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The Casimir effect arises not only in the presence of material boundaries but also in space with nontrivial
topology. In this Letter, we choose a topology of the flat (D +1)-dimensional spacetime, which causes the
helix boundary condition for a Hermitian massless scalar field. Especially, Casimir effect for a massless
scalar field on the helix boundary condition is investigated in two and three dimensions by using the zeta
function techniques. The Casimir force parallel to the axis of the helix behaves very much like the force
on a spring that obeys the Hooke’s law when the ratio r of the pitch to the circumference of the helix is
small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring.
When r is large, this force behaves like the Newton’s law of universal gravitation in the leading order. On
the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the
ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
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1. Introduction

Since the first work on Casimir effect performed by Casimir [1],
it has been extensively studied [2] for more than 60 years. Essen-
tially, the Casimir effect is a polarization of the vacuum of some
quantized fields, and it may be thought of as the energy due to
the distortion of the vacuum. Such a distortion may be caused ei-
ther by the presence of boundaries in the space–time manifold or
by some background field like the gravity. Early works on the grav-
ity effect were performed by Utiyama and DeWitt, see Refs. [3,4].
In history, Casimir firstly predicts the effect of the boundaries and
he found that there is an attractive force acting on two conducting
plan-parallel plates in vacuum. Since the last decade, the Casimir
effect has been paid more attention due to the development of
precise measurements [5], and it has been applied to the fab-
rication of microelectromechanical systems (MEMS) [6]. Recently,
some new methods have developed for computing the Casimir en-
ergy between a finite number of compact objects [7].

The nature of the Casimir force may depend on (i) the back-
ground field, (ii) the spacetime dimensionality, (iii) the type of
boundary conditions, (iv) the topology of spacetime, (v) the fi-
nite temperature. The most evident example of the dependence
on the geometry is given by the Casimir effect inside a rectangu-
lar box [2,8]. The detailed calculation of the Casimir force inside
a D-dimensional rectangular cavity was shown in [9], in which
the sign of the Casimir energy depends on the length of the
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sides. The Casimir force arises not only in the presence of ma-
terial boundaries, but also in spaces with nontrivial topology. For
example, we get the scalar field on a flat manifold with topology
of a circle S1. The topology of S1 causes the periodicity condi-
tion φ(t,0) = φ(t, C), where C is the circumference of S1, imposed
on the wave function which is of the same kind as those due to
boundary. Similarly, the antiperiodic conditions can be drawn on
a Möbius strip. The ζ -function regularization procedure is a very
powerful and elegant technique for the Casimir effect. Rigorous ex-
tension of the proof of Epstein ζ -function regularization has been
discussed in [10]. Vacuum polarization in the background of on
string was first considered in [11]. The generalized ζ -function has
many interesting applications, e.g., in the piecewise string [12].
Similar analysis has been applied to monopoles [13], p-branes [14]
or pistons [15].

As we have known, there are many things that look like the
spring, for instance, DNA has the helix structure in our cells. Thus,
it is interesting to find the effect of the helix configuration present-
ing in the space–time manifold for quantum fields and as far as we
know, no one has considered this configuration before. In this Let-
ter, we have investigated the Casimir effect for a massless scalar
field on the circular helix structure in two (2D) and three (3D) di-
mensions by using the zeta function techniques, which is a very
useful and elegant technique in regularizing the vacuum energy.

In next section we have calculated the Casimir energy and force
by imposing the helix boundary conditions and we find that the
behavior of the force parallel to the axis of the helix is very much
like the force on a spring that obeys the Hooke’s law in mechanics
when the r � 1, which is the ratio of the pitch h to the circumfer-
ence a of the helix. However, in this case, the force comes from a
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quantum effect, and so we would like to call the helix structure as
a quantum spring. When r is large, this force behaves like the New-
ton’s law of universal gravitation in the leading order and vanishes
when r goes to the infinity. The magnitude of this force has a max-
imum values at r = 0.5 (2D) or near r ≈ 0.494 (3D). On the other
hand, the force perpendicular to the axis decreases monotonously
with the increasing of the ratio r. Both forces are attractive and
their behaviors are the same in two and three dimensions. We will
give some discussions and conclusions in the last section.

