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Abstract

In argumentation theory, Dung’s abstract framework provides a unifying view of several alternative
semantics based on the notion of extension. In this context, we propose a general recursive schema
for argumentation semantics, based on decomposition along the strongly connected components of
the argumentation framework. We introduce the fundamental notion of SCC-recursiveness and we
show that all Dung’s admissibility-based semantics are SCC-recursive, and therefore a special case of
our schema. On these grounds, we argue that the concept of SCC-recursiveness plays a fundamental
role in the study and definition of argumentation semantics. In particular, the space of SCC-recursive
semantics provides an ideal basis for the investigation of new proposals: starting from the analysis of
several examples where Dung’s preferred semantics gives rise to questionable results, we introduce
four novel SCC-recursive semantics, able to overcome the limitations of preferred semantics, while
differing in other respects.
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1. Introduction

Argumentation theory is a framework for practical and uncertain reasoning, where ar-
guments supporting conclusions are progressively constructed and compared in order to
identify the set of conclusions that should be considered justified according to the current
state of available knowledge. Since the construction of arguments proceeds by exploiting
incomplete and uncertain information, conflicts between them may arise and their man-
agement is regarded as an essential aspect of the theory. The ability to deal in this way
with uncertain and conflicting information plays an important role in a variety of appli-
cation contexts, such as legal reasoning [19,21,26], intelligent agents [17], planning [16],
inconsistency handling [1], negotiation and dialogue [3]. As a consequence, argumentation
theory is receiving an increasing interest both from the theoretical and application view-
points, and a variety of approaches have been proposed in the literature, e.g., [2,6,13,14,
25,27].

An extensive survey of this research field is provided in [22], where the literature
proposals are examined along five dimensions, i.e., the underlying logical language, the
definition of what an argument is, the criteria for identifying conflict between arguments,
the definition of the relevant relation of defeat between them, and, finally, the definition of
the justification status of arguments. As to the last point, each proposal is based on an ar-
gumentation semanticswhich defines in a declarative way the criteria to determine, given
a set of interacting arguments, which ones of them should emerge as justified from the
conflict. To this purpose, almost all of the argumentation semantics rely on the notion of
extension, roughly consisting in a set of non-conflicting arguments: an argument is con-
sidered as justified if it belongs to all extensions prescribed by the semantics. As pointed
out in [22], two alternative approaches can be followed in this respect: in the unique-status
approacha single extension is always identified, while in the multiple-status approachsev-
eral extensions may exist for a given set of arguments. Moreover, specific proposals also
differ in the form the underlying semantics is introduced. For instance, in [6,9,27] a fixed
point definition is exploited, while in [13] the semantics is defined inductively by means of
the notion of level.

A unifying framework, able to encompass a large variety of proposals, has been pro-
posed by Dung in [9]. Abstraction is achieved by leaving unspecified the origin and the
structure of arguments, and by modeling the interaction between them simply as a binary
relation indicating that an argument attacks another one. This way, Dung’s approach is
generic with respect to the first four dimensions of the classification proposed in [22],
and, as pointed out in [1], it allows one to focus exclusively on semantics issues, without
getting entangled in the details of what arguments are. Thanks to its generality, Dung’s
proposal has been recognized as a unifying framework encompassing most of the existing
approaches to argumentation and has also inspired subsequent proposals of argumentation
systems, e.g., [21,27]. Moreover, Dung’s theory is relevant in several fields where con-
flict management plays a central role, ranging from logic programming to nonmonotonic
reasoning and game theory.

As far as semantics is concerned, Dung’s framework captures several alternative seman-
tics which are introduced in [9] by means of fixed point definitions, and are all based on the
notion of admissible set. Among them, preferred semanticsis regarded as the most satisfac-
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tory approach, able to overcome the limitations of the previously proposed groundedand
stablesemantics. However, we show in this paper that preferred semantics is not exempted
from producing questionable results in some cases concerning cyclic attack relationships
(see [4,5] for a preliminary discussion on this problem). In the search of alternative propos-
als, able to retain the advantages of preferred semantics and, at the same time, to support
alternative treatments of such problematic cases, we carry out a broad conceptual analysis
aimed at identifying a set of basic principles that can be regarded as universally acceptable
in argumentation semantics and, in particular, underly all the approaches encompassed by
Dung’s framework.

This analysis leads to the introduction of a novel general recursive schema for the defin-
ition of extensions, based on the graph-theoretic notion of strongly connected components
of an argumentation framework. Semantics adhering to this schema feature the property of
SCC-recursiveness, which entails that a specific semantics can be characterized in terms
of a base function, which plays the role of a parameter in the recursive schema. SCC-
recursiveness can be assumed as a basic unifying concept in argumentation theory for two
reasons: on the one hand, all semantics captured by Dung’s framework satisfy the SCC-
recursiveness property and, on the other hand, the SCC-recursive schema supports in a
rather straightforward way the definition of new semantics, since basic desirable proper-
ties of extensions—and therefore of the argumentation semantics itself—can be guaranteed
by simple requirements on the base function. On these grounds, we introduce, to exemplify
the potential of the approach, four novel SCC-recursive semantics overcoming the above
mentioned limitations of the preferred semantics, while differing in other aspects.

The paper is organized as follows. In Section 2, we recall the basic notions of Dung’s
theory and carry out a survey about argumentation semantics in this context, focusing on
the intuitive concepts underlying formal definitions and properties of extensions. Prob-
lematic cases that point out some questionable behaviors of preferred semantics are then
presented in Section 3. The general SCC-recursive schema is introduced in Section 4, while
Section 5 illustrates its role as a unifying concept in argumentation semantics, showing that
traditional semantics adhere to the schema. Section 6 analyzes some general properties of
SCC-recursive semantics, while in Section 7 four novel SCC-recursive semantics are in-
troduced and compared. Finally, Section 8 concludes the paper.

2. Dung’s theory

2.1. Argumentation framework

The general theory proposed by Dung [9] is based on the primitive notion of argumen-
tation framework:

Definition 1. An argumentation framework is a pair AF = 〈A,→〉, where A is a set, and
→⊆ (A×A) is a binary relation on A, called attack relation.

The idea is that arguments are simply conceived as the elements of the set A, whose
origin and structure are not specified, and the interaction between them is modeled by the
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binary relation of attack. An argumentation framework AF = 〈A,→〉 can be represented as
a directed graph, called defeat graph, where nodes are the arguments and edges correspond
to the elements of the attack relation.

In the following, the nodes that attack a given argument α are called defeatersof α and
form a set which is denoted as parentsAF(α):1

Definition 2. Given an argumentation framework AF = 〈A,→〉 and a node α ∈ A, we
define parentsAF(α) = {β ∈ A | β → α}. If parentsAF(α) = ∅, then α is called an initial
node.

Since we will frequently consider properties of sets of arguments, it is useful to extend
the notations defined for the nodes:

Definition 3. Given an argumentation framework AF = 〈A,→〉, a node α ∈ A and two
sets S,P ⊆ A, we define:

S → α ≡ ∃β ∈ S :β → α

α → S ≡ ∃β ∈ S :α → β

S → P ≡ ∃α ∈ S,β ∈ P :α → β

outparentsAF(S) = {α ∈ A | α /∈ S ∧ α → S}

In Dung’s framework, an argumentation semantics is defined by specifying the criteria
for deriving, for a generic argumentation framework, the set of all possible extensions, each
one representing a set of arguments considered to be acceptable together. Given a generic
argumentation semantics S , the set of extensions prescribed by S for a given argumentation
framework AF = 〈A,→〉 is denoted as ES(AF).

The set of extensions is then used to compute the justification status of the arguments,
according to the following definition:

Definition 4. Given an argumentation framework AF = 〈A,→〉, the arguments of A can
be partitioned, with reference to a given argumentation semantics S , into three sets:

• the set of undefeatedarguments US(AF) = {α ∈A | ∀E ∈ ES(AF) α ∈ E};
• the set of defeatedarguments DS(AF) = {α ∈ A | ∀E ∈ ES(AF) α /∈ E};
• the set of provisionally defeatedarguments PS(AF) = {α ∈ A | ∃E1,E2 ∈ ES(AF):

α ∈ E1 ∧ α /∈ E2}.

1 We use the graph-theoretical term parentsinstead of attackerssince, in the following, we will need to resort
to other related graph-theoretical notions, in particular that of ancestors.
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2.2. Argumentation semantics: a focused survey

In this subsection, we carry out a conceptual analysis of the basic intuitive princi-
ples underlying several extension-based argumentation semantics and identify their formal
counterpart by referring to definitions and properties in Dung’s theory [9].

Starting from the intuition that an extension is a set of arguments considered to be
acceptable together, one may envisage as a first requirement the fact that no conflict is
allowed between arguments belonging to the same extension, since it should represent
an internally consistent choice (among possibly many) over the whole set of available
arguments. This amounts to require that an extension is conflict-free.

Definition 5. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is conflict-
freeif and only if �α,β ∈ E such that α → β .

Clearly not all conflict-free sets are reasonable candidates for the notion of extension.
In fact, simply identifying the extensions with the conflict-free sets leads to consider the
empty set, which is of course conflict-free, as an extension and, therefore, according to
Definition 4, no argument would ever be justified in any argumentation framework. In
order to prevent this degenerate behavior, a completeness requirement is needed, to ensure
that the largest consistent choices of arguments are taken into account for the determination
of the justification status. In the case of conflict-free sets, this amounts to require that an
extension is also maximal with respect to set inclusion.

Definition 6. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is maximal
conflict-freeif and only if it is maximal (with respect to set inclusion) among the conflict-
free sets of AF. The set made up of all the maximal conflict-free sets of AF will be denoted
as MCFAF.

It is however easy to see that identifying extensions with maximal conflict-free sets
gives rise to undesired behaviors even in very simple cases. For instance, in the case of
an argumentation framework consisting of a defeat chain (see Fig. 1) it is widely accepted
that the initial node, which has no defeaters (α in our example), and all other nodes in
odd positions, whose defeaters are defeated by undefeated nodes (only γ in our example)
should be regarded as undefeated, while nodes in even positions (β and δ) should be re-
garded as defeated. This is an instance of the reinstatementprinciple [22]. However, the
maximal conflict-free sets in this example are {α,γ }, {α, δ}, and {β, δ}: no argument would
be included in all extensions and therefore the status of provisionally defeated would be
assigned to all arguments.

A first intuition to solve this problem is based on the idea that an extension should
not only be internally consistent but also able to reject the arguments that are outside the

Fig. 1. A chain of four nodes.
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Fig. 2. A three-length cycle.

extension, namely if an argument is not in an extension then it should be attacked by the
extension itself. This reasoning leads to the notion of stable extension [9,23].

Definition 7. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is a stable
extensionof AF if and only if

E is conflict-free ∧ ∀α ∈A: α /∈ E, E → α

The set of all the stable extensions of AF will be denoted as SE(AF) .

Note that the above definition implies that a stable extension is a maximal conflict-free
set. In the example of Fig. 1 there is only one stable extension, namely {α,γ }, and the
desired result is thus achieved. However there are argumentation frameworks where no
stable extension exists, as in the case of odd-length cycles. In fact, considering the simple
argumentation framework of Fig. 2, it is easy to see that none of the conflict-free sets ∅,
{α}, {β}, {γ } attacks all the arguments outside it. Therefore, a semantics based on stable
extensions fails to assign a justification status to arguments in these cases. A practical
example of this kind of problem has been pointed out by Pollock in [14] and concerns the
case of three witnesses (Smith, Jones, and Robertson) which question each other reliability
in the following way: Jones says that Smith is unreliable, Smith says that Robertson is
unreliable, and Robertson says that Jones is unreliable. In a defeat graph representation, this
corresponds to the three-length cycle shown in Fig. 3(a). Moreover suppose that Smith says
that it is raining (node “rain” in Fig. 3(a)). Resorting to stable extensions, it is impossible
to assign a justification status to the nodes of this graph. However, if we have four rather
than three witnesses (in general, an even-length rather than an odd-length cycle) stable
extensions exists. In fact, considering Fig. 3(b) there are two stable extensions, namely
{S,R, rain} and {P,J }, yielding all of the arguments provisionally defeated, as intuitively
should be. Pollock points out that this is a serious drawback since “surely, it should make

Fig. 3. The witnesses example.
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Fig. 4. A problematic defeat graph for stable semantics.

no difference that the defeat cycle is of odd-length rather than even-length. We should get
the same result in either case” [14].

One might be tempted to apply a local correction to stable semantics by prescribing that
when no stable extension exists, then the empty set should be considered as the unique
stable extension. Such a solution would however be unsatisfactory for several reasons.
First of all, it still gives different results for odd-length and even-length cycles (defeated
vs. provisionally defeated for all nodes). Moreover, it gives incorrect results in graphs
where nodes which should be undefeated are present along with odd-length cycles. For
instance, in the graph shown in Fig. 4 no stable extension exists, entailing that all nodes
are not justified, however node δ, which has no defeaters and is not involved in the cycle,
should be undefeated. A more appropriate way to solve this problem consists in taking
a different perspective: rather than imposing the “aggressive” condition of attacking all
external arguments, it is enough to require that, more pacifically, the extension is just able to
defend itself from external attacks. This intuition has been formalized in [9] by introducing
the notions of acceptable argument and admissible set.

Definition 8. Given an argumentation framework AF = 〈A,→〉, an argument α ∈ A is
acceptablewith respect to a set E ⊆ A if and only if

∀β ∈A: β → α,E → β

The set of the arguments acceptable with respect to a set E will be denoted using the
characteristic function FAF(E):

Definition 9. Given an argumentation framework AF = 〈A,→〉, the function

FAF : 2A → 2A

which, given a set E ⊆ A, returns the set of the acceptable arguments with respect to E is
called the characteristic functionof AF.

Definition 10. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is admissi-
ble if and only if

E is conflict-free and ∀β ∈A: β → E,E → β

namely it is conflict-free and each argument in E is acceptable with respect to E. The set
made up of all the admissible sets of AF will be denoted as AS(AF).

Building on these definitions, the notion of complete extension can be introduced, by
imposing that an admissible set also satisfies a completeness requirement. Complete exten-
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Fig. 5. The ‘Nixon diamond’ example.

sions play a key role in Dung’s theory, since all semantics encompassed by his framework
select their extensions among the complete ones. Intuitively, a complete extension is an
admissible set such that no argument outside the set is acceptable with respect to the set
itself.

Definition 11. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is a com-
plete extensionif and only if E is admissible and every argument of A which is acceptable
with respect to E belongs to E, i.e.,

E ∈ AS(AF) ∧ ∀α ∈ FAF(E), α ∈ E

The set of complete extensions of AF will be denoted as CE(AF).

One might guess that the notion of complete extension entails maximality, since no
acceptable argument is left outside the extension. However, this is not the case. In fact,
the above property only states that nodes already defended by the extension are included,
but it does not impose that nodes (or sets of nodes) that defend themselves are added to
the extension. For instance, in the case of Fig. 5, the empty set is a complete extension,
while either of the nodes defends itself and therefore also {α} and {β} are complete exten-
sions.

As a consequence, a further notion of extension, called preferred extension, has been
introduced in [9] by directly requiring maximality of admissible sets.

Definition 12. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is a pre-
ferred extensionof AF if and only if it is a maximal (with respect to set inclusion)
admissible set, i.e., a maximal element of AS(AF). The set of preferred extensions of
AF will be denoted as PE(AF).

Preferred semantics is able to cope with the problematic examples involving odd-length
cycles presented above: in fact, in the graph of Fig. 2 there is a preferred extension (the
empty set), while for the case of Fig. 4 the only preferred extension is {δ} as desired. It
can be noted however that the treatment of odd and even-length cycles is still unequal (as
pointed out for instance by Pollock in [18]).

Note that all the proposals surveyed above belong to the area of multiple-statusap-
proaches, where multiple extensions may exist for a given argumentation framework. An
alternative research line has focused on unique-statusapproaches, that prescribe the exis-
tence of exactly one extension for each argumentation framework. Grounded semantics [9,
13] is probably the most representative proposal among unique-status approaches and has
played an important role in the development of argumentation theory.
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First of all, an alternative definition of justification status is required [13], since Defini-
tion 4 is not appropriate in case of a unique-status approach:2

Definition 13. Given an argumentation framework AF = 〈A,→〉, the arguments of A can
be partitioned, with reference to a given unique-status argumentation semantics S , into
three sets on the basis of the unique extension E ∈ ES(AF):

• the set of undefeatedarguments US(AF) = {α ∈A | α ∈ E};
• the set of defeatedarguments DS(AF) = {α ∈ A | α /∈ E ∧ E → α};
• the set of provisionally defeatedarguments PS(AF) = {α ∈A | α /∈ E ∧ E �→ α}.

Formally, the (unique) extension of the grounded semantics, called the grounded exten-
sion, can be defined as the least fixed point of the characteristic function.

Definition 14. Given an argumentation framework AF = 〈A,→〉, the grounded extensio
of AF, denoted as GE(AF), is the least fixed point (with respect to set inclusion) of FAF.

