International Conference On Applied Economics (ICOAE) 2014

Motivation to Study for PhD Degree: Case of Latvia

Alexander Tarvid *

University of Latvia, Faculty of Economics, 5 Aspazijas blvd., Riga LV-1050, Latvia

Abstract

This paper studies what goals individuals pursue when enrolling in doctoral studies and how it affects the characteristics of the university they find important for choosing it and information sources on doctoral programme they find useful. It uses data collected in 2014 from PhD students and PhD candidates in 14 universities in Latvia and from students born in Latvia but studying abroad. The main result is substantial heterogeneity of goals by field of study, allowing to divide the latter into three groups. Group 1 contains arts & humanities, economics, and education & psychology. Compared to it, students from Group 2 (biology, agriculture, environment & geoscience; physics, mathematics & chemistry; law, social & political science; and management) are much stronger oriented at labour-market goals. Students from Group 3 (computing & engineering) pursue primarily personal goals more often than students in other fields, but keep a labour-market goal as a second-order goal. The top 3 most important university characteristics and information sources do not change across types of goals, but important particularities are identified. The findings are important for proper marketing communications of higher education institutions in Latvia to prospective doctoral students.

Keywords: motivation to enrol; goals; PhD studies; doctoral studies; Latvia; higher education; labour market; marketing

1. Introduction

The importance of doctoral education as a driver for competitiveness and “knowledge society” has long been recognised in the EU [1]. However, there is quite limited amount of research on what motivates graduate students to continue studies at doctoral level, and it is especially scarce concerning European countries.

A study focused on doctoral studies in education in the UK shows that motivations related to labour market (such as professional development, vocational requirements, or acquisition of research skills) do play an important role for around 45 per cent of respondents, but personal motivations (such as intrinsic interest, personal development, the joy of study, and acquiring the degree) were mentioned by the remaining 55 per cent of respondents when asked why they decided to enrol in the PhD programme [2]. Another study focused on computer science doctoral programmes in Finland and Austria found that around half of PhD students chose doctoral education primarily for personal fulfilment, while others mentioned different career-related reasons (academic career, professional development, career change, and employment opportunity) during interviews [3]. It was also found in [3] that motivation differs depending on

* Corresponding author.
E-mail address: atarvid@inbox.lv
the structure of the programme: only around 30 per cent of students in structured PhD programmes (which have pre-defined structure and duration and admit students after competitive selection) reported personal fulfilment as the main motivation, while the share of such responses was twice higher in traditional PhD programmes (which follow the master-apprentice model and are quite flexible in content and duration).

It is also instructive to consider the results from other continents. In the US, it was shown that family plays an important role in the decision-making process of prospective PhD students by providing advice and support [4]. Higher levels of parental education increase the chances of enrolment in doctoral education in the US; the mechanism works indirectly through academic performance, educational expectations, and career values [5]. Another US-specific study compared the motivation of enrolment of traditional PhD students and professional EdD students, showing that the former are mainly motivated by academic career while the latter refer more to intrinsic motivations such as improving their knowledge and contributing to the system of education [6]. In Australia, PhD students in history referred to personal motives such as “reaching the summit of academic achievement” as a stronger motivator for enrolment than career factors, also noting the influence of friends, colleagues, and family members [7].

This paper studies the motivation of graduates related to the decision to start PhD studies. This has two broad components: why to start studies and how to choose the place to study.

Firstly, individuals want to get a PhD degree as a means for reaching some goals. These goals might be more related to personal reasons (e.g., the search for new achievement or the desire to contribute to science and global development) or to prospects on the labour market (e.g., as an instrument to boost career or get an increase in salary). Section 4 is devoted to studying which goals are more popular and what determines their popularity in different groups of respondents. Particular attention is paid to the differences across fields of study.

Secondly, individuals aim at getting a PhD degree from a university they choose based on a particular combination of characteristics and search the information about PhD programmes using different sources. The particularities of both university choice and information search may depend on the goals individuals pursue when deciding that they need a PhD degree. Sections 5 and 6, respectively, study the preferences of PhD students on these two aspects.

This paper uses data from a special-purpose survey fielded in 2014. PhD students and PhD candidates from 14 major universities in Latvia, as well as PhD students born in Latvia but studying for their PhD abroad, were surveyed. These data are described in Sec. 3. The basic background about PhD education market in Latvia is given in Sec. 2.