2. Evaluation of the Casimir energy

2.1. Topology of the flat (D + 1)-dimensional spacetime

As mentioned in Section 1, the Casimir effect arise not only in
the presence of material boundaries, but also in spaces with non-
trivial topology. For example, we get the scalar field on a flat man-
ifold with topology of a circle S1. The topology of S1 causes the
periodicity condition φ(t,0) = φ(t, C). Before we consider compli-
cated cases in the flat spacetime, we have to discuss the lattices.

A lattice Λ is defined as a set of points in a flat (D + 1)-
dimensional spacetime M D+1, of the form

Λ =
{

D∑
i=0

niei

∣∣∣ni ∈ Z
}

, (1)

where {ei} is a set of basis vectors of M D+1. In terms of the com-
ponents vi of vectors V ∈ M D+1, we define the inner products as

V · W = ε(a)vi w jδi j, (2)

with ε(a) = 1 for i = 0, ε(a) = −1 for otherwise. In the x1–x2

plane, the sublattice Λ′′ ⊂ Λ′ ⊂ Λ are

Λ′ = {n1e1 + n2e2 | n1,2 ∈ Z}, (3)

and

Λ′′ = {
n(e1 + e2)

∣∣n ∈ Z
}
. (4)

The unit cylinder-cell is the set of points

Uc =
{

X =
D∑

i=0

xiei

∣∣∣0 � x1 < a, −h � x2 < 0,

−∞ < x0 < ∞, − L

2
� xT � L

2

}
, (5)

where T = 3, . . . , D . When L → ∞, it contains precisely one lattice
point (i.e. X = 0), and any vector V has precisely one “image” in
the unit cylinder-cell, obtained by adding a sublattice vector to it.

In this Letter, we choose a topology of the flat (D + 1)-dimen-
sional space–time: Uc ≡ Uc + u,u ∈ Λ′′ , see Fig. 1. This topol-
ogy causes the helix boundary condition for a Hermitian massless
scalar field

φ
(
t, x1 + a, x2, xT ) = φ

(
t, x1, x2 + h, xT )

, (6)

where, if a = 0 or h = 0, it returns to the periodicity boundary
condition.

In calculations on the Casimir effect, extensive use is made of
eigenfunctions and eigenvalues of the corresponding field equa-
tion. A Hermitian massless scalar field φ(t, xα, xT ) defined in a
(D +1)-dimensional flat space–time satisfies the free Klein–Gordon
equation:(
∂2

t − ∂2)φ(
t, xα, xT ) = 0, (7)
i
Fig. 1. The helix boundary condition can be induced by the topology of space–time.

where i = 1, . . . , D; α = 1,2; T = 3, . . . , D . Under the boundary
condition (6), the modes of the field are then

φn
(
t, xα, xT ) = N e−iωnt+ikxx+ikz z+ikT xT

, (8)

where N is a normalization factor and x1 = x, x2 = z, and we have

w2
n = k2

T + k2
x +

(
−2πn

h
+ kx

h
a

)2

= k2
T + k2

z +
(

2πn

a
+ kz

a
h

)2

. (9)

Here, kx and kz satisfy

akx − hkz = 2nπ (n = 0,±1,±2, . . .). (10)

In the ground state (vacuum), each of these modes contributes an
energy of wn/2. The energy density of the field is thus given by

E D+1 = 1

2a

∫
dD−1k

(2π)D−1

∞∑
n=−∞

√
k2

T + k2
z +

(
2πn

a
+ kz

a
h

)2

, (11)

where we have assumed a �= 0 without losing generalities.

2.2. Massless scalar field in 2 + 1 dimension

In the (2 + 1)-dimensional space–time, we have the following
boundary condition to mimic the helix structure:

φ(t, x + a, z) = φ(t, x, z + h), (12)

where h is regarded as the pitch of the helix, and we call this con-
dition the helix boundary condition. One can see from Eq. (12) that
it would return to the cylindrical boundary conditions when h van-
ishes and for h �= 0, the whole system (the spring) does not have
the cylindrical symmetry. Therefore, the vacuum energy density is
given by

