envisaged, de-
pending on the role ascribed to the set C of defended nodes.

On the one hand, one may regard the inclusion of all the argumentsin C as arequire-
ment, preserving, asfar as possible, therole of defense in the base function. This givesrise
to the following definition (we denote the corresponding semantics as CF1):

BFcr1(AF, C) = MCFaF, ¢

On the other hand, one may note that the perspective we are following is based on the
assumption that the concept of defense is unnecessary in some cases, since the nodes of a
three-length cycle are admitted as extensions though not being able to defend themselves.
Generalizing from this remark, one may regard the notion of defense as definitely unneces-
sary. Thisleadsto consider the following base function, where the requirement of inclusion
of theargumentsin C is overlooked (we denote as CF2 the corresponding semantics, first
proposed in our [4]):

BFcr2(AF, C) = MCFar
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It can be seen that both CF1 and CF2-semantics are able to treat appropriately al argu-
mentation frameworks presented in Figs. 1-8, asit wasthe casefor AD2. To give adetailed
account of the proposed semantics, we analyze their treatment of the argumentation frame-
work of Fig. 7(a).6

Recall that SCCSafF = {S1, S»} with §1 = {R, §, J} and S, = {rain, —rain}. Asfor Sy,
which is an initial strongly connected component, the base case of Definition 20 applies,
yielding (E N S1) € BFs(AF{s,, S1). Therefore, according to CF1-semantics (E N S1)
must belong to MCFar;. with AF = AF|s, and C = S1, which is of course equal to
MCFarys, - Thisisthe same set prescribed by CF2-semantics, therefore the two semantics
agree in this case. Now, /\/le’-"AF“1 = {{S}, {R}, {J}}, leading to three alternative possi-
bilities for (E N S1). Assuming that (E N S1) = {J}, we have that Dar(S2, E) = {rain},
Unp(S2, E) = {—rain} and Par(S2, E) = @. Therefore, the base function is applied to
the argumentation framework AF (-rainy With C = {—rain}, yielding for both semantics
(E N S») = {—rain}. Therefore, we have an extension E1 = {J, —rain} for both semantics.
Let usturn now to the aternative (E N S1) = {R}, which entails that Uar(S2, E) = S> (as
J isattacked by R € E). Then, the base function is applied to the argumentation frame-
work AF] s, with C = S, it is easy to see that both semantics give two alternatives for
(E N S2), namely {rain} and {—rain}. Therefore, we have for both CF1 and CF2 the ad-
ditional extensions E> = {R,rain} and E3 = {R, —rain}. Findly, if (E N S1) = {S}, we
have that Pap(S2, E) = {rain}, Uar(S2, E) = {—rain} and Dar(S2, E) = (. Then, the
base function is applied to the argumentation framework AF| s, with C = {—rain}. In
this case, CF1 and CF2-semantics differ. In fact, CF1 gives MCFar, . Whichisequal to
MCF AR (rain » therefore (E N S2) = {—rain}, giving E4 = {S, —rain}. On the other hand,
CF2 gives /\/lC]-‘N:“2 = {{rain}, {—rain}}, yielding therefore the same extension E, as
CF1 and an additional extension Es = {S, rain}.

In spite of this difference, both semantics provide the intuitively desirable result: no
argument is justified, since the intersection of all extensions is empty. A similar treatment
is provided by CF1 and CF2 to the argumentation framework of Fig. 7(b), where they
identify the same extensions as preferred semantics, yielding again an empty intersection.

7.3. Comparing SCC-recursive semantics

Having provided the definition of four novel semantics, we now need to discuss their
placement with respect to the traditional semantics of Dung's framework, in order to carry
out a comparative analysis.

First of all, the basic requirement of agreement with the grounded semantics is satis-
fied by all the introduced proposals. In fact, it is easy to see that the sufficient conditions
for agreement stated in Theorem 52 are respected by their base functions and, therefore,
all the extensions of the proposed semantics contain the grounded extension. All seman-
tics, in turn, differ from preferred semantics in the treatment of the problematic cases
which have been the starting point of our investigation. In this respect, AD1 and AD2 are

6 The treatment of other examples of Section 2.2 can be easily derived along the same lines, as well as that
of the examples of Fig. 8, where there is only one strongly connected component and the extensions, coinciding
with maximal conflict-free sets, have empty intersection.
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closer by construction to preferred semantics, since, by Proposition 53, they select their
extensions among compl ete extensions and, therefore, each one of their extensionsis con-
tained in a maxima complete extension, i.e., in a preferred extension. According to the
relation of inclusion between extensions, AD1 and AD2 can be regarded as intermediate
approaches lying between grounded and preferred semantics. On the other hand, CF1 and
CF2 radically depart from preferred semantics, relying only on the conflict-free property
and SCC-recursiveness, while relaxing the admissibility requirement and thus admitting
extensions which are not compl ete extensions.

As remarked in the previous subsection, this departure supports a symmetric treatment
of odd-length cycles with respect to even-length ones, which represents a distinguishing
property of CF1 and CF2 with respect to AD1 and AD2. Asfar asthe examples considered
in previous subsections are concerned, this difference, though conceptually remarkable,
does not give rise to significantly different results in the assignment of the justification
status. In particular, only an example where ADL fails to provide an intuitively adequate
treatment has been pointed out, while AD2, CF1 and CF2 substantially agree in all ex-
amples, though sometimes achieving the desired result in different ways. Actually, thisis
not alwaysthe case: different behaviors are possible in other examples, which indeed show
that the symmetric treatment of cycles can be areal advantage and make the differencein
some Cases.

