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Abstract 

A unitary (Euclidean) representation of a quiver is given by assigning to each vertex a 
unitary (Euclidean) vector space and to each arrow a linear mapping of the corresponding 
vector spaces. We recall an algorithm for reducing the matrices of a unitary representa- 
tion to canonical form, give a certain description of the representations of canonical 
form, and reduce the problem of classifying Euclidean representations to the problem 
of classifying unitary representations. We also describe the set of dimensions of all 
indecomposable unitary (Euclidean) representations of a quiver and establish the number 
of parameters in an indecomposable unitary representation of a given dimension. 0 1998 
Elsevier Science Inc. All rights reserved. 

K~~w~wd~~; Canonical matrix: Unitary transformation; Quiver 

1. Introduction 

Many problems of linear algebra can be formulated and studied in terms of 
quivers and their representations, which were proposed by Gabriel [l] (see also 
[2]). A quiver is a directed graph. Its representation .d is given by assigning to 
each vertex i a vector space LZZ! and to each arrow x : i + j a linear mapping 
.d, : d, + ccf’,. For example, the canonical form problems for representations 
of the quivers CS and cS- correspond to the canonical form problems for 
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linear operators (whose solution is the Jordan normal form) and for pairs of 
linear mappings from one space to another (the matrix pencil problem, solved 
by Kronecker). 

In this article we study unitary and Euclidean representations of a quiver up 
to isometry. A unitary (Euclidean) representation JS? is given by assigning to 
each vertex i a finite-dimensional unitary (Euclidean) space di and to each 
arrow cx : i -+ j a linear mapping &‘@ : dj + a?‘,. We say that two unitary 
(Euclidean) representations d and &Y are isometric and write d II 8 if there 
exists a system of isometries CD1 : ,21i + Bi such that @,dz = gzQi for each 
a: i-j. 

Our main tool is Littlewood’s algorithm [3] for reducing matrices to triangu- 
lar canonical form via unitary similarity. In [4] 1 rediscovered Littlewood’s 
algorithm and applied it to the canonical form problem for unitary 
representations of a quiver. Various algorithms for reducing matrices to differ- 
ent canonical forms under unitary similarity were also proposed by Brenner, 
Mitchell, McRae, Radjavi, Benedetti and Gragnolini, and others; see Shapiro’s 
survey [5]. 

In Section 2 we recall briefly Littlewood’s algorithm and study the structure 
of canonical matrices much as it was made in [4] for the matrices of linear op- 
erators in a unitary space. 

We say that a matrix problem is unitarily wild if it contains the problem of 
classifying linear operators in a unitary space. In Section 2.3 we show that the 
last problem contains the problem of classifying unitary representations of an 
arbitrary quiver (i.e., it is hopeless in a certain sense) and give examples of unit- 
arily wild matrix problems. 

The vector dim & = (dim &‘I, dim &‘z,. . . , dim dP) E Ni is called the 
dimension of a representation & of a quiver Q with vertices 1,2,. . . ,p (we 
denote N = {1,2,. . .} and No = {0,1,2,. .}). In Section 3 we describe the 
set of dimensions of direct-sum-indecomposable unitary representations of a 
quiver, and establish the number of parameters in an indecomposable unitary 
representation of a given dimension. (Analogous, but much more fundamental 
and complicated, results for non-unitary representations of a quiver were ob- 
tained by Kac [6-81 (see also [2], Section 7.4). In [9] I extended his results to 
systems of linearly mappings and forms, assigning a bilinear form to an undi- 
rected edge of a partially directed graph.) 

In particular, if z E Np and Q is a connected quiver other than ?? and ??+ ??, 
then there exists an indecomposable unitary representation of dimension z if 
and only if zA4Q > z, where MQ = (mij) is the p x p matrix whose entry mij is 
the number of arrows of the form i --f j and i t j ((tl, . . . , t,) 2 (~1,. . . ,zp) 
means tl 3 zl, . . , tp > zp). 