E(a,h) = 1

2a

∞∫
−∞

dk

2π

∞∑
n=−∞

√
k2 +

(
2πn

a
+ k

a
h

)2

, (13)

which is divergent, so we should regularize it to get a finite re-
sult. There many regularization method could be used to deal with
the divergence, but in this Letter we would like to use the zeta-
function techniques, which is a very useful and elegant technique
in regularizing the vacuum energy. To use the ζ -function regular-
ization, we define E (s) as
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E (a,h; s) =
√

γ

πa

∞∑
n=1

∞∫
0

dk
(
k2 + 1

)−s/2
(

2πn

aγ

)1−s

, (14)

for Re(s) > 1 to make a finite result provided by the k integration,
and here we have defined

γ ≡ 1 + r2, r = h

a
. (15)

We will see in the following that the analytic continuation to the
complex s plane is well defined at s = −1. Thus, the regularized
Casimir energy density is E R(a,h) = E (a,h;−1). After integrating
k in Eq. (14), see A.1, we get

E (a,h; s) = 1

2a

√
γ

π

(
2π

aγ

)1−s Γ ( s−1
2 )

Γ ( s
2 )

ζ(s − 1), (16)

where ζ(s) is the Riemann zeta function. The value of the analyt-
ically continued zeta function can be obtained from the reflection
relation

Γ

(
s

2

)
ζ(s) = π s− 1

2 Γ

(
1 − s

2

)
ζ(1 − s). (17)

Taking s = −1, we get

lim
s→−1

Γ

(
s − 1

2

)
ζ(s − 1) = ζ(3)

2π2
, (18)

then we have

E R(a,h) = − ζ(3)

2πa3
γ −3/2 = − ζ(3)

2πa3

(
1 + r2)−3/2

, (19)

where we have used Γ (−1/2) = −2
√

π and if r = 0, it come back
to the cylindrical case with periodical boundary, see Eq. (12). The
Casimir force on the x direction of the helix is

Fa = −∂ E R(a,h)

∂a
= −3ζ(3)

2πa4

(
1 + r2)−5/2

, (20)

which is always an attractive force and the magnitude of the force
monotonously decreases with the increasing of the ratio r. Once
r becomes large enough, the force can be neglected. While, the
Casimir force on the z direction is

Fh = −∂ E R(a,h)

∂h
= −3ζ(3)

2πa4

r

(1 + r2)5/2
, (21)

which has a maximum magnitude at r = 0.5. When r < 0.5, the
magnitude of the force increases with the increasing of r until
r = 0.5, and the force is almost linearly depending on r when
r � 1. So, it is just like the force on a spring complying with the
Hooke’s law, but in this case, the force originates from the quan-
tum effect, namely, the Casimir effect. Once r > 0.5, the magnitude
of the force decreases with the increasing of r. To illustrate the be-
havior of the Casimir force in this case, we plot them for each
direction in Fig. 2.

It should be noticed that in Fig. 2, the behavior of the forces are
different with respect to the ratio r, but this dose not conflict with
the relation (9), which shows that labeling the axes is a matter of
convention, namely the final result should have the symmetry of
a ↔ h. The reason is the following, Eq. (19) could be rewritten in
terms of a and h:

E R(a,h) = −ζ(3)

2π

(
a2 + h2)−3/2

, (22)

which respects the symmetry of a ↔ h in deed. And, one can easily
see that Eqs. (20) and (21) are also under this symmetry, if one
Fig. 2. The Casimir force on the x (top) and z (bottom) direction in the unit
3ζ(3)/(2πa4) vs. the ratio r in 2 + 1 dimension. The point corresponds to the max-
imum magnitude of the force at r = 0.5.

rewritten these equations as

Fa = −3ζ(3)

2π

a

(a2 + h2)5/2
, (23)

Fh = −3ζ(3)

2π

h

(a2 + h2)5/2
, (24)

which are all consistent with the relation (9).