In more intuitive terms, the computation of the grounded extension can be understood
as the process of labeling the nodes of the defeat graph starting from the initial ones. As a
first step, initial nodes are labeled as undefeated and the nodes attacked by them are labeled
as defeated. Then the already labeled nodes are suppressed and the step is repeated on the
resulting subgraph, and so on. If in an iteration no initial node is found, all the unlabeled
nodes are labeled as provisionally defeated, and the process terminates. Note in particular
that, since there are no initial nodes in the graphs of Fig. 3(a) and Fig. 3(b), all nodes are
labeled as provisionally defeated in the first step. In Fig. 4 node δ is labeled undefeated in
the first step, then all other nodes are labeled provisionally defeated, as desired.

According to the above analysis, grounded semantics fits well all the basic intuitions
about the assignment of justification status and represents a sort of reference as far as
undefeated and defeated arguments are concerned. In a sense, these assignments are un-
questionable and should be agreed with by any alternative proposal. In Dung’s framework,
this reference role has a formal counterpart in the following property: the grounded ex-
tension is contained in any complete extension, and therefore in the extensions of any
semantics (in particular in any preferred extension).

Proposition 15.Given an argumentation frameworkAF = 〈A,→〉:

• the grounded extensionGE(AF) is the least(with respect to set inclusion) complete
extension ofAF;

• the preferred extensions inPE(AF) are the maximal(with respect to set inclusion)
complete extensions ofAF.

2 The existence of two alternative definitions of justification status is actually unsatisfactory. In [8], we have
proposed a unified definition overcoming this limitation and introducing a more articulated classification. The
considerations and the results presented in this paper are however independent of the choice of justification status
definition.
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Fig. 6. Argumentation framework with a floating argument.

For these reasons, as well as for its computational advantages, variants of grounded
semantics have been considered in several works [10,13,21].

Any unique-status approach is affected however by a limitation concerning the treat-
ment of the so-called floating defeat, as pointed out in [12,24]. Consider the defeat graph
presented in Fig. 6: as it has no initial nodes, the grounded semantics directly labels all
nodes as provisionally defeated. On the other hand, preferred semantics (as well as stable
semantics) prescribes two extensions {α, δ} and {β, δ}, thus yielding δ undefeated, α and β

provisionally defeated, and γ defeated. This seems to be the intuitively correct result since
both α and β , while preventing each other to be justified, defeat γ , thus enabling in any
case the acceptance of δ.

3. Preferred semantics: problematic behaviors

As discussed in the previous section, Dung’s work has played an influential role on ar-
gumentation research in recent years, due to its generality, to the proposed unifying view
able to capture the most significant existing approaches, and to the importance of the spe-
cific results presented. In particular, preferred semantics is able to overcome the limitations
of stable semantics as far as the existence of extensions in presence of defeat cycles is con-
cerned, and the limitations of grounded semantics in the treatment of floating defeat.

However, while preferred semantics can be considered a significant advancement with
respect to previous proposals, one can notice that the treatment of cycles does not appear
completely satisfactory, since it is not as elegant as the one of grounded semantics. As a
matter of fact, if the nodes of a defeat graph are arranged in a cycle of attack relationships,
then they are not justified: this seems to be the intuitively right result, since all arguments
in a cycle should be treated equally for obvious symmetry reasons and considering them
all justified would yield a contradiction. However, this result is obtained in rather different
ways in the two semantics. In the context of the grounded semantics, all arguments forming
a cycle are directly labeled as provisionally defeated, since the grounded extension turns
out to be the empty set. On the other hand, the preferred semantics features a sort of asym-
metry, since it treats odd-length cycles differently from the even-length ones. Considering
the argumentation framework of Fig. 5, consisting of a two-length cycle, two preferred
extensions exist, namely {α} and {β}, therefore both arguments are provisionally defeated
according to preferred semantics. With reference to the argumentation framework of Fig. 2,
consisting of a three-length cycle, Definition 12 identifies the empty set as the unique pre-
ferred extension, therefore all the arguments are defeated. More generally, with odd-length
cycles there is a unique empty extension, and then all arguments are defeated, while with
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Fig. 7. A simple variant of the witnesses example.

even-length cycles non-empty extensions exist but their intersection is empty, and then all
arguments are provisionally defeated. This peculiar way of assigning a justification status
to odd-length cycles has recently been indicated as “puzzling” by Pollock [18].

So far, this difference might be considered as a mere question of symmetry and elegance.
However, as we show considering a simple variant of the witnesses example of Fig. 3,
it can be recognized that the different treatment of odd-length cycles is a real problem
since it gives rise to counter-intuitive results. Let us suppose that an additional source of
information, e.g., a weather report, suggests that it is not raining, contradicting the claim
made by Smith; in the case of three witnesses, the resulting argumentation framework is
shown in Fig. 7(a). In this case, it turns out that PE(AF) = {{¬rain}}, therefore ¬rain is
undefeated while all the other arguments are not justified. On the other hand, in the case
of four witnesses we obtain the argumentation framework shown in Fig. 7(b): it admits
several preferred extensions whose intersection is empty, and therefore all arguments are
provisionally defeated. Notice that similar situations arise, in general, by replacing the
three-length and four-length cycle with any odd-length and even-length cycle, respectively.
Therefore, the justification status of the argument supported by the weather report turns
out to depend (in an alternating way) on the number of conflicting witnesses. Note that this
difference arises because an odd-length cycle has no extensions besides the empty one: as a
consequence, in the argumentation framework of Fig. 7(a) there is no extension where node
rain is in and ¬rain is out and, therefore, ¬rain emerges as the only justified argument.
Instead, such an extension exists with an even-length cycle and, therefore, both rain and
¬rain turn out to be provisionally defeated.

This seems to be rather questionable: as remarked in [14] the length of the leftmost
cycle should not affect the justification status. More generally, it is counter-intuitive that
different results in conceptually similar situations depend on the length of the cycle: sym-
metry reasons suggest that all cycles should be treated equally and should yield the same
results.

Notice that, in the above example, the odd-length cycle is in a sense stronger than the
even-length one, since in the case of Fig. 7(a) the status of rain is the same as if it would be
attacked by an initial node. The opposite happens however in the variant of this example
shown in Fig. 8. Considering the argumentation framework of Fig. 8(a), it turns out that
there is only one preferred extension, namely {α,φ}, therefore both α and φ are justified
according to the preferred semantics. In fact, the absence of non-empty extensions for the
three-length cycle prevents the existence of extensions where φ is out and γ is in. Since φ

attacks γ , also α survives: as a consequence, α and φ emerge (questionably) undefeated.
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Fig. 8. Problematic argumentation frameworks for preferred semantics.

Fig. 9. A case of floating defeat and floating acceptance.

On the other hand, by replacing the three-length cycle with a four-length cycle, we obtain
the argumentation framework of Fig. 8(b), whose arguments are all provisionally defeated
(and a similar result is obtained with any other even-length cycle). In this case, therefore,
the odd-length cycle is in a sense weaker than the even-length one, since it is not able to
prevent φ from being justified.

In summary, we notice that odd-length cycles are problematic for preferred semantics
from two points of view: first of all, they give radically different results with respect to
even-length cycles in situations where such a difference does not seem justified, moreover
they change their capability of defeating other arguments depending on the topology of the
defeat graph.

These problems have been first pointed out in our previous works [4,7]. Other specific
difficulties of preferred semantics related to the treatment of odd-length cycles have been
noticed in argumentation literature. In [22], a problem in the treatment of the argumentation
framework shown in Fig. 9 is pointed out. This is a case of floating defeat against argument
γ by the nodes in the three-length cycle, namely it can be regarded as a variant of the argu-
mentation framework shown in Fig. 6, where the even-length attack loop has been replaced
by an odd-length loop. Again, regarding as irrelevant the distinction between even-length
and odd-length cycles would yield to consider γ defeated and δ justified: although δ is
attacked by γ , it is reinstated by arguments α, β and φ since any of them attacks γ . How-
ever, it turns out that preferred semantics admits as preferred extension only the empty set
and, therefore, no argument is justified. The authors underline that “this seems one of the
main unsolved problems in argumentation-based semantics” [22].

Problems also arise when considering the extreme case of odd-length cycles, namely
self-defeating arguments, which have received a special attention in the literature [14,22].
The argumentation framework AF shown in Fig. 10 is yet another problematic case for
preferred semantics, as observed by Dung himself [9]. In fact, the only preferred extension
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Fig. 10. The case of a self-defeating argument.

here is the empty set, though one can argue that since α attacks itself, β should be justi-
fied. Actually, both solutions are reasonable in some sense, since different treatments of
self-defeating arguments may be appropriate in different contexts: a discussion and some
examples about this point are provided in [15].

Before drawing any conclusion from the previous discussion, it is fair to recognize that
different points of view about the intuitive interpretation of the defeat graphs presented
above are possible as well. In [22], it is suggested that, while these examples are prob-
lematic if one adheres to an intuitive symmetry requirement, an alternative view can be
conceived where “odd defeat loops are of an essentially different kind than even defeat
loops”. For instance, one might state that odd-length cycles are like paradoxes, i.e., sit-
uations where nothing can be believed, while even-length cycles are like dilemmas, i.e.,
situations where a choice needs to be made. While, in our opinion, this remark is not ap-
plicable to the above examples concerning witnesses, we agree that the matter is far from
admitting a univocal solution. In this perspective, one should not look for just one right
semantics, since the correct behavior is a matter of interpretation. Similarly, in [11] exam-
ples are pointed out where the behavior of grounded semantics appears more appropriate
than the one of preferred semantics in the treatment of so-called floating conclusions. From
a more general stance, in [20] it is remarked that using intuition about specific examples
to derive general considerations about defeasible reasoning may be risky and inappropri-
ate. This is due, in particular, to the specific nature of defeasible reasoning where it is a
fundamental standpoint that inferences are never conclusive and are always subject to be
invalidated in the light of additional information. For these reasons, alternative solutions to
some puzzling examples can be obtained by making explicit some information left implicit
in their original formulation. Moreover, it can be argued that in these problematic cases the
topology of the defeat graph does not determine a univocal solution per se, since the same
abstract structure may give rise to different intuitively plausible justification status assign-
ments when instantiated on distinct common sense reasoning examples: this is a downside
of the generality of abstract frameworks. As a consequence, Prakken suggests that “it is
better to use intuitions not as critical tests but as generators for further investigation” [20].

The work described in the present paper adheres to this suggestion. The problematic
cases discussed above point out that different solutions can be considered reasonable in
different contexts (or even in the same context by different people) and, in particular, pre-
ferred semantics may be regarded as problematic in some cases. As a conclusion of this
survey, we aim at investigating an extension of Dung’s theory able to capture a larger vari-
ety of argumentation semantics, so that none of the reasonable intuitions arising in different
contexts is excluded. The framework we are looking for should therefore be able to include
the traditional grounded, stable, and preferred semantics, as well as alternative treatments
of the problematic examples discussed above. To achieve such a level of generality, we
need to single out a few basic principles which can be regarded as a sort of insuppressible
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conceptual core for any argumentation semantics. The relevant analysis is carried out in
the following section.

4. A general recursive schema for argumentation semantics

In our search for a minimal set of fundamental principles of argumentation semantics,
we depart from the common practice of characterizing extensions by means of a set of
global properties they should respect: rather, we adopt a sort of constructive approach,
where the structure of the defeat graph drives the incremental definition of extensions. In
this perspective, an argumentation semantics can be viewed as the definition of a mecha-
nism for constructing all possible extensions of an argumentation framework, and this, in
turn, can be understood as an incremental process that step-wise chooses which nodes of
an argumentation framework should be included into an extension.

We draw inspiration from the way the justification status can be computed according
to the grounded semantics: as described in Section 2.2, computation proceeds from the
frontier of the defeat graph towards the inside. Considering, as an example, the chain shown
in Fig. 1, the initial node α is assigned the status of undefeated, causing β , which is attacked
by α, to be assigned the status of defeated; this in turn causes γ to be assigned the status of
undefeated, and so on. This node labeling procedure suggests that edges in the defeat graph
represent not only the attack relation, but also a dependency relation in the assignment of
justification status: roughly, the status of a node depends on those of its defeaters. However,
this intuition has to be refined in order to cope with the case of cyclic attack relations, where
mutual dependence would prevent this reasoning to be applicable. To this purpose, let us
consider the case of floating defeat shown in Fig. 6. In a sense, the subgraph {α,β} plays
the role of initial node with respect to γ ; in fact, the status assignment within this subgraph
determines the justification status of γ . For instance, in the case of preferred semantics
the construction of the extensions might proceed by selecting either α or β within the
subgraph, and then propagating the effect of this choice on the subsequent nodes. For each
of these choices γ is attacked and then left out from the extension; as a consequence, the
attack from γ to δ is ineffective and δ is included in both the extensions.

This example brings to light a fundamental aspect: the dependency relation introduced
at the level of single nodes may also hold at the level of subgraphs, that play, in a sense,
the role of single virtual nodes in the propagation of defeat. However, in order to derive a
concrete result from this intuition, it is necessary to identify a decomposition of the defeat
graph which appropriately reflects the dependency relation mentioned above. It turns out
that such decomposition is provided by the graph-theoretical notion of strongly connected
components.

Definition 16. Given an argumentation framework AF = 〈A,→〉, the binary relation of
path-equivalence between nodes, denoted as PEAF ⊆ (A×A), is defined as follows:

• ∀α ∈ A, (α,α) ∈ PEAF,
• given two distinct nodes α,β ∈ A, (α,β) ∈ PEAF if and only if there is a path from α

to β and a path from β to α.
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The strongly connected componentsof AF are the equivalence classes of nodes under the
relation of path-equivalence. The set of the strongly connected components of AF is de-
noted as SCCSAF. Given a node α ∈A, the strongly connected component α belongs to is
denoted as SCCAF(α).

A particular case, to be considered in the following, is represented by the empty argu-
mentation framework: when AF = 〈∅,∅〉 we assume SCCSAF = {∅}.

To exemplify Definition 16, in the graph of Fig. 1 there are four strongly connected com-
ponents each consisting of a single node (i.e., SCCSAF = {{α}, {β}, {γ }, {δ}}), since there
is not any couple of mutually reachable nodes. On the other hand, the graphs of Fig. 2,
Fig. 5, Fig. 8 consist of exactly one strongly connected component coinciding with the
whole set of nodes, since they are all mutually reachable. The graphs in Fig. 3, Fig. 4 and
Fig. 10 include two strongly connected components: one consisting of a cycle (a degener-
ate one in the case of Fig. 10), the other one of a single node. Three strongly connected
components are present in the graph of Fig. 6, namely {α,β}, {γ }, and {δ}, and a simi-
lar decomposition applies to the graph of Fig. 9. Finally two distinct strongly connected
components can easily be identified in the graphs of Fig. 7: for instance in the graph of
Fig. 7(a), the nodes R, S, and J form a first strongly connected component S1, since they
are mutually reachable being arranged in a cycle, while the nodes rain and ¬rain form a
second distinct strongly connected component S2, since they are mutually reachable while
there is not any path leading from them to any node of S1.

We extend to strongly connected components the notion of parents, denoting the set
of the other strongly connected components that attack a strongly connected component
S as sccparentsAF(S), and we introduce the definition of proper ancestors, denoted as
sccancAF(S):

Definition 17. Given an argumentation framework AF = 〈A,→〉 and a strongly connected
component S ∈ SCCSAF, we define

sccparentsAF(S) = {P ∈ SCCSAF | P �= S and P → S}
and

sccancAF(S) = sccparentsAF(S) ∪
⋃

P∈sccparentsAF(S)

sccancAF(P )

A strongly connected component S such that sccparentsAF(S) = ∅ is called initial .

It is well-known that the graph obtained by considering strongly connected components
as single nodes is acyclic: this confirms that considering a dependency relation at the level
of SCCSAF is a sound starting point. Recalling the basic example of Fig. 1, where the
strongly connected components consist of single nodes, clearly the dependency among
justification states of nodes has a direct counterpart in terms of strongly connected com-
ponents. Turning to the example of Fig. 6, a similar consideration applies: the subgraph
{α,β} is actually the only initial strongly connected component of the graph. The choices
concerning extension construction carried out in this first strongly connected component
clearly do not depend on those concerning the other ones and directly affect the choice
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about the subsequent strongly connected component (actually consisting of {γ }), which in
turn affects the last strongly connected component, namely {δ}. Similar considerations can
be easily applied to other examples.

Generalizing this intuition, we assume a first basic principle, called directionality prin-
ciple: with reference to a given extension E, for any strongly connected component S of
AF, the choice of the subset of S to be included in E (i.e., (E ∩ S)) only depends on the
choices made in the strongly connected components of sccancAF(S), i.e., those that are
antecedent to S in the acyclic graph made up of strongly connected components.