In Section 4 we study Euclidean representations of a quiver. Let &‘c denote 
the unitary representation obtained from a Euclidean representation d 
by complexification (d and &‘c are given by the same set of real matrices). 
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In Section 4.1 we prove intuitively obvious facts that (i) .dc Y &Ic implies 
.d IV %, and (ii) if d is indecomposable and &‘c is decomposable, then 
G!‘“’ N a& $ &!, where % is an indecomposable unitary representation. This will 
imply that unitary and Euclidean representations have the coincident sets of di- 
mensions of indecomposable representations. 

In Section 4.2 we study, when a given unitary representation of a quiver can 
be obtained by complexification. In particular, let A be a complex matrix that is 
not unitarily similar to a direct sum of matrices, and let S-‘AS = A for a uni- 
tary matrix S (such S exists if A is unitarily similar to a real matrix). Then A is 
unitarily similar to a real matrix if and only if S is symmetric. 

In Section 4.3 we construct an infinite set of real orthogonally non-similar 
pairs (A, B) of symmetric real matrices having the same characteristic polyno- 
mial x(/l,x) = l,IZ - A - Bx (a counter example to Friedland’s Problem 11.11 
from [IO]). 

2. Unitary matrix problems 

We assume the complex numbers to be lexicographically ordered: 

a + hi 5 a’ + b’i if either a = a’ and b < b’, or a < a’ (1) 

and the set of blocks of a block matrix A = [A,,] to be linearly ordered: 

A,, <Air/’ if either i = i’ and j < j’? or i > i’. (2) 

A block complex matrix with a given (perhaps empty) set of marked square 
blocks will be called a marked block matrix; a square block is marked by a line 
along its principal diagonal. By a unitary matrix problem we mean the classifi- 
cation problem for marked block matrices A = [A,,] (1 < i < 1. 1 < j < r) up to 
transformations 

A H B := R-‘AS = [Ri’A,jSj]. 13) 

where R = RI @ @ R, and S = S, @ ~3 S,. are unitary matrices, and R, = S, 
whenever the block A, is marked. The transformation (3) is called an admissible 
transformation; we say that these marked block matrices A and B (with the 
same disposition of marked blocks) are equivalent and write A - B or 

(R.S) : A-+B. (4) 

Notice that a matrix consisting of a single block is reduced by transformations 
of unitary similarity if the block is marked, and by transformations of unitary 
equivalence otherwise. Moreover, the matrices of every unitary representation 
.d of a quiver can be accommodated in a marked block matrix A such that the 
admissible transformations with A correspond to reselections of the orthogonal 
bases in the spaces of &, for example, 
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(5) 

2.1. An algorithm 

Lemma 2.1. (a) Each complex matrix A is unitarily equivalent to the matrix 

D = alI G3 . . CB ak_lZ CT3 0, ai E [w, al > .. > ak-1 > 0. (6) 

(b) If R-‘DS = D’, where R and S are unitary matrices and D, D’ are of the 
form (6), then D = D’, S = S1 @ . . 63 Sk-, ~3 S’ and R = S, CE . . . @ Sk-, CE? R’, 
where each Si has the same size as ail. 

Lemma 2.2. (a) Each square complex matrix A is unitarily similar to the block- 
triangular matrix 

&I if Ai = /li+l. 

(b) vS-‘I;s = F’, where S is a unitary matrix and F and F’ have the form (7), 
then ;liI = $I and S = S1 @ . . . @ Sk, where each Si has the same size as &I. 

Proof. These lemmas were proved in many articles, see, for example [3-51, so 
we give only an outline of their proofs. Part (a) of Lemma 2.1 is the singular 
value decomposition; part (b) follows from D = D’, S*D*R*-’ = D*, 
S’DR = D, D2R = RD2, and D’S = SD2. The matrix (7) is the matrix of an 

arbitrary linear operator A : C” + @” in an orthogonal basis ft , . . , fn such 
that fl,...&, is a basis of Ker(A - 111). (A - &I), 1 <r< k, where 
(x - 21) .. (x - &), 2, k I.’ 5 &, is the minimal polynomial of A; it proves 
part (a) of Lemma 2.2. Successively equating the blocks of Fs = SF’ ordered 
with Eq. (2), we prove part (b). 0 

By the canonicalpart of the matrix (6) or (7) we mean the matrix (6) or, res- 
pectively, the join of blocks fi,, i > j. According to Lemmas 2.1 and 2.2, the 



canonical part is uniquely determined by the initial matrix il and does 
not change if A is replaced by a unitarily equivalent or, respectively, similar 
matrix. 