To my best knowledge, this is the first major investigation of the motivation to start PhD studies in Latvia. Besides certain academic interest, the findings of this paper are important for marketing PhD programmes in the higher education institutions of Latvia.

2. PhD Education in Latvia

According to Higher Education Council of Latvia, there are 32 accredited higher education institutions (HEIs) in Latvia, of which 6 are public universities and 26 are public and private HEIs of non-university type. Of these, 21 (including all universities) provide doctoral studies. In further text, all HEIs providing studies for doctoral degree, whether universities or of non-university type, are called universities for short.

Students may choose from more than 20 different fields of study. Universities differ by their coverage of fields, with the widest choice presented by the two largest universities, University of Latvia and Riga Technical University. Management is the most frequently encountered field, taught in 7 out of 21 HEIs at doctoral level. On the other end of the spectrum are fields taught exclusively by some university in Latvia—for instance, University of Latvia is the only that gives doctoral degree in theology, while Latvia University of Agriculture is the only university providing PhD-level education in veterinary.

The left panel of Fig. 1 shows that the demand for doctoral level studies was increasing in 2005–2012. In this time period, the number of students increased 77 per cent, and in 2012 it exceeded 2,500. During the same time period, the number of students at bachelor and master’s levels was dropping and basically collapsed in 2010 and 2011. Partly, it was caused by the economic crisis. Together, this led to rocketing share of PhD students from all tertiary students.

At the same time, the right panel of Fig. 1 shows a demographic trough that started in the 1990s and from which Latvia has not yet recovered. It shows that in the next five to ten years, the size of the young population that is the main supplier of future PhD students will contract by one-third in each five-year group. For instance, if in 2013 there were around 150,000 people aged 20 to 24, by 2018 this age group will have only 100,000 people. What is more,
Latvia will not recover from this trough, because the size of younger age groups is not larger. This is already leading to intensifying competition among universities for bachelor and master’s students, and in the future will lead to strong competition for PhD students.

Higher education and research are weakly financed in Latvia. Only 0.66 per cent of GDP was invested in R&D in 2012, compared to the country-specific target of 1.5 per cent in the Europe 2020 framework (Eurostat data). Total public expenditure on higher education was only 0.80 per cent of GDP in 2010, as compared to 1.26 per cent of GDP on average in EU-27 (Eurostat data). Hence, it is not surprising that financial aid to doctoral students has been very limited. In public universities, there is a limited number of state-financed places, where students do not have to pay tuition fees. Some of these students may get a state scholarship, which is €114 per month for PhD students and €85 for PhD candidates (Cabinet of Ministers Law 740). This might be compared to the minimum wage, which increased from €114 in 2005 to €320 in 2014, monthly average net wages, which increased from €250 in 2005 to €516 in 2013 (Central Statistical Bureau of Latvia data), and to tuition fees in PhD programmes, which ranged from €1,700 to as high as €9,100 per year in 2014 (data from HEI websites).

During 2009–2013, European Social Fund (ESF) scholarships were available for both PhD students and PhD candidates in most universities, both public and private. The amounts students received, were around 1.5 times higher than average net wage for first and second year PhD students (€854 in 2009–10 and €640 per month in 2011–12) and 2.5 times higher for last year PhD students and PhD candidates (€1,138 per month); additional €1,423 were given as financing for participation in international conferences. Given its size, the ESF scholarship might have been a compelling enough reason to enrol in PhD studies, even if one was not going to work in a higher education or research institution, although the competition to get this scholarship was very tough.

3. Data

3.1. Data Collection

Data were collected using online survey. The questionnaire consists of 33 questions, including both closed and open-ended questions. The latter allowed respondents to express their opinions about selected choices in a free-
flowing manner, thus, providing deeper insights into their motivation and decision-making process.

There are four groups of questions in the questionnaire. The first group collects general information about the PhD studies of respondents, including field of study and university. The second group asks about the context of making the decision to go for PhD, including the goals respondents pursued when starting PhD studies, the time when this decision was made, subjectively assessed influence of family and social circle, and highest level of education of parents. The third group of questions asks about the factors affecting the choice of university for PhD studies and the sources of information about PhD studies respondents found most useful. The final group collects background information about previous levels of higher education, labour market status (including occupation and sector) and household income before starting PhD studies, and basic demographics.