In particular, the choices in the antecedent strongly connected components determine a
partition of the nodes of S into three subsets:3

Definition 18. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A and a
strongly connected component S ∈ SCCSAF, we define:

• DAF(S,E) = {α ∈ S | (E ∩ outparentsAF(S)) → α};
• PAF(S,E) = {α ∈ S | (E ∩ outparentsAF(S)) �→ α ∧ ∃β ∈ (outparentsAF(S) ∩

parentsAF(α)): E �→ β};
• UAF(S,E) = S \ (DAF(S,E) ∪ PAF(S,E)) = {α ∈ S | (E ∩ outparentsAF(S)) �→ α ∧

∀β ∈ (outparentsAF(S) ∩ parentsAF(α))E → β}.

In words, the set DAF(S,E) consists of the nodes of S attacked by E from outside S, the
set UAF(S,E) consists of the nodes of S that are not attacked by E from outside S and are
defended by E (i.e., their defeaters from outside S are all attacked by E), and PAF(S,E)

consists of the nodes of S that are not attacked by E from outside S and are not defended
by E (i.e., at least one of their defeaters from outside S is not attacked by E). It is easy to
verify that DAF(S,E), PAF(S,E) and UAF(S,E) are determined only by the elements of
E that belong to the strongly connected components in sccancAF(S).

To exemplify the above definitions, consider again the defeat graph presented in
Fig. 7(a), which consists of two strongly connected components S1 = {R,S,J } and
S2 = {rain,¬rain}, where clearly S1 precedes S2. Accordingly, let us now show how dif-
ferent choices of E ∩ S1 determine different partitions of S2.

Let us first consider the case that (E ∩ S1) = {J }: then the node rain receives an
external attack coming from a node included in E. Therefore it satisfies the condition
for membership in DAF(S2,E), while the node ¬rain does not receive external attacks
from E, and thus satisfies the condition for membership in UAF(S2,E). Therefore it turns
out that DAF(S2,E) = {rain} and UAF(S2,E) = {¬rain}. Note that the condition about
¬rain does not depend on the choice of E ∩ S1, therefore it will always be the case that
¬rain ∈ UAF(S2,E).

Let us turn to the case (E ∩ S1) = {S}: now rain does not receive external attacks
from E, but is attacked from outside S2 by the node J , which is not included in E nor

3 The symbols D, P and U are meant to recall the terms “Defeated”, “Provisionally defeated” and “Unde-
feated” respectively. It has to be noted, however, that here they refer to a relationship between arguments and a
particular extension E, rather than to the overall justification status of arguments.
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is attacked by E. Thus rain satisfies the condition for membership in PAF(S2,E) yielding
PAF(S2,E) = {rain}, and, of course, again UAF(S2,E) = {¬rain}.

Finally, if (E ∩ S1) = {R}, the node rain is defended by E since its only external at-
tacker J is in turn attacked by R ∈ E, so rain satisfies the condition for membership in
UAF(S2,E), yielding UAF(S2,E) = {rain,¬rain}.

Now, we need to investigate further principles which drive the selection of E ∩ S on the
basis of the above three sets. First of all, as already discussed in Section 2.2, a conflict-free
principle is universally accepted: an extension cannot include conflicting arguments. This
entails that arguments in DAF(S,E), being attacked by nodes in E, cannot be chosen in
the construction of the extension E (i.e., do not belong to E ∩ S). Selection of arguments
to be included in E is therefore restricted to (S \ DAF(S,E)) = (UAF(S,E) ∪ PAF(S,E)),
which, for ease of notation, will be denoted in the following as UPAF(S,E).

As far as this selection is concerned, we recall that it is generally agreed that undefeated
nodes are able to make ineffective the attacks of nodes they attack, i.e., of defeated nodes.
This reinstatement principleprescribes that nodes defeated by an extension E play no
role in the selection of nodes to be included in E. Taking into account the decomposition
into strongly connected components, the application of this principle can be examined
considering separately, for a given strongly connected component S, the nodes defeated
by E inside and outside S. Inside S, the principle entails that the nodes in DAF(S,E) and
the relevant attack relations can be suppressed. This implies that the selection within S

of the nodes to be included in an extension E has to be carried out on a sort of reduced
argumentation framework, consisting in UPAF(S,E), completely neglecting the nodes in
DAF(S,E).

To formalize this concept, we provide the definition of restrictionof an argumentation
framework to a given subset of its nodes:

Definition 19. Let AF = 〈A,→〉 be an argumentation framework, and let S ⊆ A be a set
of arguments. The restrictionof AF to S is the argumentation framework AF↓S = 〈S,→
∩(S × S)〉.

Combining this definition with the reinstatement principle, we obtain that the selection
of nodes within a strongly connected component S has to be carried out on the restricted
argumentation framework AF↓UPAF(S,E) without taking into account the attacks coming
from DAF(S,E).

Let us turn to the suppression of nodes defeated by E outside S. For ease of description,
let us call in the following outer attackerof a strongly connected component S, with respect
to an extension E, any node α such that α /∈ S, α /∈ E, α → UPAF(S,E). Note that any
outer attacker α of S necessarily belongs to a strongly connected component parent of S,
i.e., SCCAF(α) ∈ sccparentsAF(S). We will also refer to the outer attackers of a node β ∈ S

to denote the subset of the outer attackers of S attacking β . In general some of the outer
attackers of S with respect to E are in turn attacked by E, while others are not.

As to the first ones, according to the reinstatement principle the nodes of UPAF(S,E)

should be treated as if the outer attackers that are attacked by E did not exist. To clarify
this point, consider the particular case where all outer attackers of S are in turn attacked
by E (formally, UPAF(S,E) = UAF(S,E)): according to the above considerations, the se-
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lection of nodes to be included in the extension is carried out in AF↓UPAF(S,E) neglecting
the suppressed outer attacks and therefore following the same principles which are applied
to an unrestricted argumentation framework, i.e., selection is carried out in the same way
as if the argumentation framework was not the result of a restriction. For instance, using
again the example of Fig. 7(a), when UPAF(S2,E) = UAF(S2,E) = {rain,¬rain} the re-
instatement principle entails that the selection of E ∩ S2 is analogous to the case of Fig. 5,
namely to the case of a defeat graph featuring the same topology and not resulting from
restriction.

On the other hand, outer attackers that are not attacked by E may play a role in the
construction of the extensions. Accordingly, the nodes of UPAF(S,E) can be partitioned
into defended nodes, i.e., nodes which have no outer attackers or whose outer attackers are
all attacked by E, and undefended nodes, such that at least one of their outer attackers is
not attacked by E.

Summing up, on the basis of the principles we have identified, the selection of (E ∩ S)

turns out to depend only on:

• the restricted argumentation framework AF↓UPAF(S,E);
• the distinction between defended and undefended nodes within UPAF(S,E).

A direct way to formalize these ideas consists in stating that the nodes to be included in
the extension are selected by means of a generic selection function, which will be denoted
as GF . The function GF takes in input two parameters:

• a generic, possibly restricted, argumentation framework AF = 〈A,→〉 to which selec-
tion has to be applied;

• the set C ⊆ A of defended nodes4

and gives as output a set of subsets of A, which represents all possible choices for E ∩A.
Accordingly, we will use the notation GF(AF,C) for the function. For the sake of general-
ity, besides specifying its input and output, we do not make any a priori assumption about
GF and, in particular, about whether and how the parameter C is taken into account.

Now, the next step is to define GF(AF,C) for a generic argumentation framework AF =
〈A,→〉 and a set C ⊆ A, representing the defended nodes of AF: two cases have to be
considered in this respect.

If AF consists of exactly one strongly connected component, it does not admit a de-
composition where to apply the directionality principle, therefore it has to be assumed that
GF(AF,C) coincides in this case with a base function, denoted as BFS(AF,C), that must
be assigned in order to characterize a particular argumentation semantics S . The definition
of this base function is, at least in principle, unconstrained.

On the other hand, if AF can be decomposed into several strongly connected com-
ponents, then, according to the directionality and reinstatement principles, GF(AF,C)

4 This is just one of the ways of formalizing the distinction between defended and undefended nodes: this for-
malization turned out to enable a more elegant and compact technical treatment with respect to other alternatives.
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is obtained by applying recursively GF to each strongly connected component of AF,
deprived of the nodes in DAF(S,E). Formally, this means that for any S ∈ SCCSAF,
(E ∩ S) ∈ GF(AF↓UPAF(S,E),C

′), where C′ represents the set of defended nodes of the
restricted argumentation framework AF↓UPAF(S,E). The set C′ can be determined taking
into account both the attacks coming from outside AF (which can be actually present only
if AF results in turn from restriction) and those coming from other strongly connected
components of AF, namely from sccparentsAF(S). Since the set C consists of the nodes
defended from the former kind of attacks at the level of AF, while UAF(S,E) consists of
those defended from the latter, it turns out that C′ = UAF(S,E) ∩ C.

The above considerations suggest to introduce a new notion for argumentation seman-
tics, called SCC-recursiveness:

Definition 20. A given argumentation semantics S is SCC-recursiveif and only if for
any argumentation framework AF = 〈A,→〉, ES(AF) = GF(AF,A), where for any AF =
〈A,→〉 and for any set C ⊆ A, the function GF(AF,C) ⊆ 2A is defined as follows:
for any E ⊆ A, E ∈ GF(AF,C) if and only if

• in case |SCCSAF| = 1, E ∈ BFS(AF,C),
• otherwise, ∀S ∈ SCCSAF (E ∩ S) ∈ GF(AF↓UPAF(S,E),UAF(S,E) ∩ C),

where BFS(AF,C) is a function, called base function, that, given an argumentation frame-
work AF = 〈A,→〉 such that |SCCSAF| = 1 and a set C ⊆ A, gives a subset of 2A.

In particular, the set of all the extensions of the original unrestricted argumentation
framework AF coincides with GF(AF,A), since obviously there are no attacks from out-
side and, therefore, the set C coincides with the set A of all arguments.

Note that the definition of GF(AF,C) is recursive with respect to the decomposition
of AF into strongly connected components. Since GF(AF,C) is applied to progressively
more restricted argumentation frameworks, the definition is well founded: in particular the
base of the recursion is given by the function BFS(AF,C), which returns the extensions
of a generic argumentation framework consisting of a unique strongly connected compo-
nent. Therefore, in order to define a SCC-recursive semantics, it is sufficient to specify its
behavior only on single-SCC argumentation frameworks.

The definition given above has also a straightforward constructive interpretation: it
suggests an effective (recursive) procedure for computing all the extensions of an argu-
mentation framework AF = 〈A,→〉 according to a given SCC-recursive semantics, once
a specific base function is assigned. A particular role in this context is played by the
initial strongly connected components. In fact, for any initial strongly connected com-
ponent I , since by definition there are no outer attacks, UPAF(I,E) = UAF(I,E) = I

for any E and the set of defended nodes coincides with I . This gives rise to the invoca-
tion GF(AF↓I , I ), for any initial strongly connected component I . Since AF↓I obviously
consists of a unique strongly connected component, according to Definition 20 the base
function BFS(AF↓I , I ) is invoked, which returns the extensions of AF↓I according to
the semantics S . Therefore, the base function can be first computed on the initial strongly
connected components, where it directly returns the extensions prescribed by the seman-
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Fig. 11. An argumentation framework with two strongly connected components.

tics, then the results of this computation are used to identify, within the subsequent strongly
connected components, the restricted argumentation frameworks on which the procedure
is recursively invoked.

To support a better understanding of the concepts introduced above, we describe in
detail their application to the argumentation framework presented in Fig. 11, which consists
of two strongly connected components, namely S1 = {α,β, γ } and S2 = {δ, ε, η,ϕ}. In the
example we refer to a generic unspecified semantics S . The set of extensions of the whole
argumentation framework is given by GF(AF,A) and, since AF consists of more than
one strongly connected component, the function GF is invoked recursively on them (with
C = A), following their order. Formally, we have that E ∈ ES(AF) iff

• (E ∩ S1) ∈ GF(AF↓UPAF(S1,E),UAF(S1,E)),
• (E ∩ S2) ∈ GF(AF↓UPAF(S2,E),UAF(S2,E)).

As explained above, for the initial strongly connected component S1 it holds that
UPAF(S1,E) = UAF(S1,E) = S1 for any E: this gives rise to the invocation
GF(AF↓S1 , S1). Since AF↓S1 consists of a unique strongly connected component, the
base function BFS(AF↓S1 , S1) is invoked, which returns the extensions of AF↓S1 accord-
ing to the semantics S . For the sake of the example, let us assume that BFS(AF↓S1, S1) =
{{α}, {β}, {γ }}, i.e., that, according to S , the extensions of AF↓S1 are the singletons in-
cluded in S1. At the level of the whole argumentation framework, they represent the
alternative choices for E ∩ S1. Now, each of these alternative choices for E ∩ S1 has
an impact on the subsequent strongly connected component S2 and determines a distinct
UPAF(S2,E), since, for any E, UPAF(S2,E) = UPAF(S2,E ∩ S1). Thus, GF has to be
applied to AF↓UPAF(S2,{α}), AF↓UPAF(S2,{β}), and AF↓UPAF(S2,{γ }), to determine which sub-
sets of S2 can be joined with {α}, {β}, and {γ } respectively to form extensions at the level of
the whole graph. If other strongly connected components were present, the same reasoning
would apply to them.

To continue our example, let us now consider the case where

E ∩ S1 = {α}
As to the partition induced on S2 by this choice, since only node δ is attacked by α ∈ E,
DAF(S2, {α}) = {δ} and, therefore, UPAF(S2, {α}) = {ε, η,ϕ}, which determines the first
parameter for the recursive invocation of GF . Within UPAF(S2, {α}), the only node which
receives an outer attack is ϕ. Since its attacker γ is not included in E ∩ S1 nor is attacked
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by E ∩ S1, we have PAF(S2, {α}) = {ϕ}, which entails UAF(S2, {α}) = {ε, η}. Therefore,
the recursive invocation on the second strongly connected component of the graph has the
form (E ∩ S2) ∈ GF(AF′, {ε, η}), where AF′ = AF↓{ε,η,ϕ}.

Now, let us identify the sets E′ ∈ GF(AF′, {ε, η}) which represent the possible values
for (E ∩ S2): the function GF is applied to AF′ following the same reasoning lines as
above. First, note that AF′ is actually a chain of three nodes, therefore it consists of three
simple strongly connected components S′

1 = {ε}, S′
2 = {η}, S′

3 = {ϕ}. S′
1 is the only initial

strongly connected component of AF′, therefore UPAF′(S′
1,E

′) = UAF′(S′
1,E

′) = S′
1 = {ε}

for any extension E′ of AF′. Following Definition 20, the possible values for (E′ ∩ S′
1)

are given by GF(AF′↓{ε}, {ε} ∩ {ε, η}) = GF(〈{ε},∅〉, {ε}). Since 〈{ε},∅〉 consists of a
single strongly connected component, the base function BFS(〈{ε},∅〉, {ε}) is in turn
invoked: let us (reasonably) assume that it returns {{ε}} as result. Then, as it was intu-
itively evident, there is only one possibility for E′ ∩ S′

1, whose effects on subsequent
strongly connected components of AF′ have to be determined. It is immediate to note
that DAF′(S′

2,E
′ ∩ S′

1) = S′
2 = {η}, therefore UPAF′(S′

2,E
′ ∩ S′

1) = ∅, and also the set
of defended nodes is empty. Formally, the possible values for E′ ∩ S′

2 are given by
GF(AF′↓∅,∅ ∩ {ε, η}) = GF(〈∅,∅〉,∅). The base function is then invoked on the empty
argumentation framework, giving reasonably {∅} as result. Now we are ready to consider
the situation of S′

3: within AF′ it receives an attack only from S2 and it is clear from above
that E′ ∩ S2 = ∅. Therefore UAF′(S′

3,E
′) = UAF′(S′

3,∅) = S′
3 = {ϕ}. Then DAF′(S′

3,E
′) =

PAF′(S′
3,E

′) = ∅ and UPAF′(S′
3,E

′) = UAF′(S′
3,E

′). Applying Definition 20, the possi-
ble values for E′ ∩ S′

3 are given by GF(AF′↓S′
3
, S′

3 ∩ {ε, η}) = GF(〈{ϕ},∅〉,∅). Note
that, in this case, the second parameter of the function GF , namely the set of defended
nodes, differs from UAF′(S′

3,E
′), due to the attack coming from γ and considered at a

previous level of recursion. Again, AF′↓S′
3

consists of a single strongly connected com-
ponent, therefore the possible values of E′ ∩ S′

3 are given by BFS(〈{ϕ},∅〉,∅). In this
case, the result of the function is no more obvious since different semantics might ascribe
a different role to the set of defended nodes, as it will be discussed later. Supposing that
the result is {{ϕ}}, we have a unique E′ ∈ GF(AF′, {ε, η}), and therefore a unique value
for (E ∩ S2), i.e., {ε,ϕ}. Summing up, we obtain {α, ε,φ} as an extension of the origi-
nal AF.

For the sake of brevity we do not carry out such a detailed analysis for the cases E ∩
S1 = {β}, and E ∩ S1 = {γ }, rather a sketch is provided for the interested reader.