The algorithm,fkw reducing a marked Hock mutris A = [A,,] to umoniull fiwnl 
is us ,fi~llona: 

Let A, be the first (in the ordering (2)) block of A that changes under admis- 
sible transformations (3). Depending on the arrangement of the marked blocks. 
it is reduced by the transformations of unitary equivalence or similarity. Res- 
pectively. we reduce A = [A,,] to the matrix 2 = [i,,] with i,,,, of the form (6) OI 
(7). and then restrict ourselves to those admissible transformations with .4 that 
preserve the canonical part of iiV. As follows from Lemmas 2.1(b) and 3.2(b), 
it is exactly the admissible transformations with the marked block matrix .4’ 
that is obtained in the following way: The block F?,‘~, of the form (6) or (7) cnn- 
sists of k horizontal and k vertical strips; we extend this partition to the whole 
pth horizontal and the whole yth vertical strips of k. If new k divisions pass 
through the marked block A,,, we carry out k perpendicular divisions such that 
A,, is partitioned into k x k subblocks with square diagonal blocks (they are 
crossed by the marking line) and repeat this for all new divisions. We addition- 
ally mark the subblocks all.. ~ ux ,I of ,41,Cf if it has the form (6). The obtained 
marked block matrix A’ will be called the ck~ireri motri.\- of A. Clearly, .4 x H 
implies A’ _ B’. 

Let us consider the sequence of derived matrices 

This sequence ends with a certain matrix A’,“..~ 3 0, for which the admissible 
transformations do not change any of its blocks, i.e, A“’ is equivalent only 
to itself. Then A N B implies A(“ -- Bi‘l, i.e.. 4“’ = B”‘. Remove from .4’” all 
additional divisions into subblocks and additional marking lines that have ap- 
peared during the reduction of A to AC”). The obtained marked block matrix 
will be called a canonical matrix or the canoniudfbrm of’,4 and will be denoted 
by A”. We have the following theorem. 

Theorem 2.3. Each marked block mutris A is epiralent to the uniywel~~ 
determined canonical matrix A”; inoreoveu, A - B if und only, If’ AX =- B”. 

We will take under consideration the null matrices Oo,l. O,,,,,, and O,,,, of size 
0 x n. m x 0, and 0 x 0, putting for a p x q matrix M 

MQOo,= [M O,,]: M@On,O = oM 1 
1 I 

(LnO a3 oo,, = Q,,,, 
my 

Respectively, we will consider block matrices with “empty” horizontal and/or 
vertical strips. 
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Let A = [Aij] and B = [Bij] (1 < i < I, 1 6 j < T) be marked block matrices 
with the same set of indices (i, j) of the marked blocks. By the block direct 
sum of A and B we mean the marked block matrix 

A &J B := [Ai, @ Bij] 

with the same disposition of marked blocks. If T, = (R,,Sl) : A-K and 
Tz = (Rz, S2) : B -+ D (see (4)), then RI, Rz and, respectively, S1, & are block di- 
agonal matrices with I and, respectively, Y diagonal square blocks, and 

T, UT, := (R, HRZ>S1 6~~s~): AHB-+CHD. 

A marked block matrix A is said to be indecomposable if(i) its size other than 
0 x 0, and (ii) A N B &J C implies B or C has size 0 x 0. 

For every matrices M, ~ . , IV,, N, we define 

(M ,...) M,) @N :== (M, @N )..., M, @N), (9) 

where A4i @N is obtained from M, by replacing its entries a with aN. 