Several restrictions were applied to the sample to which the questionnaire was distributed. Firstly, only current PhD students and PhD candidates participated in the study. Including those who had already defended their dissertations would have introduced additional bias, as they might not have remembered their motivation accurately enough or their motivation might have been specific to a particular context that no longer exists currently. Including those who were planning to start PhD studies would have made the responses speculative, as there was high uncertainty whether they would actually start PhD studies. Secondly, students in medicine and sports were excluded due to the specifics of their education.

The questionnaire was distributed to the PhD students and PhD candidates of 14 major universities in Latvia: University of Latvia, Latvia University of Agriculture, Riga Technical University, Daugavpils University, Ventspils University, Riga International School of Economics and Business Administration (RISEBA), Riga Stradins University, Banku Augstskola, Liepaja University, Art Academy of Latvia, Transport and Telecommunication Institute, Turiba University, Rezeknes Augstskola, and Baltic International Academy. To increase the response rate, I cooperated with the administrations of these universities, which made the link to the survey available to their students. In addition, I contacted several individuals who graduated secondary school in Latvia but moved abroad for their PhD studies.

3.2. Descriptive Statistics

Overall, 306 responses were gathered. Of these, 207 completed the whole questionnaire, while the rest completed only the first two groups of questions, including those on motivation. Most respondents (295) were students or candidates at PhD programmes in universities located in Latvia; the remaining 11 post-graduates were studying for their PhD degrees abroad (see Fig. 2 for details).

Of all respondents, 78 per cent are PhD students, which reflects reality, as PhD studies typically continue for three years (exceptions are Riga Technical University and some programmes in Liepajas University, which are intended for 4 years of studies) and most PhD candidates defend their theses in the following one to two years.

The majority (70 per cent) of respondents were females. Most respondents (72 per cent) were aged 30 or below when starting doctoral studies, 15 per cent aged 31–40, and the remaining 13 per cent aged above 40. Most respondents were motivated to enrol in PhD studies by their family (71 per cent) and/or by social circle or friends (57 per cent), which corresponds well to the important role of family and friends mentioned in Sec. 1.

4. Goals Pursued when Going for PhD

The questionnaire had two multiple-choice questions on goals: “What was the main goal you pursued when going for a PhD degree?” and “What was the second main goal?” Then respondents were asked to provide a short description of an occurrence, observation etc. that made them believe that a PhD degree would help them in achieving their main and second main goals.

Figure 3 shows that the goals respondents pursued when choosing to study at doctoral level can be grouped into three categories by popularity. The most popular, each marked by around 30 per cent of respondents, are achieving something new, continuing their learning or research experience (which they liked), better career prospects, and the possibility to contribute to science and global development. The second most popular, each marked by 20 per cent of respondents, are realisation of a long desire (“always wanted”), achieving better competitive position on labour market, and responding to a demand by (prospective) employers. Finally, the third group comprises social status, better salary, and the availability of scholarship.
Fig. 2. Share of Universities and Fields of Study in the Sample

‘Completed’ refers to respondents who completed the whole questionnaire. ‘Core motivation only’ refers to those who answered only the first two groups of questions, including the core questions on motivation for PhD studies. ‘Foreign’ combines all foreign universities where respondents were studying at the moment of filling the survey. It combines City University of New York, KU Leuven, London Business School, Queen Mary University of London, Tallinn University of Technology, Tartu University, Technical University in Liberec, University of California San Diego, University of Oulu, University of the Basque Country (UPV-EHU), and Wirtschaftsuniversitt Wien. There is one respondent from each of these universities.

Note from the right panel of Fig. 3 that a long desire and demand from employers tends to be more frequently mentioned as the main reason rather than as the second main reason, while the contrary holds for competitive position on the labour market and social status.

To simplify the analysis, I group the goals into two categories: (1) Personal (learning/research experience, always wanted, new achievement, contribute to science and global development, and social status) and (2) Labour-market goals (better competitive position, better career prospects, better salary, demand by employers, and scholarship).

Half of respondents who commented on their motivation behind labour-market goals mentioned either their employment with a higher education institution or a research institution at the moment of deciding to study at doctoral level or their desire to work there. Thus, they definitely know that by their current or desired employer, PhD degree is a prerequisite for career advancement and higher salary. However, it is not the only way how respondents come up with the opinion that PhD degree has beneficial labour-market effects.