In the case E ∩ S1 = {β}, there are no attacks from E to S2 and β defends ϕ, there-
fore it turns out that DAF(S2,E) = ∅, PAF(S2,E) = {δ}, UAF(S2,E) = {ε, η,ϕ}, which
coincides with the set of defended nodes within S2. Then UPAF(S2,E) = S2 giving
rise to the following invocation: GF(AF↓S2 , {ε, η,ϕ}). Now, AF↓S2 consists of a unique
strongly connected component, therefore the possible completions of extensions at the
level of the whole graph are given by BFS(AF↓S2 , {ε, η,ϕ}), whose outcome depends
on the specific semantics S considered and is not specified here: joining the elements of
BFS(AF↓S2 , {ε, η,ϕ}) with {β}, we obtain a set of extensions B ⊂ ES(AF), such that
∀B ∈ B, B ∩ S1 = {β}.

Finally, in the case E ∩ S1 = {γ }, E attacks the node ϕ and defends the node
δ within S2. Therefore DAF(S2,E) = {ϕ}, PAF(S2,E) = ∅, and UAF(S2,E) =
UPAF(S2,E) = {δ, ε, η}, which coincides also with the set of defended nodes. Letting
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AF′ = AF↓{δ,ε,η}, GF(AF′, {δ, ε, η}) is invoked. AF′ is a chain of three nodes, therefore
its strongly connected components are the singletons S′

1 = {δ}, S′
2 = {ε}, and S′

3 = {η}.
S′

1 is the initial one and we have GF(AF′↓S′
1
, S′

1 ∩ {δ, ε, η}) = GF(〈{δ},∅〉, {δ}) =
BFS(〈{δ},∅〉, {δ}), which reasonably gives {{δ}} as only possible choice for E′ ∩ S′

1. Tak-
ing this into account, UPAF′(S′

2,E
′) = ∅ and then we have GF(AF′↓∅,∅) = GF(〈∅,∅〉,∅)

= BFS(〈∅,∅〉,∅), which reasonably gives {∅} as only possible choice for E′ ∩S′
2. This en-

tails UPAF′(S′
3,E

′) = S′
3 and we have GF(AF′↓S′

3
, S′

3 ∩ {δ, ε, η}) = GF(〈{η},∅〉, {η}) =
BFS(〈{η},∅〉, {η}), which reasonably gives {{η}} as only possible choice for E′ ∩ S′

3.
Summing up, we obtain {γ, δ, η} as an extension of the original AF, and finally ES(AF) =
{{α, ε,φ}, {γ, δ, η}} ∪B.

Partly due to their recursive nature, Definition 20 and its detailed application may appear
complex.5 We argue, however, that the underlying basic ideas are relatively simple and can
be summarized as follows:

(1) the argumentation framework is partitioned into its strongly connected components;
they form a partial order which encodes the dependencies existing among them ac-
cording to the directionality principle;

(2) the possible choices for extensions within each initial strongly connected component
are determined using a semantic-specific base function which returns the extensions of
argumentation frameworks consisting of a single strongly connected component;

(3) for each possible choice determined at step 2, according to the reinstatement princi-
ple, the nodes directly attacked within subsequent strongly connected components are
suppressed and the distinction between defended and undefended nodes is (possibly)
taken into account;

(4) the steps 1–3 above are applied recursively on the restricted argumentation frameworks
obtained at step 3.

One may now wonder whether the property of SCC-recursiveness characterizes a suit-
able family of semantics. On the one hand, such family should be general enough to include
all traditional approaches to argumentation semantics in Dung’s framework, on the other
hand it should be constrained enough to support the definition of novel proposals based on
reasonable definitions of the base function.

As far as the first requirement is concerned, it is reasonable to expect a positive answer
since SCC-recursiveness has been derived using a very essential set of largely accepted
principles in argumentation semantics. This intuition is formally backed up in the follow-
ing section, where it is shown that all the semantics encompassed by Dung’s theory are
SCC-recursive. As to the second requirement, in Section 6 we show that SCC-recursive
semantics satisfies two desirable properties under very general constraints on the base func-
tion, while in Section 7 we exploit SCC-recursiveness to introduce four novel semantics
able to cope in different ways with the problematic cases illustrated in Section 3.

5 Other examples of application of the recursive schema will be given in Section 7.
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Fig. 12. A ‘Nixon diamond’ attacking a node.

5. SCC-recursive characterization of traditional semantics

5.1. Generalizing Dung’s theory

In order to develop an SCC-recursive characterization of traditional semantics, it is
necessary, first of all, to redefine Dung’s theory in generalized terms, by restating its
fundamental concepts with reference to a specific subset C ⊆ A, from which acceptable
arguments (that compose the extensions) are selected, since it represents the subset of de-
fended nodes within A, as explained in the previous section. Original Dung’s definitions
can be recovered letting C = A. Proofs are omitted throughout this subsection as they are
straightforward extensions of those in [9].

Given an argumentation framework AF = 〈A,→〉 and a set C ⊆ A, we define admissi-
ble sets in C as follows:

Definition 21. Given an argumentation framework AF = 〈A,→〉 and a set C ⊆ A, a set
E ⊆ A is an admissible set inC if and only if E ⊆ C ∧E ∈ AS(AF). The set of admissible
sets in C is denoted as AS(AF,C).

Note that, in general, AS(AF,C) �= AS(AF↓C). For instance, in the argumentation
framework of Fig. 12, with C = {γ } we have that AS(AF,C) = {∅}, since γ is not an
admissible set because of the attack coming from β , while AS(AF↓C) = {{γ }}.

We introduce now the notion of stable, complete and preferred extensions in the context
of the generalized framework.

Definition 22. Given an argumentation framework AF = 〈A,→〉 and a set C ⊆ A, a set
E ⊆ A is a stable extension inC if and only if E ⊆ C and E ∈ SE(AF). The set of stable
extensions in C is denoted as SE(AF,C).

Definition 23. Given an argumentation framework AF = 〈A,→〉 and a set C ⊆ A, a set
E ⊆ A is a complete extension inC if and only if E ∈ AS(AF,C), and every argument
α ∈ C which is acceptable with respect to E belongs to E, i.e., ∀α ∈ C: α ∈ FAF(E),
α ∈ E. The set of complete extensions in C is denoted as CE(AF,C).

Definition 24. Given an argumentation framework AF = 〈A,→〉 and a set of arguments
C ⊆ A, a preferred extension inC is a maximal element (with respect to set inclusion) of
AS(AF,C). The set of preferred extensions in C is denoted as PE(AF,C).

In other terms, E ∈ PE(AF,C) if and only if E is a maximal set such that E ⊆ C and
E is admissible in AF.



P. Baroni et al. / Artificial Intelligence 168 (2005) 162–210 185

l

s

s

Given these definitions, an important question concerns the existence of a preferred
extension for any argumentation framework AF and for any set C ⊆ A. The following
theorem provides a positive answer to this question, extending Dung’s results:

Theorem 25.Given an argumentation frameworkAF = 〈A,→〉 and a setC ⊆ A:

• The elements ofAS(AF,C), i.e., the admissible subsets ofC, form a complete partia
order.

• For all F ∈AS(AF,C), there isE ∈ PE(AF,C) such thatF ⊆ E.

Corollary 26. Given an argumentation frameworkAF = 〈A,→〉 and a setC ⊆ A,
PE(AF,C) is non empty, i.e., there is always a preferred extensionE ∈ PE(AF,C).

Also in the generalized framework, the grounded semantics can be defined in terms of
the least fixed point of the characteristic function.

Definition 27. Given an argumentation framework AF = 〈A,→〉 and a set of arguments
C ⊆ A, the function

FAF,C : 2C → 2C

FAF,C(Q) = {α | α ∈ C,α acceptable with respect to Q}
is called the characteristic function ofAF in C.

It is easy to see that FAF,C is monotonic (with respect to set inclusion).

Definition 28. Given an argumentation framework AF = 〈A,→〉 and a set C ⊆ A, the
grounded extension ofAF in C, denoted as GE(AF,C), is the least (with respect to set
inclusion) fixed point of FAF,C .

Notice that by definition GE(AF,C) ⊆ C. Also in this case we provide a positive result
concerning the existence of the grounded extension:

Lemma 29. For any argumentation frameworkAF = 〈A,→〉 and for all setsC ⊆ A,
GE(AF,C) exists and is unique.

Finally, the following relations between grounded, preferred and complete extensions
can be drawn:

Proposition 30.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
C ⊆ A, GE(AF,C) is the least(with respect to set inclusion) complete extension inC (i.e.,
the least element inCE(AF,C)).

Proposition 31.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
C ⊆ A, the preferred extensionsPE(AF,C) are the maximal(with respect to set inclusion)
complete extensions inC (i.e., the maximal elements inCE(AF,C)).
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Since Dung’s original definitions are recovered by letting C = A, a SCC-recursive for-
mulation of the extended definitions also covers the original ones: this is achieved in the
following subsections, where we show that all the traditional semantics covered by Dung’s
theory allow a definition of extensions recursively characterized along strongly connected
components.

5.2. Stable semantics

The following proposition shows that stable extensions are in correspondence with a
decomposition along strongly connected components: the intersection of a stable extension
with any strongly connected component S is itself a stable extension of the restriction of
the argumentation framework AF to UPAF(S,E).

Proposition 32.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, E ∈ SE(AF) if and only if∀S ∈ SCCSAF

(E ∩ S) ∈ SE(AF↓UPAF(S,E))

Proof. First, let us prove that if E is a stable extension of AF then it satisfies local stability
relevant to a generic strongly connected component S ∈ SCCSAF, corresponding to the
following conditions:

(1) (E ∩ S) ⊆ UPAF(S,E);
(2) (E ∩ S) is conflict-free;
(3) ∀α ∈ UPAF(S,E): α /∈ (E ∩ S), (E ∩ S) → α.

Notice that, by definition, the second and third conditions should be verified with reference
to the argumentation framework AF↓UPAF(S,E), however it is easy to see that, according
to the first condition and the definition of AF↓UPAF(S,E), it is sufficient to verify them in
AF. As for the first condition, we have that ∀α ∈ (E ∩ S) α /∈ DAF(S,E), otherwise by the
definition of DAF(S,E) we would have that E → α, therefore E would not be conflict-
free contradicting the hypothesis that E is a stable extension of AF. As far as the second
condition is concerned, it directly follows from the fact that E is conflict-free, entailed
by the hypothesis that E is a stable extension of AF. As for the third condition, let us
consider a generic argument α ∈ UPAF(S,E) such that α /∈ (E ∩ S). Since α ∈ S and
α /∈ (E ∩ S), α /∈ E, therefore by the hypothesis that E is a stable extension of AF we
have that E → α, i.e., ∃β ∈ E :β → α. Since α ∈ UPAF(S,E), taking into account the
definitions of UPAF(S,E) it turns out that �γ ∈ (E ∩ outparentsAF(S)) such that γ → α.
As a consequence, it must be the case that ∃β ∈ E,β ∈ S :β → α, thus (E ∩ S) → α, and
the first part of the proof is complete.

Turning to the other direction of the proof, we have to show that, with reference to the
argumentation framework AF:

(1) E is conflict-free;
(2) ∀α ∈ A: α /∈ E, E → α.
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Let us prove the first condition by contradiction, assuming that ∃α,β ∈ E: α → β , and
let us indicate SCCAF(β) as S. Let us notice that α cannot belong to S, since in this case
(E ∩ S) would not be conflict-free in AF as well as in AF↓UPAF(S,E), thus contradicting
the hypothesis that (E ∩ S) ∈ SE(AF↓UPAF(S,E)). As a consequence, α ∈ E and α /∈ S,
therefore β ∈ DAF(S,E) by the definition of DAF(S,E). However, this contradicts the
fact that β ∈ (E ∩ S), which by the hypothesis is contained in UPAF(S,E).

Let us finally turn to the second condition, considering a generic α ∈ A: α /∈ E, and
let us indicate SCCAF(α) as S. We can distinguish two cases for α. If α ∈ DAF(S,E),
then E → α directly follows from the definition of DAF(S,E). In the other case, α ∈
UPAF(S,E). Since α /∈ E, we have that α /∈ (E ∩ S), therefore the hypothesis (E ∩ S) ∈
SE(AF↓UPAF(S,E)) entails that (E ∩ S) → α in AF↓UPAF(S,E). Obviously, (E ∩ S) → α

holds also in AF, and the proof is complete. �
Exploiting the following lemma, the above result can be extended to the generalized

definition of stable extensions, yielding the desired recursive characterization in Proposi-
tion 34.

Lemma 33.Given an argumentation frameworkAF = 〈A,→〉 and a stable extensionE
of AF, ∀S ∈ SCCSAF,PAF(S,E) = ∅.

Proof. Let us assume by contradiction that ∃S ∈ SCCSAF: PAF(S,E) �= ∅, i.e., ∃α ∈
PAF(S,E). According to the definition of PAF(S,E), we have that ∃β /∈ E,β → α: E �→
β , contradicting the hypothesis that E is a stable extension of AF. �
Proposition 34.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, ∀C ⊆ A,E ∈ SE(AF,C) if and only if∀S ∈ SCCSAF

(E ∩ S) ∈ SE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Proof. Let us start from the first direction of the proof, assuming that E ∈ SE(AF,C).
According to the definition of SE(AF,C), we have that E ∈ SE(AF), thus Proposition 32
entails that ∀S ∈ SCCSAF

(E ∩ S) ∈ SE(AF↓UPAF(S,E))

In order to prove the thesis, we have only to show that (E ∩ S) ⊆ (UAF(S,E) ∩ C). First,
the hypothesis that E is stable and therefore conflict-free entails that (E ∩DAF(S,E)) = ∅.
Moreover, according to Lemma 33 PAF(S,E) = ∅. As a consequence, it must be the case
that (E ∩ S) ⊆ UAF(S,E). Furthermore, according to the hypothesis E ⊆ C, it holds that
(E ∩ S) ⊆ (UAF(S,E) ∩ C).

Let us turn to the other direction of the proof, assuming that ∀S ∈ SCCSAF

(E ∩ S) ∈ SE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Taking into account the definition of SE(AF↓UPAF(S,E),UAF(S,E) ∩ C), Proposition 32
entails that E ∈ SE(AF). Moreover, since ∀S ∈ SCCSAF (E ∩S) ⊆ C we have that E ⊆ C,
thus E ∈ SE(AF,C), and the proof is complete. �
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It can be noted that, on the basis of Lemma 33, the same result would have been achieved
by adopting an alternative definition of SE(AF,C), namely SE(AF,C) ≡ SE(AF). In fact,
in the case of stable extensions C has no concrete role, since all arguments outside an
extension are attacked by the extension itself, and therefore all arguments within a strongly
connected component S are defended against attacks from outside S.

5.3. Admissible sets

Since admissible sets play a key role in Dung’s theory, their characterization accord-
ing to SCC-recursiveness is needed as a basis for the analysis of other semantics. This is
achieved by Proposition 38, which requires three preliminary lemmas.

Lemma 35 (from [9, pp. 327]). Given an argumentation frameworkAF = 〈A,→〉, an
admissible set of argumentsE ∈ AS(AF), and an argumentα ∈ FAF(E) acceptable with
respect toE, E ∪ {α} is admissible, i.e.,(E ∪ {α}) ∈AS(AF).

Lemma 36.Given an argumentation frameworkAF = 〈A,→〉, an admissible set of argu
mentsE ∈ AS(AF), and an argumentα ∈ FAF(E) acceptable with respect toE, denoting
SCCAF(α) asS, it holds that:

• α ∈ UAF(S,E); and
• α is acceptable with respect to(E∩S) in the argumentation frameworkAF↓UPAF(S,E),

i.e.,α ∈ FAF↓UPAF(S,E)
(E ∩ S).

Proof. First of all, on the basis of Lemma 35 (E ∪ {α}) ∈ AS(AF), and in particular
(E ∪ {α}) is conflict-free: as a consequence α /∈ DAF(S,E), otherwise by the definition
of DAF(S,E) it would be the case that E → α. Moreover, α /∈ PAF(S,E), otherwise by
the definition of PAF(S,E) we would have that ∃β ∈ E: β → α and E �→ β , thus con-
tradicting the fact that α ∈ FAF(E), namely the acceptability of α with respect to E. As a
consequence, the only possibility for α is that α ∈ UAF(S,E).