2.3. Massless scalar field in 3 + 1 dimension

As in the 2 + 1 dimension case, the vacuum energy density in
3 + 1 dimension is given by

E(a,h) = 1

2a

∞∫
−∞

dky dkz

(2π)2

∞∑
n=−∞

√
k2 +

(
2πn

a
+ kz

a
h

)2

, (25)

where k2 = k2
y +k2

z . Again, to use the ζ -function regularization, we
define E (s) as

E (a,h; s) = 1

4π2a

∞∑
n=1

2π∫
0

dθ
√

γ̃

×
∞∫

0

k dk
(
k2 + 1

)−s/2
(

2πn

aγ̃

)2−s

, (26)

and for Re(s) > 1, and we have defined

γ̃ ≡ 1 + r2 cos2 θ, (27)

where cos θ = kz/k and r is still the ratio of h to a defined in
Eq. (15). We will see in the following that the analytic continu-
ation to the complex s plane is also well defined at s = −1 in this
case. Thus, the regularized Casimir energy density is E R(a,h) =
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Fig. 3. Illustration of the Quantum spring.

E (a,h;−1). After integrating k and θ in Eq. (26), see Appendix B,
we get

E (a,h; s) = − ζ(s − 2)

2π(2 − s)a

(
2π

a

)2−s

× 2 F1

(
3

2
− s,

1

2
,1;−r2

)
. (28)

Taking s = −1, we get ζ(−3) = 1
120 from (17), and then

E R(a,h) = − π2

90a4 2 F1

(
5

2
,

1

2
,1;−r2

)
. (29)

Therefore, the Casimir force on the x direction of the helix is

Fa = −∂ E R(a,h)

∂a

= − 2π2

45a5

[
2 F1

(
5

2
,

1

2
,1;−r2

)

− 5r2

8
2 F1

(
7

2
,

3

2
,2;−r2

)]
, (30)

which is always attractive and its magnitude monotonously de-
creases with the increasing of the ratio r. By the definition of the
hypergeometric function, we can expand Eq. (30) up to arbitrary
orders of r, thus for small r, we get

Fa|r�1 = − 2π2

45a5

[
1 − 15

8
r2 + O

(
r4)], (31)

while for large r, we asymptotically expand Eq. (30) as

Fa|r�1 = − 2π2

45a5

[
1

πr
+ 1

12πr3
+ O

(
1

r5

)]
, (32)

up to O(r−5). Then, it is clear to see that, the force will be van-
ished when r goes to infinity. On the other hand, the Casimir force
on the z direction is

Fh = −∂ E R(a,h)

∂h
= − π2r

36a5 2 F1

(
7

2
,

3

2
,2;−r2

)
, (33)

and for r � 1 and r � 1, we respectively have

Fh|r�1 = − π2

36a5

[
r − 21

8
r3 + O

(
r5)], (34)

and

Fh|r�1 = − π2

5

[
8

2
+ 2

4
+ O

(
1
6

)]
. (35)
36a 15πr 5πr r
Fig. 4. The Casimir force on the x (top) and z (bottom) direction in the unit π2/a5

vs. the ratio r in 3 + 1 dimension. The point corresponds to the maximum magni-
tude of the force at r = r0 ≈ 0.494.

Therefore, for small r, the force linearly depends on r, namely,

Fh = −Kr, K = π2

36a5
(r � 1), (36)

which is very much like a spring obeying the Hooke’s law with
spring constant K in classical mechanics, but in this case, the force
comes from a quantum effect, and we would like to call it quan-
tum spring, see Fig. 3. When r is large, the force behaves like the
Newton’s law of universal gravitation, i.e. Fh ∼ −1/r2 in the lead-
ing order. Furthermore, there exists a maximum magnitude of the
force |Fh|max when r takes a critical value r0 ≈ 0.494, which satisfy
the following equation

4 2 F1
(
7/2,3/2,2;−r2

0

) − 21 2 F1
(
9/2,5/2,3;−r2

0

)
r2

0 = 0. (37)

To illustrate the behavior of the forces on the helix, we plot them
for each direction in Fig. 4.

3. Conclusion and discussion

In conclusion, we have investigated the Casimir effect with a
helix configuration in two and three dimensions, and it can be eas-
ily generalized to high dimensions. We find that the force parallel
to the axis of the helix has a particular behaviors that the Casimir
force in the usual case do no possesses. It behaves very much like
the force on a spring that obeys the Hooke’s law in mechanics
when r � 1, and like the Newton’s law of universal gravitation
when r � 1. Furthermore, the magnitude of this force has a maxi-
mum values at r = 0.5 (2D) or near r ≈ 0.494 (3D). So, we would
like to call this helix configuration as a quantum spring, see Fig. 3.
On the other hand, the force perpendicular to the axis decreases
monotonously with the increasing of the ratio r. Both forces are
attractive and their behaviors are the same in two and three di-
mensions.