One of the alternative mechanisms visible in comments is observation of the success of other PhD graduates, sometimes even the PhD supervisor, on the labour market—for instance, being frequently invited as expert or employed on a prestigious job (reflecting respondents’ desired self-image) or not being fired when everyone else is.

Another mechanism is search for a way to differentiate from competitors on the labour market or, as put by one respondent, to “stand out in the crowd.” Here, respondents typically mentioned high concentration of bachelors and masters on the labour market (in Latvia, in particular, but also abroad) and noted that they perceived PhD degree as a differentiating factor.

In addition, some noted that a doctoral degree gives more weight to the opinion of its holder if compared to someone with lower education levels, as well as “deeper knowledge on problems and how to solve them,” which is an important benefit in competing for a good job.

Commenting on their personal goals, several respondents mentioned a family tradition of doctoral education as one of the main drivers behind own desire to start PhD studies. Many recognised that doctoral studies open students to new social networks, new knowledge, new skills, and new experience in doing research and writing papers and in
sharing results in international conferences. Some viewed these factors as a possibility for new achievements, while in others they raised positive “back to school” emotions. Several comments were about the understudied areas of knowledge where respondents saw a possibility for substantial contribution to science.

A few noted that PhD studies are akin to a hobby, an exciting alternative to boredom at work or in family life, which allows to maintain the connection with scientific world even if it is impossible to work in a higher education or research institution. Finally, respondents also mentioned that PhD degree is the highest point, or the “gold medal,” of education one could ever reach, an entrance ticket to the elite, the best, those having maximum available knowledge in the given field of study. Perhaps, the perception of respect received by PhD degree holders is best summarised by a comment “A PhD is not just a way to be more respected. It is a way to be respected for a very good reason.”

Further, consider four types of goals pursued when enrolling in doctoral programmes:

- Mostly personal: both the main and the second main goals are personal goals
- Primarily personal: the main goal is personal, but the second main goal is labour-market goal
- Primarily labour-market: the opposite of primarily personal
- Mostly labour-market: both the main and the second main goals are labour-market goals

Figure 4 shows three important facts. Firstly, with the exception of geosciences, biology, chemistry and material science, and agriculture and environment, a large majority (at least 60 per cent) of respondents pursue either mostly or primarily personal goals when deciding to go for doctoral degree. Secondly, among the fields where more than 60 per cent of respondents report having mostly personal goals are both non-technical (history and philosophy, arts, and management) and technical (physics and mathematics and engineering) fields. Thirdly, the share of respondents motivated mostly by labour-market factors is higher in technical fields, but here also are exceptions: most notably, engineering, but also IT-related fields and geosciences. Note a high share of PhD students in management (around 20 per cent) and education and psychology (around 30 per cent) who were motivated mostly by labour-market factors.

Econometric analysis could be used to further study how the type of goals pursued by respondents varies across fields of study controlling for other important factors. Two approaches might be used for analysis in this case: multinomial binary models and ordered binary models. The latter appear to be better suited, as the four types of goals can be arranged as follows in the order of increasing importance of labour-market goals: mostly personal (labour-market goals not important), primarily personal (labour-market goals somewhat important), primarily labour-market (labour-market goals are the primary driver), and mostly labour-market (respondent is fully labour-market oriented).
The model has the following explanatory variables: field of study (combined into eight greater groups, as compared to Fig. 4, due to low number of observations in some fields), the pattern of change of field of study during tertiary education, age group to which respondent belonged when starting PhD studies, whether the respondent knew already at secondary school that he/she wants to get a PhD degree (as opposed to deciding during or after bachelor or master’s studies), whether the respondent was motivated by family to study for PhD (self-assessment), whether the respondent is a married woman, and the last occupation of the respondent before starting PhD studies.

The model was first fit by ordered logit, which is based on the proportional odds assumption. As this assumption failed to hold, I used generalized ordered logit model [8] to run a partial proportional-odds model, i.e., remove the proportional odds constraint from variables that show significant departure from that assumption while keeping the constraint on those for which the assumption holds with certain accuracy. Table 1 shows the results.