Turning to the second part of the proof, let us first note that, on the basis of the hy-
pothesis that E ∈ AS(AF), all the elements of E are acceptable with respect to E, i.e.,
∀γ ∈ E,γ ∈ FAF(E). Thus, the above result entails that (E ∩ S) ⊆ UAF(S,E), therefore
(E ∩ S) is actually a set of arguments in the argumentation framework AF↓UPAF(S,E). Let
us consider now a generic argument β that attacks α in AF↓UPAF(S,E): we have to prove that
(E ∩ S) → β holds in this argumentation framework. Of course, β → α also in AF, there-
fore the acceptability of α with respect to E, i.e., α ∈ FAF(E), entails that there is γ ∈ E

such that γ ∈ parentsAF(β). Now, since β ∈ UPAF(S,E), by definition of UPAF(S,E) all
of its defeaters outside S do not belong to E, thus γ ∈ S and therefore γ ∈ (E ∩ S). As
a consequence, (E ∩ S) → β holds in AF, and obviously it also holds in the restricted
argumentation framework AF↓UPAF(S,E). �
Lemma 37. Given an argumentation frameworkAF = 〈A,→〉, let E ⊆ A be a set of
arguments such that,∀S ∈ SCCSAF

(E ∩ S) ∈ AS
(
AF↓UP (S,E),UAF(S,E)

)

AF
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Given a strongly connected componentŜ ∈ SCCSAF and an argumentα ∈ UAF(Ŝ,E)

which is acceptable with respect to(E∩ Ŝ ) in the argumentation frameworkAF↓UPAF(Ŝ,E),

i.e.,α ∈ FAF↓UPAF(Ŝ,E)
(E ∩ Ŝ ), α is acceptable with respect toE in AF, i.e.,α ∈ FAF(E).

Proof. With reference to the argumentation framework AF, we have to prove that ∀β ∈
A: β → α, then also E → β . We distinguish two cases for β .

First, let us suppose that SCCAF(β) = SCCAF(α) = Ŝ. If β ∈ DAF(Ŝ,E), then E → β

holds in AF by definition of DAF(Ŝ,E). If, on the other hand, β ∈ UPAF(Ŝ,E), then β →
α holds in AF↓UPAF(Ŝ,E), therefore according to the hypothesis of acceptability concerning
α it must be the case that (E ∩ Ŝ ) → β holds in AF↓UPAF(Ŝ,E). Obviously, such relation
holds also in AF, and entails that E → β .

Let us consider the other case, i.e., SCCAF(β) �= SCCAF(α) = Ŝ. In this case, β ∈
(outparentsAF(Ŝ) ∩ parentsAF(α)), while by the hypothesis α ∈ UAF(Ŝ,E): on the basis
of the definition of UAF(Ŝ,E), it must be the case that E → β in AF, and the proof is
complete. �
Proposition 38.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, ∀C ⊆ A, E ∈ AS(AF,C) if and only if∀S ∈ SCCSAF

(E ∩ S) ∈AS
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Proof. First, let us prove that if E is admissible then it satisfies the conditions relevant
to a generic strongly connected component S ∈ SCCSAF. According to the definition of
AS(AF,C), E ⊆ C and ∀α ∈ E, α is acceptable with respect to E, i.e., α ∈ FAF(E). As
a consequence, on the basis of Lemma 36 we have that ∀α ∈ (E ∩ S),α ∈ UAF(S,E),
therefore (E ∩ S) ⊆ (UAF(S,E) ∩ C). Moreover, by the same lemma α is acceptable
with respect to (E ∩ S) in the argumentation framework AF↓UPAF(S,E). This, as well
as the fact that E is admissible and therefore conflict-free, entails that (E ∩ S) is ad-
missible in the argumentation framework AF↓UPAF(S,E), and therefore that (E ∩ S) ∈
AS(AF↓UPAF(S,E),UAF(S,E) ∩ C).

As far as the other direction of the proof is concerned, we first notice that, by the hy-
pothesis, ∀S ∈ SCCSAF (E ∩ S) ⊆ (UAF(S,E) ∩ C) ⊆ (S ∩ C), therefore E ⊆ C: in order
to prove the claim, we have only to show that E is admissible in AF.

Let us first show that E is conflict-free by reasoning by contradiction, i.e., let us suppose
that ∃α,β ∈ E: β → α. Let us denote SCCAF(α) as S. Clearly, it cannot be the case that
SCCAF(α) = SCCAF(β), since in this case (E ∩S) would not be conflict-free, thus contra-
dicting the hypothesis concerning its admissibility in AF↓UPAF(S,E). As a consequence,
β ∈ (E ∩ outparentsAF(S)), therefore α ∈ DAF(S,E) by the definition of DAF(S,E).
However, this contradicts the fact that α ∈ (E ∩ S), which according to the hypothesis
is contained in UAF(S,E).

In order to complete the proof, we have to prove that a generic α ∈ E is accept-
able with respect to E, i.e., α ∈ FAF(E). If we denote SCCAF(α) as Ŝ, we have that
α ∈ (E ∩ Ŝ ), and by the hypothesis (E ∩ Ŝ ) ∈ AS(AF↓UPAF(Ŝ,E)

,UAF(Ŝ,E)∩C). There-

fore, α ∈ UAF(Ŝ,E), and α is acceptable with respect to (E ∩ Ŝ ) in AF↓UPAF(Ŝ,E).
Since the hypothesis entails that ∀S ∈ SCCSAF (E ∩ S) ∈ AS(AF↓UP (S,E),UAF(S,E)),
AF



190 P. Baroni et al. / Artificial Intelligence 168 (2005) 162–210

s

s

Lemma 37 can be applied to α, entailing that α is acceptable with respect to E in AF, i.e.,
α ∈ FAF(E). �
5.4. Complete semantics

Exploiting the results in previous subsection, the following proposition shows that also
complete extensions are in correspondence with a recursive decomposition along strongly
connected components.

Proposition 39.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, ∀C ⊆ A, E ∈ CE(AF,C) if and only if∀S ∈ SCCSAF

(E ∩ S) ∈ CE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Proof. As for the first direction of the proof, if E ∈ CE(AF,C) then in particular E ∈
AS(AF,C), therefore Proposition 38 entails that

∀S ∈ SCCSAF (E ∩ S) ∈AS
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
(1)

As a consequence, we have only to show that ∀α ∈ (UAF(S,E) ∩ C) such that α is
acceptable with respect to (E ∩ S) in AF↓UPAF(S,E), α ∈ (E ∩ S). First, we notice
that Lemma 37 can be applied to α, since (1) entails that ∀S ∈ SCCSAF (E ∩ S) ∈
AS(AF↓UPAF(S,E),UAF(S,E)). On the basis of this lemma, α is acceptable with respect to
E in AF, i.e., α ∈ FAF(E). Moreover, α ∈ (UAF(S,E) ∩ C), therefore in particular α ∈ C.
As a consequence, from the hypothesis that E ∈ CE(AF,C) it follows that α ∈ E and
therefore α ∈ (E ∩ S).

As for the other direction of the proof, according to Definition 23 we have that ∀S ∈
SCCSAF the following conditions hold:

(E ∩ S) ∈ AS
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
(2)

∀α ∈ (
UAF(S,E) ∩ C

)
: α ∈ FAF↓UPAF(S,E)

(E ∩ S), α ∈ (E ∩ S) (3)

Thus, on the basis of (2) Proposition 38 entails that E ∈ AS(AF,C), therefore we have
only to prove that ∀α ∈ C such that α is acceptable with respect to E, α ∈ E, i.e., ∀α ∈
C: α ∈ FAF(E), α ∈ E. Denoting SCCAF(α) as S, on the basis of Lemma 36 we have that
α ∈ UAF(S,E), so that α ∈ (UAF(S,E) ∩ C), and α is acceptable with respect to (E ∩ S)

in AF↓UPAF(S,E), i.e., α ∈ FAF↓UPAF(S,E)
(E ∩S). Then, taking into account (3) we have that

α ∈ (E ∩ S), therefore α ∈ E. �
5.5. Preferred semantics

Also preferred extensions fit the decomposition schema along strongly connected com-
ponents, as shown by Proposition 41 based on the following lemma.

Lemma 40. Given an argumentation frameworkAF = 〈A,→〉, an admissible setE ∈
AS(AF), and a strongly connected componentS ∈ SCCSAF, let Ê be a set of argument
such that:
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• (E ∩ S) ⊆ Ê ⊆ UAF(S,E);
• Ê is admissible in the argumentation frameworkAF↓UPAF(S,E), i.e., Ê ∈
AS(AF↓UPAF(S,E)).

It holds that(E ∪ Ê ) is admissible inAF, i.e.,(E ∪ Ê ) ∈ AS(AF).

Proof. First, we prove that (E ∪ Ê ) is conflict-free. Of course, Ê is conflict-free in
AF↓UPAF(S,E) by the hypothesis, and, as a consequence, Ê is conflict-free also in AF.
Since also E is conflict-free in AF by the hypothesis of admissibility, we have to prove that
Ê �→ E and E �→ Ê. Since E is admissible in AF, Ê → E entails that E → Ê, therefore
we have only to prove that E �→ Ê. Since Ê ⊆ UAF(S,E), (E ∩ outparentsAF(S)) �→ Ê,
therefore E → Ê only if (E ∩ S) → Ê. However, this situation is not possible since
(E ∩ S) ⊆ Ê and Ê is conflict-free.

Now, with reference to the argumentation framework AF we have to prove that ∀β ∈ A
such that β → (E ∪ Ê ), it is the case that (E ∪ Ê ) → β . In case β → E, the con-
clusion follows from admissibility of E. On the other hand, if β → Ê, we have that
β ∈ (outparentsAF(S) ∪ S) since Ê ⊆ S; we distinguish three cases for β:

(1) if β ∈ outparentsAF(S), then, taking into account that β → Ê and Ê ⊆ UAF(S,E), it
must be the case according to the definition of UAF(S,E) that E → β;

(2) if β ∈ DAF(S,E), then according to the definition of DAF(S,E) it must be the case
that E → β;

(3) if β ∈ UPAF(S,E), then β → Ê holds also in AF↓UPAF(S,E). As a consequence, the
hypothesis that Ê ∈ AS(AF↓UPAF(S,E)) entails that Ê → β holds in AF↓UPAF(S,E),
and, of course, that Ê → β also holds in AF.

In any case, (E ∪ Ê ) → β , and the proof is completed. �
Proposition 41.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, ∀C ⊆ A, E ∈ PE(AF,C) if and only if∀S ∈ SCCSAF

(E ∩ S) ∈PE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Proof. As far as the first direction of the proof is concerned, let us assume that E ∈
PE(AF,C). By definition, E ∈ AS(AF,C), therefore, on the basis of Proposition 38, we
have that ∀S ∈ SCCSAF

(E ∩ S) ∈AS
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Let us now reason by contradiction, assuming that ∃Ŝ ∈ SCCSAF such that (E ∩ Ŝ ) is
not maximal among the sets included in AS(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C). According
to Theorem 25, there must be a set Ê such that

• (E ∩ Ŝ ) � Ê ⊆ (UAF(Ŝ,E) ∩ C), and
• Ê ∈ AS(AF↓ ̂ ,UAF(Ŝ,E) ∩ C).
UPAF(S,E)
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Taking into account that, according to the definition of AS(AF,C), E ∈ AS(AF),
Lemma 40 entails that the set E′ � E ∪ Ê is admissible in AF. Moreover, since both
E and Ê are contained in C we have that E′ ⊆ C, therefore E′ ∈ AS(AF,C). However, it
is easy to see that E is strictly contained in E′, contradicting the maximality of E among
the sets of AS(AF,C).

Let us turn now to the other direction of the proof, assuming that ∀S ∈ SCCSAF,
(E ∩ S) ∈ PE(AF↓UPAF(S,E),UAF(S,E) ∩ C). On the basis of Proposition 38, E ∈
AS(AF,C): in order to prove that E is also a preferred extension, we reason again by
contradiction, supposing that ∃E′ ⊆ C,E � E′: E′ ∈ PE(AF,C) (notice that the exis-
tence of E′ is imposed by Theorem 25). Since E � E′, there must be at least a strongly
connected component S ∈ SCCSAF such that (E ∩ S) � (E′ ∩ S): taking into account the
acyclicity of the strongly connected components, there exists in particular Ŝ ∈ SCCSAF
such that

∀S ∈ SCCSAF: S ∈ sccancAF(Ŝ), (E′ ∩ S) = (E ∩ S) (4)

(E ∩ Ŝ ) � (E′ ∩ Ŝ ) (5)

Note that condition (4) is trivially verified if Ŝ is initial.
Since E′ ∈ AS(AF,C), on the basis of Proposition 38 we have that (E′ ∩ Ŝ ) ∈

AS(AF↓UPAF(Ŝ,E′),UAF(Ŝ,E′) ∩ C). Taking into account (4), it is easy to see that
UAF(Ŝ,E′) = UAF(Ŝ,E) and PAF(Ŝ,E′) = PAF(Ŝ,E), therefore (E′ ∩ Ŝ ) ∈
AS(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C). However, on the basis of (5) we have that (E ∩ Ŝ ) �
(E′ ∩ Ŝ ), and this contradicts the hypothesis that (E ∩ Ŝ ) ∈ PE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E)

∩ C). �
5.6. Grounded semantics

Finally, in this subsection, we prove that the decomposition schema also holds for
grounded semantics, as shown by the following Proposition 42.

Proposition 42.Given an argumentation frameworkAF = 〈A,→〉 and a set of argument
E ⊆ A, ∀C ⊆ A, E = GE(AF,C) if and only if∀S ∈ SCCSAF

(E ∩ S) = GE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Proof. Let us consider the first part of the proof, by supposing that E = GE(AF,C). On the
basis of Proposition 30, E is in particular a complete extension in C, i.e., E ∈ CE(AF,C),
therefore Proposition 39 entails that ∀S ∈ SCCSAF (E∩S) ∈ CE(AF↓UPAF(S,E),UAF(S,E)

∩ C). Taking into account Proposition 30, we have to prove that ∀S ∈ SCCSAF (E ∩ S) is
the least element (with respect to set inclusion) in CE(AF↓UPAF(S,E),UAF(S,E) ∩ C). We
reason by contradiction, supposing that there is at least one strongly connected component
where the thesis is not verified. In particular, since the strongly connected components of
AF make up an acyclic graph, we can choose Ŝ ∈ SCCSAF such that

∀S ∈ sccancAF(Ŝ), (E ∩ S) = GE
(
AF↓UP (S,E),UAF(S,E) ∩ C

)
(6)
AF
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and

∃Ê � (E ∩ Ŝ ), Ê = GE
(
AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C

)
(7)

Note that condition (6) is trivially verified if Ŝ is initial.
Moreover, the second condition follows from the fact that, on the basis of Lemma 29,

GE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C) must exist, and according to Proposition 30 it is in-
cluded in all the elements of CE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C).

Now, taking again into account that the strongly connected components of AF make up
an acyclic graph, it is easy to see that it is possible to construct a set E′ such that:

• ∀S ∈ sccancAF(Ŝ), (E′ ∩ S) = (E ∩ S);
• (E′ ∩ Ŝ ) = Ê;
• ∀S ∈ SCCSAF, (E′ ∩ S) = GE(AF↓UPAF(S,E′),UAF(S,E′) ∩ C).

To this purpose, it is obviously possible to construct a set E′∗ contained in the strongly con-
nected components of (Ŝ ∪ sccancAF(Ŝ)) which satisfies the first two conditions. Thus,
it turns out that ∀S ∈ (Ŝ ∪ sccancAF(Ŝ)) UAF(S,E′∗) = UAF(S,E) and PAF(S,E′∗) =
PAF(S,E). Therefore, taking into account (6) and (7), E′∗ satisfies the third condition too
for any such S, i.e.,

∀S ∈ (
Ŝ ∪ sccancAF(Ŝ)

)
(E′∗ ∩ S) = GE

(
AF↓UPAF(S,E′∗),UAF(S,E′∗) ∩ C

)
Now, E′ can be obtained constructively from E′∗ by proceeding along the other strongly
connected components of the defeat graph: in fact ∀S ∈ SCCSAF GE(AF↓UPAF(S,E′),
UAF(S,E′) ∩ C) always exists by Lemma 29.

On the basis of Proposition 30, we have that ∀S ∈ SCCSAF (E′ ∩ S) ∈
CE(AF↓UPAF(S,E′),UAF(S,E′)∩C). As a consequence, by Proposition 39 it turns out that
E′ ∈ CE(AF,C), while since (E′ ∩ Ŝ ) = Ê � (E ∩ Ŝ ) it is not true that E ⊆ E′. However,
this contradicts the hypothesis that E = GE(AF,C), which according to Proposition 30 is
the least element of CE(AF,C), i.e., the least complete extension in C.