It should be noticed that, the critical value r0, at witch the
magnitude of the force gets its maximum value depends on the
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Fig. 5. The critical value r0 vs. the space dimension d.

space–time dimensions. On a general (D + 1)-dimensional (D � 3)
flat space–time manifold, the Casimir energy density on the helix
is roughly given by

E(a,h) ∼ −2 F1

(
d − 1

2
,

1

2
,1;−r2

)
a−(d+1), (38)

up to some coefficient. Then, the Casimir force on the z direction
is roughly

Fh ∼ −r2 F1

(
d + 1

2
,

3

2
,2;−r2

)
a−(d+2), (39)

thus the critical value r0 satisfies

42 F1
(
d + 1/2,3/2,2;−r2

0

)
− 3(2d + 1)2 F1

(
d + 3/2,5/2,3;−r2

0

)
r2

0 = 0, (40)

which cannot be exactly solved but one can numerically calculate
the critical point r0. In Fig. 5, we have shown the dependence of
r0 on the space dimension d from two to ten dimensions.

In this Letter, we have considered the massless scalar field, and
one can easily generalize it to a massive scalar field. As is known
that the Casimir effect disappears as the mass of the field goes to
infinity since there are no more quantum fluctuation in this limit,
but of course, how the Casimir force varies as the mass changes is
worth studying [17], and we will study it in our further work [18],
in which we will also consider the Casimir effect of the electro-
magnetic field in the helix configuration. Since this quantum spring
effect may be detected in the laboratory and be applied to the mi-
croelectromechanical system, we suggest to do the experiment to
verify our results. It should be noticed that, in the experiment or
the real application, the spring like Fig. 3 should be soft, which
means the force coming from the classical mechanics could be
small enough, and the quantum effect dominates the behavior of
the spring.
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Appendix A. The k integration in 2 + 1 dimension

The integration in Eq. (14) is given by

I(s) =
∞∫

dk
(
k2 + 1

)−s/2 =
∞∫

2 F1

(
s

2
,b,b;−k2

)
dk
0 0
= 1

2

∞∫
0

2 F1

(
s

2
,b,b;−z

)
z−1/2 dz, (A.1)

where we have used (1 + z)α = 2 F1(−α,b,b;−z), and p Fq is hy-
pergeometric functions. By using [16]

∞∫
0

2 F1(a,b, c;−z)z−t−1 dz

= Γ (a + t)Γ (b + t)Γ (c)Γ (−t)

Γ (a)Γ (b)Γ (c + t)
(A.2)

where Γ (a) is Gamma functions, we get

I(s) =
√

π

2

Γ ( s−1
2 )

Γ ( s
2 )

, (A.3)

where we have used Γ (1/2) = √
π .

Appendix B. The k and θ integration in 3 + 1 dimension

The integration in Eq. (26) is given by

I(s) =
2π∫
0

dθ γ̃ s−3/2

∞∫
0

k dk
(
k2 + 1

)−s/2

= 1

2 − s

2π∫
0

dθ γ̃ s−3/2(k2 + 1
)1− s

2

∣∣∣∣
∞

k=0

= − 4

2 − s

π/2∫
0

dθ
(
1 + r2 cos2 θ

)s−3/2

= − 2

2 − s

1∫
0

x−1/2(1 − x)−1/2

×2 F1

(
3

2
− s,

1

2
,

1

2
;−r2x

)
dx

= − 2π

2 − s
2 F1

(
3

2
− s,

1

2
,1;−r2

)
, (B.1)

where we have defined x = cos2 θ and we have used [16]

1∫
0

(1 − x)μ−1xν−1
p Fq(a1, . . . ,ap;ν,b2, . . . ,bq;ax)dx

= Γ (μ)Γ (ν)

Γ (μ + ν)
p Fq(a1, . . . ,ap;μ + ν,b2, . . . ,bq;a). (B.2)
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