Theorem 2.4. (a) Each marked block matrix A is equivalent to a matrix of the 
f orm 

B = (P, @ I,, ) H . U (pt @ Zm,) 

-F yq kJ...kJ p.yq, 

ml copies Ini copies 

where PI, . . . , P, are non-equivalent indecomposable marked block matrices, 
uniquely determined up to equivalence (we may take Pi = P,X,. . . , Pt = PtW), 
andm,,.. , m, are uniquely determined natural numbers. Every preserving B ad- 
missible transformation T : B-+B has the form 

where lR = (I, I) : 4 -+ Pi is the identity transformation of Pi, and lJi is a unitary 
i?li x m, matrix (I <i<t). 

(b) A marked block matrix A of size # 0 x 0 is indecomposable tf and only tf 
every preserving A admissible transformation T : A -+A has the form 
T = alA, a E @, ]a( = 1. 

(c) A canonical matrix can be reduced to an equivalent block direct sum of in- 
decomposable canonical matrices using only admissible permutations of rows and 
columns. 

Proof. (a) We may take A = AK. Since admissible transformations with 
A(‘), 1 < i < s, (see Eq. (8)) are exactly the admissible transformations with A 
that preserve the already reduced part of A(‘) (preserve A(‘) if i = s), the set of 
admissible transformations with A(“) consists of all (R,S) : A-A. By Eq. (3), 
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R = RI $ ‘93 RI and S = St 8 . . . cti S,., where 1 x Y is the number of blocks 01 
A. Since (R, 5’) : A(“) -+A(“), we have 

Ri = U,,,,I 1 CE ~2 U/+.I,) and S, = q,,,., :T- . 9 L&,.r,,. (10) 

where ,f‘(i: ~),g(j, /I) E {I,. . , t} and Ur, . . U, are arbitrary unitary matrices 
of fixed sizes. AC”) differs from A only by additional divisions of its strips into 
substrips (and by additional marking lines). We transpose substrips within each 
strip of A to obtain a matrix B - A such that, for all (R. S) : B-B. we have 
Eq. (10) with .f(i. 1) < . <fJ’(i, I,) and g(j, 1) < < ,p(.j> r,). Clearly. 5 satis- 
fies (a). 

(b) and (c) are obvious. 0 

2.2. The structure of canonical matrices 

In this section we partition the set of canonical m x n matrices into disjoint 
subsets consisting of the canonical matrices with the same “scheme” (the num- 
ber of such schemes is finite for each size m x n). and show how to construct all 
the canonical matrices having a given scheme (for matrices under unitary sim- 
ilarity this was made briefly in [4]). 

We partition a canonical matrix into zones. which illustrate the reduction 
process. 

Let A = A” be a canonical matrix. Then all its derived matrices (8) differ 
from A only by additional divisions and marking lines. Denote by 
P, (0 < I < s) the first block of A (‘l that changes under admissible transforma- 
tions (it is reduced when we construct A(‘+“). 

Let Ai:’ be a block of AC’) such that either Al:’ < Pi or I = s. The admissible 
transformations with A(‘) induce the unitary equivalence or similarity transfor- 
mations with A!,?. Respectively, A!;’ has the form (6) or (7): we denote by Z(A”‘) 
its canonical part (see Section 2.1). Defining by induction in 1, we call Z(A/!’ 1 
by a zone and 1 by its depth if either I = 0 or Z(Ai:‘) is not contained in a zone 
of depth < 1. 
For each zone Z = Z(Ai:‘), we put BI(Z) := Ai: and call Z by an equiculenc~c~ 
(similarity) zone if Bl(Z) is transformed by unitary equivalence (similarity) 
transformations. Clearly, every canonical matrix A is partitioned into equiva- 
lence and similarity zones; for example (for a marked block matrix of the form 

Pill) 

A= = (lli 
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is partitioned into 10 zones, their depths are indicated on the right-hand side of 
Eq. (11). 

Let A be a canonical matrix partitioned into zones. For each similarity zone, 
we replace all its diagonal elements by stars. For each equivalence zone, we re- 
place all its non-zero elements by circles, and join with a line its circles corre- 
sponding to equal elements (this line does not coincide with a marking line 
because the marking lines connect stars). The other elements of A are zeros, we 
replace theirs by points. The obtained picture will be called the scheme Y(A) ofA. 