Let us turn now to the other direction of the proof, by supposing that ∀S ∈ SCCSAF,
(E ∩ S) = GE(AF↓UPAF(S,E),UAF(S,E) ∩ C). On the basis of Proposition 30, we have
that ∀S ∈ SCCSAF, (E∩S) ∈ CE(AF↓UPAF(S,E),UAF(S,E)∩C), therefore Proposition 39
entails that E ∈ CE(AF,C). As a consequence, taking into account Proposition 30 we
have only to prove that E is the least element of CE(AF,C). We reason by contradiction,
assuming that the grounded extension E′ = GE(AF,C), which must exist by Lemma 29
and is a subset of E by Proposition 30, is strictly included in E. Thus, there must be at
least a strongly connected component S such that (E′ ∩ S) � (E ∩ S): since the strongly
connected components form an acyclic graph, there is in particular a strongly connected
component Ŝ such that:

∀S ∈ sccancAF(Ŝ), (E′ ∩ S) = (E ∩ S) (8)

(E′ ∩ Ŝ ) � (E ∩ Ŝ ) (9)

Moreover, since E′ = GE(AF,C) ∈ CE(AF,C), Proposition 39 applied to Ŝ entails that
(E′ ∩ Ŝ ) ∈ CE(AF↓ ̂ ′ ,UAF(Ŝ,E′) ∩ C). Taking into account (8), it is easy to
UPAF(S,E )
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rsive,
e-
see that UAF(Ŝ,E′) = UAF(Ŝ,E) and PAF(Ŝ,E′) = PAF(Ŝ,E), therefore (E′ ∩ Ŝ ) ∈
CE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C). However, according to (9) we have that (E′ ∩ Ŝ ) is
strictly included in (E ∩ Ŝ ), contradicting the hypothesis (referred to Ŝ) that (E ∩ Ŝ ) =
GE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C) and therefore, on the basis of Proposition 30, that
(E ∩ Ŝ ) is the least element of CE(AF↓UPAF(Ŝ,E),UAF(Ŝ,E) ∩ C). �
5.7. Traditional semantics as SCC-recursive semantics

As discussed in Section 4, each specific SCC-recursive semantics is identified by its own
base function. On the basis of the results obtained in the previous sections, it is possible
to identify the base functions corresponding to the traditional semantics introduced in [9]
and, thus, to definitely prove that these traditional semantics fit the general SCC-recursive
schema.

Theorem 43.The stable, complete, preferred and grounded semantics are SCC-recu
characterized by the following base functions(defined for generic argumentation fram
worksAF such that|SCCSAF| = 1):

• BFST (AF,C) ≡ SE(AF,C);
• BFCO(AF,C) ≡ CE(AF,C);
• BFPR(AF,C) ≡ PE(AF,C);
• BFGR(AF,C) ≡ {GE(AF,C)}.

Proof. Let us prove the claim with reference to stable semantics. First, E ∈ SE(AF)

if and only if E ∈ SE(AF,A), since as noticed in Section 5.1 Dung’s original defi-
nitions are recovered from the extended ones in case C coincides with the set of all
arguments. Now, it is easy to see that SE(AF,C) for generic AF and C adheres to Defin-
ition 20: if |SCCSAF| = 1, then SE(AF,C) coincides by definition with the base function
BFST (AF,C), otherwise the decomposition schema along the strongly connected com-
ponents follows from Proposition 34.

As far as complete, preferred and grounded semantics are concerned, proofs are similar
and are based on Propositions 39, 41 and 42, respectively. �

For the grounded semantics, the base function admits a simple explicit formulation.

Proposition 44.For any argumentation frameworkAF = 〈A,→〉 such that|SCCSAF| = 1,
and for anyC ⊆ A, we have that

BFGR(AF,C) = {
GE(AF,C)

}
=

{ {{α}}, if C = A = {α} and→= ∅;
{∅}, otherwise.

Proof. According to Definition 28, GE(AF,C) is the least fixed point of FAF,C . Let us
consider its computation in the following exhaustive cases.
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First, if C = ∅ then ∀E ⊆ A FAF,C(E) = ∅ by definition, obviously entailing that the
empty set is the least fixed point of FAF,C and BFGR(AF,C) = {∅}.

Second, if |A| > 1 then it must be the case that ∀α ∈ A,parentsAF(α) �= ∅, since AF
is made up of a unique strongly connected component, while an initial node would not be
reachable from another one. As a consequence, taking into account the definition of FAF,C ,
it turns that, ∀C ⊆ A,

FAF,C(∅) = {α ∈ C | ∀β ∈ A: β → α, ∅ → β}
= {α ∈ C | parentsAF(α) = ∅}
= ∅

As a consequence, the least fixed point of FAF,C is the empty set, therefore again
BFGR(AF,C) = {∅}.

The remaining case to be considered is A = C = {α}. There are only two possibili-
ties for the attack relation, namely either →= {(α,α)} or →= ∅. The first situation can
be treated as in the previous case, since the unique node α is not initial, yielding again
BFGR(AF,C) = {∅}. In the other situation, i.e., C = A = {α} and →= ∅, it is easy to see
that FAF,C({α}) = {α} and FAF,C(∅) = {α}, therefore the least fixed point of FAF,C is made
up of the unique node α and BFGR(AF,C) = {{α}}. �

6. General properties of SCC-recursive semantics

Having proved that SCC-recursiveness is general enough to include traditional seman-
tics, we now show that it is also restrictive enough to ensure that the basic desirable
properties of an extension are satisfied by any SCC-recursive semantics, provided that very
simple and intuitive constraints on the base function are respected.

6.1. Conflict-free property

As stated in Section 2.2, a basic requirement of any extension is the absence of conflicts,
as expressed by the following definition:

Definition 45. A semantics S satisfies the conflict-free propertyif and only if ∀AF,∀E ∈
ES(AF) E is conflict-free.

Clearly, a necessary condition for a given SCC-recursive semantics to be conflict-free
is that its base function is conflict-free:

Definition 46. The base function GF∗
S of a SCC-recursive semantics S is conflict-freeif

and only if ∀AF = 〈A,→〉 and ∀C ⊆ A each element of BFS(AF,C) is conflict-free.

We also prove that this is a sufficient condition.
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Proposition 47.LetS be a SCC-recursive semantics identified by the base functionGF∗

S .
If GF∗

S is conflict-free, then∀AF = 〈A,→〉 and ∀C ⊆ A the elements of the functio
GF(AF,C) based onGF∗

S are conflict-free as well.

Proof. Let us consider a generic argumentation framework AF = 〈A,→〉 and a generic
set C ⊆ A: we have to prove that, given a generic E ∈ GF(AF,C), E is conflict-free.

Given the recursive characterization of E as in Definition 20, we first prove the claim in
the base case, namely |SCCSAF| = 1, then we assume as an inductive hypothesis that the
claim holds for any S ∈ SCCSAF at the level of AF↓UPAF(S,E) and show that this hypothesis
entails the claim at the level of AF.

If |SCCSAF| = 1, then, by Definition 20, E ∈ BFS(AF,C), and therefore is conflict-
free by the hypothesis.

In the other case, namely |SCCSAF| > 1, the inductive hypothesis can be expressed as

∀S ∈ SCCSAF (E ∩ S) is conflict-free in AF↓UPAF(S,E) (10)

Let us reason by contradiction, assuming the existence of two elements α,β ∈ E such that
α → β , and let us indicate SCCAF(β) as S. Clearly, α /∈ S, otherwise (E ∩ S) would not
be conflict-free in AF↓UPAF(S,E). As a consequence, α ∈ outparentsAF(S) ∩ E. However,
this would entail that β ∈ DAF(S,E) by definition of DAF(S,E), while since β ∈ E this
would contradict the fact that (E ∩ S) ⊆ UPAF(S,E), prescribed by (10). �
Theorem 48.Given a SCC-recursive semanticsS , if its base functionGF∗

S is conflict-free
thenS satisfies the conflict-free property.

Proof. Since, according to Definition 20, any extension E ∈ ES(AF) belongs to GF(AF,

A), the claim easily follows from Proposition 47 applied with C = A. �
6.2. Agreement with the grounded semantics

As discussed in Section 2.2, the grounded semantics represents a sort of lower bound
among argumentation semantics, since in Dung’s framework the grounded extension is
the least among all conceivable extensions, namely complete extensions. More generally,
the agreement with grounded semantics can be regarded as a fundamental requirement
for any argumentation semantics, as it appears evident considering the constructive char-
acterization of grounded semantics recalled in the same subsection. As a confirmation of
the well-foundedness of the property of SCC-recursiveness, we prove in Theorem 52 that
for any SCC-recursive semantics each of its extensions includes the grounded extension,
provided that a very simple condition on the base function is satisfied.

First, we prove a general property of the SCC-recursive schema showing that inclusion
between extensions entails inclusion relations between the elements of the partitions of
strongly connected components introduced in Definition 18.

Lemma 49.Given an argumentation frameworkAF = 〈A,→〉, letE1,E2 ⊆ A be two sets
of arguments such thatE1 ⊆ E2 andE2 is conflict-free(and therefore alsoE1). For any
strongly connected componentS ⊆ SCCSAF, it holds that:
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• DAF(S,E1) ⊆ DAF(S,E2);
• UPAF(S,E2) ⊆ UPAF(S,E1);
• UAF(S,E1) ⊆ UAF(S,E2).

Proof. As to the first point, we have by definition that DAF(S,E1) = {α ∈ S | (E1 ∩
outparentsAF(S)) → α}. Since E1 ⊆ E2, it must be the case that DAF(S,E1) ⊆ {α ∈ S |
(E2 ∩ outparentsAF(S)) → α} ≡ DAF(S,E2).

The above result easily entails the second one, taking into account that UPAF(S,E2) =
(S \DAF(S,E2)): by the first point, (S \DAF(S,E2)) ⊆ (S \DAF(S,E1)) = UPAF(S,E1).

As to the third point, let us first prove that

∀α ∈ UAF(S,E1),
(
E2 ∩ outparentsAF(S)

) �→ α (11)

We reason by contradiction, assuming that ∃α ∈ UAF(S,E1), β ∈ (E2 ∩ outparentsAF(S)):
β → α. In this case, we have in particular that β ∈ (outparentsAF(S) ∩ parentsAF(α)),
therefore, according to the definition of UAF(S,E1) applied to α, E1 → β . However, since
E1 ⊆ E2, also E2 → β holds, with β ∈ E2, contradicting the hypothesis that E2 is conflict-
free.

Now, it is easy to see that

∀α ∈ UAF(S,E1),∀β ∈ (
outparentsAF(S) ∩ parentsAF(α)

)
, E2 → β (12)

since by definition of UAF(S,E1) applied to α we have that E1 → β and E1 ⊆ E2.
Finally, on the basis of (11) and (12) it turns out that ∀α ∈ UAF(S,E1) (E2 ∩

outparentsAF(S)) �→ α ∧ ∀β ∈ (outparentsAF(S) ∩ parentsAF(α)) E2 → β , i.e., α ∈
UAF(S,E2). �

The following lemma shows that an inclusion relation between two sets C1 and C2 also
holds between the grounded extensions in C1 and C2, even if the latter is referred to a
restricted argumentation framework.

Lemma 50.LetAF1 = 〈A1,→1〉 andAF2 = 〈A2,→2〉 be two argumentation framework
such thatAF2 = AF1↓A2 . Given two setsC1 and C2 such thatC1 ⊆ C2 ⊆ A2 ⊆ A1,
GE(AF1,C1) ⊆ GE(AF2,C2).

Proof. First, let us consider the characteristic functions FAF1,C1 and FAF2,C2 , respectively
defined in 2C1 and 2C2 (with 2C1 ⊆ 2C2 ). We prove that, given two sets E1 ⊆ C1 and
E2 ⊆ C2

if E1 ⊆ E2 then FAF1,C1(E1) ⊆ FAF2,C2(E2) (13)

Let us consider a generic element α ∈ FAF1,C1(E1): by definition, α ∈ C1 and α is ac-
ceptable with respect to E1 in AF1. Since C1 ⊆ C2, α ∈ C2, therefore to prove that
α ∈ FAF2,C2(E2) we have only to show that α is acceptable with respect to E2 in AF2. To
this purpose, let us consider a generic argument β ∈ A2 which attacks α in AF2, i.e., β ∈
parentsAF2

(α). Clearly, since A2 ⊆ A1, β attacks α also in AF1, i.e., β ∈ parentsAF1
(α).

Since α is acceptable with respect to E1 in AF1, E1 → β in AF1, and taking into account
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func-

ed by
that E1 ⊆ C1 ⊆ A2 it is easy to see that E1 → β holds also in AF2. Moreover, E1 ⊆ E2,
therefore we get the desired conclusion that E2 → β in AF2.

Now, by extending an analogous result proved by Dung (see [9], pp. 342) in case
AF1 and AF2 are finitary, i.e., such that every argument has a finite number of de-
featers, GE(AF1,C1) and GE(AF2,C2) can be respectively expressed as

⋃
i�1 Fi

AF1,C1
(∅)

and
⋃

i�1 Fi
AF2,C2

(∅): in order to prove the thesis, we show by induction on i that

∀i � 1 Fi
AF1,C1

(∅) ⊆ Fi
AF2,C2

(∅). The proof can be extended to the general case by us-
ing transfinite induction on ordinal numbers instead of ordinary induction, however we
resort to the latter for simplicity.

As for the base case, according to (13) FAF1,C1(∅) ⊆ FAF2,C2(∅), since obviously
∅ ⊆ ∅ ⊆ C1. In the induction step, we assume that Fi

AF1,C1
(∅) ⊆ Fi

AF2,C2
(∅): as a con-

sequence, on the basis of (13) it turns out that FAF1,C1(F
i
AF1,C1

(∅)) ⊆ FAF2,C2(F
i
AF2,C2

(∅)),

i.e., Fi+1
AF1,C1

(∅) ⊆ Fi+1
AF2,C2

(∅), and the proof is complete. �
We now show that the agreement with grounded semantics is ensured if the base func-

tion properly deals with the simplest possible case of argumentation framework, i.e., a
single node which does not attack itself and therefore should be justified.

Proposition 51.LetS be a SCC-recursive semantics identified by a conflict-free base
tion GF∗

S such that

BFS
(〈{α},∅〉

, {α}) = {{α}}
For any argumentation frameworkAF = 〈A,→〉 and for any setC ⊆ A, it holds that

∀E ∈ GF(AF,C), GE(AF,C) ⊆ E

whereGF(AF,C) is the recursive function of the SCC-recursive schema characteriz
the base functionGF∗

S .

Proof. Given a generic AF = 〈A,→〉 and a set C ⊆ A, let us consider a generic set E ∈
GF(AF,C): we have to prove that GE(AF,C) ⊆ E. Let us distinguish two cases for the
argumentation framework AF.

First, if SCCSAF = 1, then the base case of the recursive definition applies to E, i.e.,
according to Definition 20 E ∈ BFS(AF,C). Of course, if GE(AF,C) is the empty set
then the thesis trivially holds for E. On the basis of Proposition 44, GE(AF,C) is non
empty only if AF = 〈{α},∅〉 and C = {α}, and it turns out that GE(AF,C) = {α}. By the
hypothesis, in this case BFS(AF,C) = {{α}}, thus the only possible case for E is E = {α},
obviously entailing that GE(AF,C) ⊆ E.

Let us now consider the case where SCCSAF > 1. Taking into account the recursive
definition of E according to Definition 20 and the proof for the case |SCCSAF| = 1, we
can recursively assume that, if |SCCSAF| > 1, the thesis holds at the level of restricted
argumentation frameworks:

∀S ∈ SCCSAF, GE
(
AF↓UP (S,E),UAF(S,E) ∩ C

) ⊆ (E ∩ S) (14)
AF
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ction
In order to simplify the notation, let us indicate GE(AF,C) as E∗: we proceed inductively
along the strongly connected components of the argumentation framework, by proving that

∀S ∈ SCCSAF, (E∗ ∩ S) ⊆ (E ∩ S)

which obviously entails the claim. Let us first notice that, according to Proposition 42

∀S ∈ SCCSAF, (E∗ ∩ S) = GE
(
AF↓UPAF(S,E∗),UAF(S,E∗) ∩ C

)
(15)

In the basis case, we consider the initial strongly connected components, namely we refer to
a generic S ∈ SCCSAF such that sccparentsAF(S) = ∅, entailing that outparentsAF(S) = ∅.
This, in turn, entails that, for any set E, DAF(S,E) = PAF(S,E) = ∅ and UAF(S,E) = S.
As a consequence, according to (15) we have that (E∗ ∩ S) = GE(AF↓S, S ∩ C), which is
in turn equal to GE(AF↓UPAF(S,E),UAF(S,E) ∩ C). Since by (14) the latter is contained
in (E ∩ S), we get the desired result that (E∗ ∩ S) ⊆ (E ∩ S).