To substantiate this statement, let us consider the argumentation framework shown in
Fig. 9, corresponding to a floating defeat against argument y by the nodes in the three-
length cycle. In this case, any admissibility-based semantics admits the empty set as the
unique extension, and therefore this is the case for AD1 and AD2 as well, which do not
regard as justified any argument. On the contrary, both CF1 and CF2 admit as exten-
sionsthe sets {«, 8}, {B, 8} and {¢, §}. Infact, in theinitial strongly connected component
S1={«a, B, ¢} the maximal conflict-free sets, namely the singletons {«}, {8}, and {¢}, are
selected as possible choicesfor £N S1. Then So = {y} isruled out from possible selections,
since y is attacked in any case by E and, therefore, Dar(S2, E) = S2. As a consequence,
8 isaways selected, since, letting S3 = {8}, Uar(S3, E) = S3 and {8} is of course the only
maximal conflict free set of S3. Asaresult, o, 8 and ¢ are provisionally defeated, y is
defeated and § is undefeated. This behavior is coherent with that obtained in the case of
even-length cycles, like that shown in Fig. 6. As a consequence, this kind of examples
discriminates admissibility-based semantics from the proposed novel semantics based on
maximal conflict-free sets.

Considering now the case of a self-defeating argument shown in Fig. 10, it is easy
to see that the only admissible set here is empty, therefore any admissibility-based se-
mantics, including AD1 and AD2, is doomed to show the problematic behavior discussed
in Section 3 and can not allow an alternative treatment where the self-defeating argu-
ment is ruled out. Let us now consider how this case is handled by CF1 and CF2. First,
note that the argumentation framework AF is composed of two strongly connected com-
ponents, namely S1 = {a} and Sp = {B}. Starting from the initial strongly connected
component S1, the base function applies to AF|} with C = {«}: both CF1 and CF2
prescribe that (E N S1) is a maximal conflict-free set of S;. Since S1 consists just of a
self-defeating argument, the only conflict-free set is the empty set, therefore both CF1
and CF2 exclude o from any extension. This in turn entails that, for any extension E,
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PAr(S2, E) = {B} while Uar(S2, E) = Dar(S2, E) = 0. Then, E N Sz € GF(AF| 5, D),
and, since AF| () has obviously only one strongly connected component, this entails that
ENS> € BFce(AFl s, ), where CF standsfor either CF1 or CF2. CF1 and CF2 behave
differently in this case, due to the role of the parameter C in the definition of the relevant
base functions. In particular, according to CF1 (E N S2) € MCF Ay )10 i.e, (ENS2)
must be the empty set. On the other hand, C plays no role in the base function of CF2,
yielding (E N S2) € MCFaFy . 1€, (E N S2) = {B}. Asaconsequence, CF1 admits the
empty set as the unique extension, thus sharing with admissibility-based semantics the in-
ability to rule out self-defeating arguments. On the contrary, CF2 is able to select the only
desired extension {8}, thus preventing the self-defeating argument « to exert a (possibly
undesired) effect on the rest of the graph.

8. Conclusions

In this paper, we have proposed ageneral recursive schemathat, whileincluding Dung’'s
framework as a special case, can be regarded as an alternative foundation of argumentation
semantics. In particular, the property of SCC-recursiveness has a basic unifying role in
argumentation semantics, in asimilar way as admissibility in Dung's framework, and can
ensure the correct propagation of the fundamental semantic principles coded in the base
function to a generic argumentation framework.

In fact, SCC-recursiveness turns out to be an effective tool for supporting the devel-
opment of new semantics. On the one hand, in order to define a particular SCC-recursive
semanticsit is sufficient to identify a suitable base function defined over the argumentation
frameworks consisting of a single strongly connected component. On the other hand, the
fundamental requirements that all extensions are conflict-free and contain the grounded
extension come almost for free, since it is sufficient that the base function is conflict-free
and correctly treats single nodes without defeaters.

To exemplify the potential of the recursive schema, we have introduced four novel se-
mantics all providing a different treatment with respect to preferred semantics in cases
where its behavior can be regarded as problematic. Our investigation has been devel oped
in two directions: semantics AD1 and AD2 remain in the area of Dung's admissibility-
based framework, while CF1 and CF2 more radically depart from traditional semantics,
giving up the requirement of admissibility and resorting to simpler concepts. The most
satisfactory behavior is achieved by CF2, which, in particular, is the only one able to deal
with athorny example concerning self-defeating arguments. It isworth noting that such se-
mantics corresponds to the last step in our exploration of the use of progressively simpler
concepts within the SCC-recursive schema, since it only relies on the notion of maximal
conflict free set and compl etely overlooksthe notion of defense in the definition of the base
function.

Asfor future work, three main directions of investigation are worth considering. First, a
further analysis of the general properties of the SCC-recursive schemawill be carried out.
In particular, in order to compare different proposals, it would beinteresting to characterize
the relationships between SCC-recursive semantics in terms of the notion of skepticism
i.e., on the basis of the level of commitment concerning the choices about the justification
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status assigned to the arguments [8]. Second, the space of SCC-recursive semantics will
be extensively explored in order to identify further semantics, whose properties will be
analyzed both from a theoretical point of view and with respect to their meaning and use
in different application contexts. Third, since, as shown in the examples, the definition
of SCC-recursiveness has a direct constructive interpretation, it is worth investigating the
development of efficient and incremental algorithms based on local computation at the
level of strongly connected components.
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