For example, the canonical matrix (11) has the scheme 

S(A) = 

Theorem 2.5. Each canonical matrix A = [av] with a given scheme Y = [si,] can 
be constructed by succes.siveJilling of its zones by numbers starting with the zones 
of greatest depth as follows: Let Z be a zone of depth d(z) and let all entries in 
zones ofdepth >d(.Z) be replaced by numbers. Then we replace all points, circles, 
and stars of Z, respectively, by zeros, positive real numbers, and complex 
numbers such that the following conditions hold 

(1) Let sli and si+l.,+~ be circles in Z. Then ai, = a;+ 1 ,i+ 1 iJ’ Sij and s;+ 1 ,j’I are 
linked by a line, and ai] > ai+l,j+l otherwise. 

(2) Let sz,p, . . :.s,+k,~+k be ah stars of Z that lie under a certain stair of Z. 
Then a,,D = ’ . = aE+k.$+k, If s,+k+l,D+k+, , . . . , s,+~,II+, are all stars of Z that lie un- 
der the next stair of Z, then a,,b 5 u~+~.~~+~; moreover, a,,[) + az+tj+ whenever the 
columns of the block [ai, Jx 6 i < c( + k, p + k + 1 < j < p + t] are linearly depen- 
dent (this block has been filled by numbers because all its entries are located in 
zones of depth >d(Z)). 

This theorem gives a convenient way to present solutions of unitary matrix 
problems in small sizes by their sets of schemes. Thus, the list of schemes of ca- 
nonical 5 x 5 matrices under unitary similarity was obtained by Kfimenko [I I]. 

2.3. Unitarily wild matrix problems 

The canonical form problem for pairs of n x n matrices under simultaneous 
similarity (i.e., for representations of the quiver GJ) plays a special role in 
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the theory of (non-unitary) matrix problems. It may be proved that its solution 
implies the classification of representations of every quiver (and even represen- 
tations of every finite-dimensional algebra). For this reason, the classification 
problem for pairs of matrices under simultaneous similarity is used as a yard- 
stick of the complexity; Donovan and Freislich [12] (see also [2]) suggested to 
name a classification problem wild if it contains the problem of simultaneous 
similarity, and otherwise to name it ranze (in accordance with the partition 
of animals into wild and tame ones). 

The canonical form problem for an n x n matrix under unitary similarity 
(i.e., for unitary representations of the quiver C) plays the same role in the 
theory of unitary matrix problems: it contains the problem of classifying uni- 
tary representations of every quiver. For example, the problem of classifying 
unitary representations of the quiver (5) can be regarded (by Lemma 2.2) as 
the problem of classifying, up to unitary similarity. matrices of the form: 

A matrix problem is called unitaril~ ivild (or * -wild. see [ 131) if it contains the 
problem of classifying matrices via unitary similarity, and unitaril_r tame other- 
wise. 

For each unitary problem, one has an alternative: to solve it or to prove that 
it is unitarily wild (and hence is hopeless in a certain sense). In this section we 
give some examples of such alternatives. 

Let us consider the problems of classifying nilpotent linear operators 
q% cp” = 0, in a unitary space. For rz = 2 this problem is unitarily tame; the ca- 
nonical matrix of 9 (in the sense of contents in Section 2.1) is 

0 D 

[ 1 0 0 

where D is of the form (6) without zero columns. Indeed, a matrix F = [F;;] of 
the form Eq. (7) satisfies F2 = 0 only if k = 2, F,, = 0, and F22 = 0; we can re- 
duce F,? to the form (6). For II > 2 this problem is unitarily wild since the ma- 
trices 

are unitarily similar if and only if X and Y are unitarily similar (see also [14]). 