In the inductive step, we can assume that

∀P ∈ sccancAF(S), (E∗ ∩ P) ⊆ (E ∩ P)

Now, since E is conflict-free by Proposition 47 and the definitions of UAF(S,E) and
PAF(S,E) only depend on the subset of E contained in the strongly connected compo-
nents of sccancAF(S), Lemma 49 can be applied obtaining

UAF(S,E∗) ⊆ UAF(S,E)

and

UPAF(S,E) ⊆ UPAF(S,E∗)
On the basis of these results, it is possible to apply Lemma 50 with

– AF1 = AF↓UPAF(S,E∗),
– AF2 = AF↓UPAF(S,E) = AF1↓UPAF(S,E),
– C1 = UAF(S,E∗) ∩ C,
– C2 = UAF(S,E) ∩ C

obtaining

GE
(
AF↓UPAF(S,E∗),UAF(S,E∗) ∩ C

) ⊆ GE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

)
Now, on the basis of (15) we have that

(E∗ ∩ S) = GE
(
AF↓UPAF(S,E∗),UAF(S,E∗) ∩ C

)
while by (14)

GE
(
AF↓UPAF(S,E),UAF(S,E) ∩ C

) ⊆ (E ∩ S)

entailing that (E∗ ∩ S) ⊆ (E ∩ S). �
Theorem 52.LetS be a SCC-recursive semantics identified by a conflict-free base fun
GF∗

S such that

BFS
(〈{α},∅〉

, {α}) = {{α}}
For any argumentation frameworkAF = 〈A,→〉, ∀E ∈ ES(AF),GE(AF) ⊆ E.
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Proof. The theorem directly follows from Proposition 51 applied in the case C = A, taking
into account that ES(AF) = GF(AF,A) and GE(AF) = GE(AF,A). �

Thanks to the above properties, defining an SCC-recursive semantics which is sound,
i.e., conflict-free and in agreement with the grounded semantics, turns out to be a rela-
tively easy task. In fact, in order for these properties to be satisfied it is sufficient that
the base function is conflict-free and correctly treats the case of a single node without de-
featers. In the following section we exploit the SCC-recursive schema to introduce four
novel semantics which can cope in different ways with the problematic examples affecting
preferred semantics. These semantics are introduced mainly for the purpose of demon-
strating the potential of SCC-recursiveness: the possibility of defining novel semantics in a
rather straightforward way confirms that our formalism is a sound basis for further studies
in the spirit of the analysis of Section 3, where the need of a framework encompassing a
large variety of semantics has been pointed out. In this sense, the semantics presented in
the following section can be regarded more as illustrative than as definitive achievements:
they represent an initial excursion in the space of SCC-recursive semantics, whose deeper
and more complete exploration is indeed an interesting subject for future work. The defin-
ition of the semantics is deliberately example-driven; however, at a more general level, the
four semantics are related by an underlying conceptual analysis, whose outcome seems to
suggest that, in the SCC-recursive context, simpler base functions are better.

7. Supporting the definition of novel argumentation semantics

The results of the previous section suggest that relatively simple base functions are
appropriate in the context of our SCC-recursive schema. Therefore, our search of novel
interesting SCC-recursive semantics is driven by the idea of defining base functions based
on progressively simpler concepts. Accordingly, we adopt preferred semantics as a starting
point, and we use the focused survey presented in Section 2.2 as a guideline, by following
it backward from more articulated concepts to the basic ones.

7.1. Beyond preferred semantics

In this subsection, we explore solutions which preserve the fundamental notion of
defense, formally represented by the property of admissibility in Dung’s framework; com-
plete admissible sets, i.e., complete extensions, are regarded as the most general family
of conceivable extensions in this context. As shown by Theorem 43, the recursive schema
turns out to completely include this framework, since all complete extensions are recur-
sively characterized. Therefore, considering the recursive schema does not introduce any
limitation in this respect.

Since preferred extensions are maximal admissible sets, in order to devise an alternative
admissibility-based proposal the only possible way is giving up the requirement of max-
imality. Let us start our analysis by recalling the argumentation framework of Fig. 7(a),
where the argument ¬rain turns out to be questionably justified according to preferred se-
mantics. First of all, note that in any semantics based on the concept of admissibility, none
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of the arguments S, R, or J can be included in any extension, since any of them attacks its
only possible defender. As a consequence, also rain cannot be included in any extension,
since it cannot be defended against its defeater J . Therefore, the only complete extensions
of the argumentation framework AF of Fig. 7(a) are {¬rain} and ∅. While preferred se-
mantics prescribes {¬rain} as the only extension, we aim at finding a semantics S whose
definition admits the empty set as extension. Adopting the general SCC-recursive schema
to identify such definition, we are led to investigate E ∩ S for all S ∈ SCCSAF = {S1, S2},
where S1 = {R,S,J } and S2 = {rain,¬rain}, as explained in Section 4. In particular, since
for any complete extension E we have that (E ∩ S1) = ∅, it is necessarily the case that
PAF(S2,E) = {rain} and UAF(S2,E) = {¬rain}. As a consequence, Definition 20 yields
(E ∩ S2) ∈ BFS(AF↓S2 , {¬rain}), and, therefore, we must look for a base function such
that BFS(AF↓S2 , {¬rain}) = {∅}.

A hint to obtain this property in general comes from the local correction to stable se-
mantics sketched in Section 2.2, where the empty set is selected as an extension when there
is no set of nodes able to attack all the others. Similarly, we might select the empty set as
an extension when the nodes of a restricted argumentation framework are not all defended,
i.e., do not all belong to the set C. Formally, we impose to the base function that if C � A
then BFS(AF,C) = {∅}. Taking this for granted, to complete the definition of the base
function only the case where C = A remains to be specified. To this purpose, the more
direct approach is to consider the set of preferred extensions, thus obtaining the following
base function (we denote the corresponding semantics as AD1):

BFAD1(AF,C) =
{
PE(AF,C) if C = A
{∅} otherwise

It is easy to see that AD1 semantics solves the problem related to the argumen-
tation framework of Fig. 7(a). In fact, on the first strongly connected component,
BFAD1(AF↓S1 , S1) is invoked, which returns the set of preferred extensions of AF↓S1 :
PE(AF, S1) = {∅}. Then, as explained above, BFAD1(AF↓S2 , {¬rain}) is invoked, which
also returns {∅} as result. Summarizing we have that, for any possible extension E,
E ∩ S1 = ∅ and E ∩ S2 = ∅, yielding the empty set as the unique extension of the whole
argumentation framework.

However, AD1 fails with the argumentation framework presented in Fig. 8(a). In fact,
in this case we have a single strongly connected component, and, therefore, AD1 inherits
from preferred semantics the counter-intuitive behavior discussed in Section 3, identifying
as the unique extension the set {α,φ}, which is also a stable extension. To overcome this
problem, we need to rule out {α,φ} as an extension. Note that the only defeater of both
α and φ is γ , therefore the node γ should retain the capability of preventing α and φ to
be justified. Noting that one of the defeaters of γ , actually β , is not included in the exten-
sion, to obtain the desired behavior we take a further step going back to a notion of more
“aggressive” behavior, which strengthens the requirement of attacking all external nodes,
typical of stable semantics. More precisely, we require that an extension fully attacks its
defeaters, i.e., it includes all the defeaters of its defeaters. In particular, {α,φ} does not
satisfy this condition since it does not include β , while ∅ trivially satisfies it. These consid-
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erations lead to define the following base function (we denote the corresponding semantics
as AD2):

BFAD2(AF,C) =
{ {E | E maximal in AS∗

AF} if C = A
{∅} otherwise

where

AS∗
AF = {

F ∈AS(AF) | ∀α ∈ A: α → F,parentsAF(α) ⊆ F
}

It can be verified that AD2 preserves the desired behavior in all cases presented in
Figs. 1–8.

Considering first the problematic example for AD1 of Fig. 8(a), the argumentation
framework consists of a unique strongly connected component, and BFAD2(AF,A) is
therefore invoked. Now AS∗

AF = {∅}, as explained above, and therefore its only maximal
set is ∅ which coincides with the unique extension.

On the other hand, the behavior of AD1 is preserved in the case of the argumentation
framework of Fig. 7(a). After recalling that it consists of two strongly connected compo-
nents S1 = {R,S,J } and S2 = {rain,¬rain}, it can be seen that the only admissible set in
AF↓S1 is the empty set, which obviously belongs to AS∗

AF↓S1
. Then UAF(S2,∅) = {¬rain},

PAF(S2,∅) = {rain}, and, as for AD1, (E ∩S2) is determined by BFAD2(AF↓S2 , {¬rain}),
which yields the empty set since C �= A.

In the other cases, it turns out that AD1 and AD2 prescribe the same extensions as
preferred semantics, whose behavior is fully justified from an intuitive point of view. We
describe in the following the treatment of these cases in order to provide other examples of
application of the SCC-recursive schema: since in all these cases BFAD2(AF,C) coincides
with BFAD1(AF,C), we will refer to AD2 only.

The treatment of the argumentation framework of Fig. 3(a) is similar to that of Fig. 7(a),
since, again, E ∩ S1 = ∅ with S1 = {R,S,J }, and, letting S2 = {rain}, then PAF(S2,∅) =
S2 and (E ∩ S2) is determined by BFAD2(AF↓S2 ,∅), yielding the empty set as the unique
extension.

As for the argumentation framework presented in Fig. 1, recall that its strongly con-
nected components coincide with all the singletons. First, the base function will be invoked
on the initial strongly connected component, obtaining BFAD2(AF↓{α}, {α}) = {{α}}.
Then, DAF({β}, {α}) = {β} and the base function will be invoked in the trivial case of
an empty argumentation framework: BFAD2(AF↓∅,∅) = {∅}, thus excluding β from any
extension. Then, for any E, UAF({γ },E) = {γ }, and iterating the same reasoning as above
we obtain the inclusion of γ and then the exclusion of δ from the (unique) extension of
AF.

The argumentation frameworks presented in Figs. 2, 5, and 8(b) consist of a unique
strongly connected component, therefore in all these cases the following invocation of the
base function applies: BFAD2(AF,A). It is easy to see that, in all cases, the set of maximal
elements of AS∗

AF coincide with the set of preferred extensions.
A very similar reasoning applies to the argumentation framework of Fig. 4, whose two

strongly connected components are both initial. Letting S1 = {α,β, γ } and S2 = {δ} and
applying the base function to both of them we obtain, for any possible E, E ∩ S1 = ∅ and
E ∩ S2 = {δ}, therefore {δ} is the unique resulting extension.
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As to the argumentation framework of Fig. 3(b), first the base function is applied to
the initial strongly connected component S1 = {P,R,J,S}. Also in this case it is easy
to see that the sets {R,S} and {P,J }, besides being the preferred extensions of the re-
stricted argumentation framework AF↓S1 , are the maximal sets of AS∗

AF↓S1
. Considering

the propagation of the two possible choices to the second strongly connected component
S2 = {rain}, we have in the former case UAF(S2, {R,S}) = S2 and therefore the invoca-
tion BFAD2(AF↓S2 , S2) returning {rain}, while in the latter case DAF(S2, {P,J }) = S2
and therefore the invocation BFAD2(AF↓∅,∅) returning {∅}. Thus the same extensions
{R,S, rain} and {P,J } are obtained as in preferred semantics.

A similar reasoning applies to the example of Fig. 7(b). Given the partition S1 =
{P,R,J,S} and S2 = {rain,¬rain}, the possible choices for E ∩ S1 are {R,S} and
{P,J }. In the former case, UAF(S2, {R,S}) = S2 and since S2 is a Nixon diamond,
analogously to the case of Fig. 5, the possible choices for E ∩ S2 are {rain} and
{¬rain}. In the latter case DAF(S2, {P,J }) = {rain} and UAF(S2, {P,J }) = {¬rain}, then
BFAD2(AF↓{¬rain}, {¬rain}) is invoked, obviously giving {¬rain} as result. Summing up,
again the same extension as in preferred semantics are obtained, namely: {R,S, rain},
{R,S,¬rain}, and {P,J,¬rain}.

In the argumentation framework of Fig. 6 the initial strongly connected component
S1 = {α,β} is a Nixon diamond, thus, analogously to the case of Fig. 5, the possible choices
for E ∩ S1 are {α} and {β}. Independently of this choice, considering the second strongly
connected component S2 = {γ }, it holds that DAF(S2,E) = S2 therefore E ∩ S2 = ∅.
Consequently, for the last strongly connected component S3 = {δ}, UAF(S3,E) = S3 and
E ∩ S3 = S3. Therefore also in this case the same extensions {α, δ} and {β, δ} are obtained
as in preferred semantics.

It is interesting to note that the requirement of including in an extension all of the de-
featers of a node which attacks the extension, imposed in the base function of AD2, would
be harmful rather than useful outside the SCC-recursive schema: examples can easily be
found where even initial nodes would not be justified. However, the SCC-recursive defini-
tion rules the behavior of the semantics in such a way as to exploit this constraint correctly.

Finally, we show in Proposition 53 that both AD1 and AD2 fit in Dung’s framework, as
all their extensions are actually complete extensions.

Proposition 53. For any argumentation frameworkAF = 〈A,→〉, the extensions pre
scribed by AD1 and AD2 are complete extensions.

Proof. According to the characterization of complete semantics as SCC-recursive given
in Theorem 43, any set E which is decomposable according to Definition 20 with a base
function whose elements belong to CE(AF,C) is a complete extension. Therefore, to prove
the claim it is sufficient to show that the base functions introduced for AD1 and AD2 give
elements belonging to CE(AF,C) for any AF (consisting of a unique strongly connected
component) and C.

Considering first AD1, we distinguish two cases for the base function. If C = A, then
BFAD1(AF,C) = PE(AF,C), and the conclusion directly follows from Proposition 31. In
the other case, i.e., C � A, BFAD1(AF,C) = {∅}, therefore we have to prove that ∅ is a
complete extension in C: since ∅ is obviously admissible in C, the only thing to show is
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that any α ∈ C is not acceptable with respect to ∅. This trivially holds if C = ∅. Otherwise,
a generic α ∈ C could only be acceptable with respect to ∅ if parentsAF(α) = ∅. However,
this is impossible, since α ∈ C and C � A: taking into account that the argumentation
framework admits a unique strongly connected component, there must be an argument
β ∈A, β �= α such that β → α.

Let us turn now to AD2-semantics, and let us notice that, if C � A, the relevant base
function coincides with that of AD1-semantics, therefore the proof proceeds as in the pre-
vious case. If instead C = A, then by definition any E ∈ BFAD2(AF,C) is a maximal
element of AS∗

AF, i.e., it is a maximal set such that it is admissible in AF and the following
property holds:

∀β ∈A: β → E, parentsAF(β) ⊆ E (16)

Since C = A and E is admissible, we have only to prove that ∀α ∈ A which is acceptable
with respect to E, α ∈ E. We reason by contradiction, assuming that ∃α̂ ∈ A: α̂ /∈ E and
α̂ is acceptable with respect to E. In case E = ∅, the acceptability of α̂ would entail that
parentsAF(α̂) = ∅, and therefore the set {α̂} would be admissible. However, {α̂} would
clearly belong to AS∗

AF, contradicting the maximality of E = ∅. Therefore, let us now
assume that E �= ∅. Recalling that α̂ /∈ E and that |SCCSAF| = 1, there must exist a path
between α̂ and any element of E. In particular, there must be an element γ ∈ E such that
the path from α to γ does not include other elements of E. In fact, since α̂ is acceptable
with respect to E, Lemma 35 entails that α̂ �→ E, and the above mentioned path must
have the following structure: α̂ → β1 → ·· · → βn → γ , with n � 1, such that γ ∈ E and
βi /∈ E for all i: 1 � i � n. In particular, this entails that βn → E and parentsAF(βn) � E,
contradicting (16). �
7.2. Beyond admissibility

In the previous subsection, we have identified the suppression of the requirement of
maximality among complete extensions as a possible way to solve the problems affecting
preferred semantics, while preserving the notion of admissibility. As already explained,
in any admissibility-based semantics odd-length cycles admit only the empty extension,
while handling floating defeat as in Fig. 6 requires multiple extensions for even-length
cycles. As a consequence, both AD1 and AD2, as well as other possible proposals inspired
to the same ideas, feature an asymmetry in the treatment of cycles. In this subsection,
we follow the idea that this asymmetry is the primary cause of questionable behaviors of
preferred semantics and should be avoided to allow alternative treatments of cycles.

Let us investigate the definition of a semantics driven by this perspective. Consider again
the simple case of a three length-cycle shown in Fig. 2: in order to enforce a symmetric
treatment of cycles, we need to look for a possible set of non-empty extensions for this
argumentation framework. To this purpose, note that, in order to preserve the conflict-free
property, each extension has to include exactly one node. Moreover, obvious symmetry
reasons entail that all nodes should be treated equally, therefore the only possibility is to
identify as extensions the three sets {α}, {β} and {γ }.

Two general hints can be drawn from this simple example. First, it appears that our di-
rection of investigation cannot be constrained by the admissibility requirement, since, in
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the considered example, the only sets that can be identified as extensions are not admissi-
ble. Second, it turns out that these extensions coincide with the maximal conflict-free sets
of the argumentation framework (see Definition 6), and the same holds in the even-length
cycle case. This suggests to exploit the notion of maximal conflict-free set as a basis for
a new definition of extension. In a sense, this corresponds to the final step in our route
from articulated concepts to basic ones, since the notion of conflict-free set has been the
starting point of the survey in Section 2.2 and the conflict-free property is, actually, the
most fundamental assumption underlying any definition of extension, that could never be
removed.