The results show three distinctive groups of field of study. The first group contains arts and humanities, economics, and education and psychology (all these fields have insignificant marginal effects, meaning that the behaviour of their students is the same as for students in arts and humanities). The second group contains biology, agriculture, environment and geoscience; physics, mathematics and chemistry; law, social and political science; and management. Respondents studying in these fields are much stronger oriented at labour-market goals than those in the first group. The third group consists only from computing and engineering. Students in these fields tend to pursue primarily personal goals more often than students in other fields, but keep a labour-market goal as a second-order goal.

Previous background in tertiary education plays an interesting role. Compared to those who stayed in the same field starting from bachelor studies, respondents who changed field twice—at first at master’s level and then again at PhD level—appear to be significantly more inclined to pursuing mostly personal goals. On the contrary, those who changed field of study once—either at master’s level or at PhD level—behave as those staying in the same field.

Family influences the decisions of individuals. Respondents who report to be motivated by family to start PhD studies and married women are more likely to pursue personal goals rather than labour-market goals. The same effect is from having a long desire for a PhD degree, which also was expected.

Labour-market experience before PhD studies plays important role in shaping the motivation. Those who started PhD studies in their thirties and fourties are significantly less motivated by personal goals than their younger counterparts, supposedly exactly due to more experience on the labour market. At the same time, I cannot exclude more complex reasons of these cohort effects, such as beliefs being shaped by different political, economic and social environment. Last occupation before PhD studies has slightly different effects from field of study. Compared to managerial occupations, non-teaching professionals (who include business and administration professionals) are more likely to pursue mostly personal goals. Note that teaching professionals have the same probability as managers for pursuing mostly labour-market goals, which was expected, as teaching professionals at higher education institutions are typically required to have a PhD for successful career.
Table 1. Average Marginal Effects on the Probability of Type of Goals Pursued when Going for PhD Studies after Generalized Ordered Logit

<table>
<thead>
<tr>
<th>Field of PhD studies (rel. to Arts & Humanities)</th>
<th>Mostly Personal</th>
<th>Primarily Personal</th>
<th>Primarily Labour-Market</th>
<th>Mostly Labour-Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>−0.074</td>
<td>0.000</td>
<td>0.025</td>
<td>0.049</td>
</tr>
<tr>
<td>Management</td>
<td>−0.042</td>
<td>−0.049</td>
<td>−0.051</td>
<td>0.142*</td>
</tr>
<tr>
<td>Law, Social science & Political science</td>
<td>−0.165†</td>
<td>−0.001</td>
<td>0.056†</td>
<td>0.109†</td>
</tr>
<tr>
<td>Education & Psychology</td>
<td>−0.038</td>
<td>0.000</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>Biology, Agriculture, Environment & Geoscience</td>
<td>−0.297***</td>
<td>−0.001</td>
<td>0.101***</td>
<td>0.197***</td>
</tr>
<tr>
<td>Physics, Mathematics & Chemistry</td>
<td>−0.193**</td>
<td>−0.001</td>
<td>0.066**</td>
<td>0.128**</td>
</tr>
<tr>
<td>Computing & Engineering</td>
<td>−0.067</td>
<td>0.155*</td>
<td>−0.122*</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Change of field of study (rel. to never changed)

| Changed once (at master’s or PhD level) | −0.083 | 0.000 | 0.029 | 0.055 |
| Changed both at master’s and PhD levels | 0.294*** | 0.001 | −1.100** | −0.195** |

Age when started PhD studies (rel. to ≤ 30 years)

| 31–40 years | −0.275*** | −0.001 | 0.094*** | 0.182*** |
| 41+ years | −0.208** | −0.001 | 0.071** | 0.137** |

Decided long ago to get PhD degree

| Motivated by family | 0.222*** | 0.001 | −0.076*** | −0.147*** |

| Married woman | 0.186*** | −0.050 | 0.088 | −0.224*** |

Last occupation before PhD (rel. Management)

Science/Engineering/IT professional	0.250***	0.001	−0.085**	−0.166**
Teaching professional	−0.060	0.000	0.021	0.040
Other professional	0.298***	0.001	−0.102***	−0.197***
Associate professional	0.014	0.000	−0.005	−0.009
Other	0.148	0.001	−0.051	−0.098
Don’t know / Never employed	0.040	0.000	−0.014	−0.026

***p < 0.01, ** p < 0.05, * p < 0.10, †p < 0.15. Pseudo R² is 0.1652 on 203 observations. Three observations dropped, as otherwise, they resulted in cells of size one (e.g., there was one respondent studying economics and having mostly labour-market goals). The following variables violated the assumption of proportional odds and were estimated separately for each goal type: management field, computing & engineering field, and married woman dummy.