The above intuition is confirmed by the fact that, by identifying the extensions as the
maximal conflict-free sets, the problematic cases shown in Fig. 7 and Fig. 8 are handled
correctly, since in all cases the intersection of maximal conflict-free sets is empty yielding
all arguments not justified. However, as already discussed in Section 2.2, this intuition
alone would not represent a satisfactory solution, since, due to the increased number of
extensions prescribed, it would tend to assign the status of provisionally defeated to a large
number of arguments, often to all of them. In other words, replacing the admissibility
requirement with the less demanding notion of maximal conflict-free set requires some
further condition in order to properly constrain the set of extensions prescribed by the
semantics, i.e., to capture only a subset of the maximal conflict-free sets.

As a matter of fact, the SCC-recursive schema directly offers the solution to this diffi-
culty: as it will be shown in the following, simply requiring that the semantics S is SCC-
recursive represents an appropriate additional condition. To this purpose, let us consider
again the example of Fig. 2 involving the three-length cycle. In this case, |SCCSAF| = 1,
therefore, according to Definition 20, the base function, applied to the set of all argu-
ments, directly returns the set of the extensions. As a consequence, identifying exten-
sions as the maximal conflict-free sets yields BFS(AF,A) = MCFAF. Generalizing this
idea, we obtain the specification of the base function for the case where C = A, i.e.,
BFS(AF,C) = MCFAF. Taking this for granted, to complete the definition of the base
function only the case where C � A remains to be specified. In this respect, it seems
reasonable to exploit again the notion of maximal conflict-free set to provide a uniform
conceptual basis to the approach. Two ways of applying this notion can be envisaged, de-
pending on the role ascribed to the set C of defended nodes.

On the one hand, one may regard the inclusion of all the arguments in C as a require-
ment, preserving, as far as possible, the role of defense in the base function. This gives rise
to the following definition (we denote the corresponding semantics as CF1):

BFCF1(AF,C) = MCFAF↓C

On the other hand, one may note that the perspective we are following is based on the
assumption that the concept of defense is unnecessary in some cases, since the nodes of a
three-length cycle are admitted as extensions though not being able to defend themselves.
Generalizing from this remark, one may regard the notion of defense as definitely unneces-
sary. This leads to consider the following base function, where the requirement of inclusion
of the arguments in C is overlooked (we denote as CF2 the corresponding semantics, first
proposed in our [4]):

BFCF2(AF,C) = MCFAF
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It can be seen that both CF1 and CF2-semantics are able to treat appropriately all argu-
mentation frameworks presented in Figs. 1–8, as it was the case for AD2. To give a detailed
account of the proposed semantics, we analyze their treatment of the argumentation frame-
work of Fig. 7(a).6

Recall that SCCSAF = {S1, S2} with S1 = {R,S,J } and S2 = {rain,¬rain}. As for S1,
which is an initial strongly connected component, the base case of Definition 20 applies,
yielding (E ∩ S1) ∈ BFS(AF↓S1 , S1). Therefore, according to CF1-semantics (E ∩ S1)

must belong to MCFAF↓C
with AF = AF↓S1 and C = S1, which is of course equal to

MCFAF↓S1
. This is the same set prescribed by CF2-semantics, therefore the two semantics

agree in this case. Now, MCFAF↓S1
= {{S}, {R}, {J }}, leading to three alternative possi-

bilities for (E ∩ S1). Assuming that (E ∩ S1) = {J }, we have that DAF(S2,E) = {rain},
UAF(S2,E) = {¬rain} and PAF(S2,E) = ∅. Therefore, the base function is applied to
the argumentation framework AF↓{¬rain} with C = {¬rain}, yielding for both semantics
(E ∩ S2) = {¬rain}. Therefore, we have an extension E1 = {J,¬rain} for both semantics.
Let us turn now to the alternative (E ∩ S1) = {R}, which entails that UAF(S2,E) = S2 (as
J is attacked by R ∈ E). Then, the base function is applied to the argumentation frame-
work AF↓S2 with C = S2: it is easy to see that both semantics give two alternatives for
(E ∩ S2), namely {rain} and {¬rain}. Therefore, we have for both CF1 and CF2 the ad-
ditional extensions E2 = {R, rain} and E3 = {R,¬rain}. Finally, if (E ∩ S1) = {S}, we
have that PAF(S2,E) = {rain}, UAF(S2,E) = {¬rain} and DAF(S2,E) = ∅. Then, the
base function is applied to the argumentation framework AF↓S2 with C = {¬rain}. In
this case, CF1 and CF2-semantics differ. In fact, CF1 gives MCFAF↓C

which is equal to
MCFAF↓{¬rain} , therefore (E ∩ S2) = {¬rain}, giving E4 = {S,¬rain}. On the other hand,
CF2 gives MCFAF↓S2

= {{rain}, {¬rain}}, yielding therefore the same extension E4 as
CF1 and an additional extension E5 = {S, rain}.

In spite of this difference, both semantics provide the intuitively desirable result: no
argument is justified, since the intersection of all extensions is empty. A similar treatment
is provided by CF1 and CF2 to the argumentation framework of Fig. 7(b), where they
identify the same extensions as preferred semantics, yielding again an empty intersection.

7.3. Comparing SCC-recursive semantics

Having provided the definition of four novel semantics, we now need to discuss their
placement with respect to the traditional semantics of Dung’s framework, in order to carry
out a comparative analysis.

First of all, the basic requirement of agreement with the grounded semantics is satis-
fied by all the introduced proposals. In fact, it is easy to see that the sufficient conditions
for agreement stated in Theorem 52 are respected by their base functions and, therefore,
all the extensions of the proposed semantics contain the grounded extension. All seman-
tics, in turn, differ from preferred semantics in the treatment of the problematic cases
which have been the starting point of our investigation. In this respect, AD1 and AD2 are

6 The treatment of other examples of Section 2.2 can be easily derived along the same lines, as well as that
of the examples of Fig. 8, where there is only one strongly connected component and the extensions, coinciding
with maximal conflict-free sets, have empty intersection.
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closer by construction to preferred semantics, since, by Proposition 53, they select their
extensions among complete extensions and, therefore, each one of their extensions is con-
tained in a maximal complete extension, i.e., in a preferred extension. According to the
relation of inclusion between extensions, AD1 and AD2 can be regarded as intermediate
approaches lying between grounded and preferred semantics. On the other hand, CF1 and
CF2 radically depart from preferred semantics, relying only on the conflict-free property
and SCC-recursiveness, while relaxing the admissibility requirement and thus admitting
extensions which are not complete extensions.

As remarked in the previous subsection, this departure supports a symmetric treatment
of odd-length cycles with respect to even-length ones, which represents a distinguishing
property of CF1 and CF2 with respect to AD1 and AD2. As far as the examples considered
in previous subsections are concerned, this difference, though conceptually remarkable,
does not give rise to significantly different results in the assignment of the justification
status. In particular, only an example where AD1 fails to provide an intuitively adequate
treatment has been pointed out, while AD2, CF1 and CF2 substantially agree in all ex-
amples, though sometimes achieving the desired result in different ways. Actually, this is
not always the case: different behaviors are possible in other examples, which indeed show
that the symmetric treatment of cycles can be a real advantage and make the difference in
some cases.

To substantiate this statement, let us consider the argumentation framework shown in
Fig. 9, corresponding to a floating defeat against argument γ by the nodes in the three-
length cycle. In this case, any admissibility-based semantics admits the empty set as the
unique extension, and therefore this is the case for AD1 and AD2 as well, which do not
regard as justified any argument. On the contrary, both CF1 and CF2 admit as exten-
sions the sets {α, δ}, {β, δ} and {φ, δ}. In fact, in the initial strongly connected component
S1 = {α,β,φ} the maximal conflict-free sets, namely the singletons {α}, {β}, and {φ}, are
selected as possible choices for E∩S1. Then S2 = {γ } is ruled out from possible selections,
since γ is attacked in any case by E and, therefore, DAF(S2,E) = S2. As a consequence,
δ is always selected, since, letting S3 = {δ}, UAF(S3,E) = S3 and {δ} is of course the only
maximal conflict free set of S3. As a result, α, β and φ are provisionally defeated, γ is
defeated and δ is undefeated. This behavior is coherent with that obtained in the case of
even-length cycles, like that shown in Fig. 6. As a consequence, this kind of examples
discriminates admissibility-based semantics from the proposed novel semantics based on
maximal conflict-free sets.

Considering now the case of a self-defeating argument shown in Fig. 10, it is easy
to see that the only admissible set here is empty, therefore any admissibility-based se-
mantics, including AD1 and AD2, is doomed to show the problematic behavior discussed
in Section 3 and can not allow an alternative treatment where the self-defeating argu-
ment is ruled out. Let us now consider how this case is handled by CF1 and CF2. First,
note that the argumentation framework AF is composed of two strongly connected com-
ponents, namely S1 = {α} and S2 = {β}. Starting from the initial strongly connected
component S1, the base function applies to AF↓{α} with C = {α}: both CF1 and CF2
prescribe that (E ∩ S1) is a maximal conflict-free set of S1. Since S1 consists just of a
self-defeating argument, the only conflict-free set is the empty set, therefore both CF1
and CF2 exclude α from any extension. This in turn entails that, for any extension E,
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PAF(S2,E) = {β} while UAF(S2,E) = DAF(S2,E) = ∅. Then, E ∩ S2 ∈ GF(AF↓{β},∅),
and, since AF↓{β} has obviously only one strongly connected component, this entails that
E∩S2 ∈ BFCF(AF↓{β},∅), where CF stands for either CF1 or CF2. CF1 and CF2 behave
differently in this case, due to the role of the parameter C in the definition of the relevant
base functions. In particular, according to CF1 (E ∩ S2) ∈ MCF (AF↓{β})↓∅ , i.e., (E ∩ S2)

must be the empty set. On the other hand, C plays no role in the base function of CF2,
yielding (E ∩ S2) ∈ MCFAF↓{β} , i.e., (E ∩ S2) = {β}. As a consequence, CF1 admits the
empty set as the unique extension, thus sharing with admissibility-based semantics the in-
ability to rule out self-defeating arguments. On the contrary, CF2 is able to select the only
desired extension {β}, thus preventing the self-defeating argument α to exert a (possibly
undesired) effect on the rest of the graph.

8. Conclusions

In this paper, we have proposed a general recursive schema that, while including Dung’s
framework as a special case, can be regarded as an alternative foundation of argumentation
semantics. In particular, the property of SCC-recursiveness has a basic unifying role in
argumentation semantics, in a similar way as admissibility in Dung’s framework, and can
ensure the correct propagation of the fundamental semantic principles coded in the base
function to a generic argumentation framework.

In fact, SCC-recursiveness turns out to be an effective tool for supporting the devel-
opment of new semantics. On the one hand, in order to define a particular SCC-recursive
semantics it is sufficient to identify a suitable base function defined over the argumentation
frameworks consisting of a single strongly connected component. On the other hand, the
fundamental requirements that all extensions are conflict-free and contain the grounded
extension come almost for free, since it is sufficient that the base function is conflict-free
and correctly treats single nodes without defeaters.

To exemplify the potential of the recursive schema, we have introduced four novel se-
mantics all providing a different treatment with respect to preferred semantics in cases
where its behavior can be regarded as problematic. Our investigation has been developed
in two directions: semantics AD1 and AD2 remain in the area of Dung’s admissibility-
based framework, while CF1 and CF2 more radically depart from traditional semantics,
giving up the requirement of admissibility and resorting to simpler concepts. The most
satisfactory behavior is achieved by CF2, which, in particular, is the only one able to deal
with a thorny example concerning self-defeating arguments. It is worth noting that such se-
mantics corresponds to the last step in our exploration of the use of progressively simpler
concepts within the SCC-recursive schema, since it only relies on the notion of maximal
conflict free set and completely overlooks the notion of defense in the definition of the base
function.

As for future work, three main directions of investigation are worth considering. First, a
further analysis of the general properties of the SCC-recursive schema will be carried out.
In particular, in order to compare different proposals, it would be interesting to characterize
the relationships between SCC-recursive semantics in terms of the notion of skepticism,
i.e., on the basis of the level of commitment concerning the choices about the justification
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status assigned to the arguments [8]. Second, the space of SCC-recursive semantics will
be extensively explored in order to identify further semantics, whose properties will be
analyzed both from a theoretical point of view and with respect to their meaning and use
in different application contexts. Third, since, as shown in the examples, the definition
of SCC-recursiveness has a direct constructive interpretation, it is worth investigating the
development of efficient and incremental algorithms based on local computation at the
level of strongly connected components.

Acknowledgements

We are indebted to the anonymous referees for their helpful comments and suggestions.

References

[1] L. Amgoud, C. Cayrol, Inferring from inconsistency in preference-based argumentation frameworks, J. Au-
tomat. Reason. 29 (2) (2002) 125–169.

[2] L. Amgoud, C. Cayrol, A reasoning model based on the production of acceptable arguments, Ann. Math.
Artificial Intelligence 34 (1–3) (2002) 197–215.

[3] L. Amgoud, S. Parsons, N. Maudet, Arguments, dialogue, and negotiation, in: Proceedings of the 14th
European Conference on Artificial Intelligence (ECAI 2000), IOS Press, Berlin, 2000, pp. 338–342.

[4] P. Baroni, M. Giacomin, Solving semantic problems with odd-length cycles in argumentation, in: Pro-
ceedings of the 7th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2003), in: Lecture Notes in Artificial Intelligence, vol. 2711, Springer, Aalborg,
Denmark, 2003, pp. 440–451.

[5] P. Baroni, M. Giacomin, A recursive approach to argumentation: motivation and perspectives, in: Proceed-
ings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), Whistler, BC, Canada,
2004, pp. 50–58.

[6] P. Baroni, M. Giacomin, G. Guida, Extending abstract argumentation systems theory, Artificial Intelli-
gence 120 (2) (2000) 251–270.

[7] P. Baroni, M. Giacomin, G. Guida, On the notion of strength in argumentation: overcoming the epis-
temic/practical dichotomy, in: Proceedings of the 2001 ECSQARU Workshop—Adventures in Argumen-
tation Toulouse, France, 2001, pp. 1–8.

[8] P. Baroni, M. Giacomin, G. Guida, Towards a formalization of skepticism in extension-based argumentation
semantics, in: Proceedings of the 4th Workshop on Computational Models of Natural Argument (CMNA
2004), Valencia, Spain, 2004, pp. 47–52.

[9] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming, and n-person games, Artificial Intelligence 77 (2) (1995) 321–357.

[10] A.J. Garcia, G.R. Simari, Defeasible logic programming: An argumentative approach, Theory Pract. Logic
Programming 4 (1) (2004) 95–138.

[11] J.F. Horty, Skepticism and floating conclusions, Artificial Intelligence 135 (1–2) (2002) 55–72.
[12] D. Makinson, K. Schlechta, Floating conclusions and zombie paths: Two deep difficulties in the ‘directly

skeptical’ approach to defeasible inheritance networks, Artificial Intelligence 48 (2) (1991) 199–209.
[13] J.L. Pollock, How to reason defeasibly, Artificial Intelligence 57 (1) (1992) 1–42.
[14] J.L. Pollock, Justification and defeat, Artificial Intelligence 67 (1994) 377–407.
[15] J.L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person, MIT Press, Cambridge, MA,

1995.
[16] J.L. Pollock, The logical foundations of goal-regression planning in autonomous agents, Artificial Intelli-

gence 106 (2) (1998) 267–334.
[17] J.L. Pollock, Perceiving and reasoning about a changing world, Comput. Intelligence 14 (4) (1998) 498–562.



210 P. Baroni et al. / Artificial Intelligence 168 (2005) 162–210
[18] J.L. Pollock, Defeasible reasoning with variable degrees of justification, Artificial Intelligence 133 (1–2)
(2001) 233–282.

[19] H. Prakken, Logical Tools for Modeling Legal Argument: A Study of Defeasible Reasoning in Law, Kluwer
Academic, Dordrecht, 1997.

[20] H. Prakken, Intuitions and the modelling of defeasible reasoning: Some case studies, in: Proceedings of the
9th International Workshop on Non-Monotonic Reasoning (NMR 2002), Toulouse, France, 2002, pp. 91–
102.

[21] H. Prakken, G. Sartor, Argument-based extended logic programming with defeasible priorities, J. Appl.
Non-Class. Logics 7 (1997) 25–75.

[22] H. Prakken, G.A.W. Vreeswijk, Logics for defeasible argumentation, in: D.M. Gabbay, F. Guenthner (Eds.),
Handbook of Philosophical Logic, second ed., Kluwer Academic, Dordrecht, 2001.

[23] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1–2) (1980) 81–132.
[24] K. Schlechta, Directly sceptical inheritance cannot capture the intersection of extensions, J. Logic Com-

put. 3 (5) (1993) 455–467.
[25] G.R. Simari, R.P. Loui, A mathematical treatment of defeasible reasoning and its implementation, Artificial

Intelligence 53 (2–3) (1992) 125–157.
[26] B. Verheij, Artificial argument assistants for defeasible argumentation, Artificial Intelligence 150 (1–2)

(2003) 291–324.
[27] G.A.W. Vreeswijk, Abstract argumentation systems, Artificial Intelligence 90 (1–2) (1997) 225–279.