5. University Characteristics Important for PhD Students

This section analyses responses to the multiple-choice question “What were the three most important factors to you when choosing the university for PhD studies?”

According to Fig. 5, irrespective of the type of goals pursued, respondents tend to base their choice of university on the content of PhD programme, quality of academic staff, and financial aid, each of which was marked by more than 30 per cent of respondents. The prestige of the university is in top 4 most important factors for those who pursue mostly or primarily personal goals, but its importance drops with increasing orientation to labour-market goals, although it does not fall below the second group of most important factors.

The second group of most important factors for all types of goals include references of acquaintances and tuition fees, marked by around 20 per cent of respondents.

Note that this implies that financial characteristics of PhD programmes are important for students of Latvian origin, but financial aid (i.e., scholarships or coverage of participation fees in conferences) is perceived as more important than tuition fees. In part, this might be a result of a bias coming from the availability of ESF scholarships, which were higher than average wage, tuition fees, and state scholarships (see Sec. 2).

To check this hypothesis, I compare PhD students who started their studies when ESF scholarships were available for first-year students (2009–2012) to those who started their studies before 2009 or after 2012. I excluded PhD students studying abroad for this task. The hypothesis is fully supported: When ESF scholarship was available, 44 per cent of respondents marked financial aid as important and only 15 per cent marked tuition fees as important; while when it was unavailable, the position of both factors was very close (around 25 per cent each).

The third group of important factors, marked by around 10 per cent of respondents irrespective of the type of goals, include references of students, possibility to go abroad, and language of instruction. Respondents pursuing mostly personal goals or mostly labour-market goals also note the importance of the popularity of the university given by the
number of its students. In contrast to other types of goals, those pursuing mostly labour-market goals are getting their PhD in the university where they work and tend not to say that they are merely choosing the university where they got their master’s degree. Finally, respondents who pursue mostly personal goals find close location of the university an important enough factor.

6. Useful Information Sources on PhD Studies

This section analyses responses to the multiple-choice question “Which of the following sources of information were the most useful to you at the time when you were deciding where to study for your PhD? Pick at most three.”

All respondents consider professors at the university where they got their master’s degree, current PhD students and graduates of the target university, and target university’s official sources of information (such as website and accounts in social networks) the most important sources of information on PhD studies. Those pursuing mostly labour-market goals concentrate on recommendations of acquaintances more than those pursuing other goals: not only are university’s official sources important for much fewer respondents with this type of goals, but also nearly 15 per cent of them reported taking into account the opinion of their co-workers and superiors.

University rankings were marked by 10 to 20 per cent of respondents, depending on their type of goals, and together with family opinion, marked by 10 per cent, it forms the second most important group of information sources. Respondents pursuing mostly personal goals also note the importance of open doors events.

Professors at the target university are rarely mentioned, but this might be because this category was extracted from respondents’ replies in the “other” option to this question, while those who did not give this reply might have included professors at the target university in university’s official sources of information.

Those who replied that their own experience was important information source, by implication, continued studies in the university where they got master’s degree. This might be merged with the reply “didn’t search,” but, based on the description given by respondents, the latter reflects the unique proposition of the university (e.g., a particular study programme is not available elsewhere in Latvia) rather than the decision to stay in the place which they simply liked based on their experience during master’s studies.

Fig. 5. Factors Important when Choosing University for PhD Studies, by Type of Goal Pursued by Respondents

To be read: around 45 per cent of respondents who pursued mostly personal goals when choosing PhD studies report that content of the programme is an important factor they consider when choosing university for their PhD studies.
Fig. 6. Sources of Information Useful when Making Decision on PhD Studies, by Type of Goal Pursued

To be read: around 45 per cent of respondents who pursued mostly personal goals when choosing PhD studies found official sources of the university useful when deciding on their PhD studies.

7. Conclusions

This study supported the existing literature by showing that most individuals decide to enrol in doctoral studies primarily for personal reasons. However, it found a substantial heterogeneity of the goals pursued when going for PhD across fields of study. Results suggest that universities should tailor the message they send and the channels they use for their marketing campaigns to the goals their target customers pursue when enrolling in doctoral studies.

References