46 V. V. Sergeirhuk I Linear Algebra and its Applications 278 (1998) 3742 

Let us consider the problem of classifying m-tuples (pl, . . . ,pm) of projectors 
p,’ = pi in a unitary space. For m = 1 this problem is unitarily time; the canon- 
ical matrix of a projector p = p* was obtained in [15,16]. Of course, it is 

I D 

[ 1 0 0: 

where D is of the form (6) since a matrix F = [I$] of the form (7) satisfies 
F* = F only if k = 2, F,, = I, and F22 = 0. As was proved recently in [13], 
for m 3 2 this problem is unitarily wild even if pl is an orthoprojector, i.e. 
p1 = pf = pT, (since the pairs of idempotent matrices 

are unitarily similar iff X and Y are unitarily similar), or if p1p2 = p2p1 = 0. 
The problems of classifying the following operators and systems of opera- 

tors in unitary spaces are unitarily wild: 
(a) Pairs of linear operators (cp, 1G/) such that q2 = Ic/* = q$ = $cp = 0 since 

([: ii]> [:: :I) and ([: 3 [: iI) 
are unitarily similar if and only if X and Y are unitarily similar. 

(b) Pairs of self-adjoint operators (cp, $) because cp + i$ is an arbitrary op- 
erator. The tame-wild dichotomy for satisfying quadratic relation pairs of self- 
adjoint operators in a Hilbert space was studied in [17]. 

(c) Pairs of unitary operators (cp,$) since (i(q + l)(fp - l)-‘, i($ + 1) 
($ - l)-‘) IS a air o se a joint operators (the Cayley transformation). p f If- d’ 

(d) Partial isometries (i.e., linear operators cp such that ((~*cp)~ = q’qn), it was 
proved in [18]. 

The problem of classifying unitary representations of a connected quiver Q 
is unitarily tame if Q E {o, ??+ ??} and unitarily wild otherwise. Indeed, the 
classification of unitary representations of the quiver ??+ ??is given by the sin- 
gular value decomposition (Lemma 2.1). The problem of classifying unitary 
representations of the quiver ??4 ??+- ?? is unitarily wild because it reduces 
to the unitary matrix problem for marked block matrices of the form )), 
and two block matrices 



I’. V. Sergeichuk I Linear Algehrtr and its Applicutiom 278 (1998) 3742 31 

are equivalent if and only if X and Y are unitarily similar. We can change the 
direction of an arrow in a quiver by replacing in each representation the cor- 
responding linear mapping by the adjoint one. 

Let us consider the problem of classifying n-tuples (V, , ( V,,) of subspaces 
of a unitary space U up to the following equivalence: (q . , K) - (P’,‘% ~ y:) 
if there exists an isometry cp : U + CJ such that q,V, = V,‘. , . cpK, = r/;:. Fixing 
an orthogonal basis in U and (non-orthogonal) bases in 6. . K,, we reduce it 
to the canonical form problem for block matrices A = [A, 1 IA,,] (the columns 
of A, are the basis vectors of K and hence are linearly independent) up to uni- 
tary transformations of rows of A and elementary (non-unitary) transforma- 
tions of columns of Aj (i = 1,. , rz). 

For n = 1, A = [A,] reduces to / $0, (it follows from Lemma 2. I ). For 
n = 2. A = [A I IA21 reduces to 

1 ;;;. l_._l_! ..I._ 

0 
0 I 

0 0 

where D is of the form (6). This block matrix reduces to a block direct sum of 

matrices i y (cz > O),[l]l], [IlO,,], [010]1], [O,O]OIO]. (The problem of classi- 
[II 

fying pairs of subspaces in a complex or real vector space with scalar product 
given by a symmetric, or skew-symmetric, or Hermitian form was solved in 

U9l.J 
For n = 3 this problem is unitarily wild even if we restrict our consideration 

to the triples (V,, V2, V3) with V, i 1/;; since 

[i g i] reducesto [A E “j 

if and only if (X, Y) and (X’, Y’) determine isometric unitary representations of 
the quiver ??t ??4 ??. An analogous statement was proved in [20] and [ 131: the 
problem of classifying triples (JI, .p2.pI) of orthoprojectors pI = pf = p; in a 
unitary space is unitarily wild even if pIpI = p2pl = 0; such a triple determines. 
in one-to-one manner, a triple (6. V2. V3) with 6 I V, by means of 6 = Im p,. 

3. Unitary representations of a quiver 

From now on, Q denotes a quiver with vertices 1. . .p and arrows 
Xl,. . . , &,. A unitary representation of dimension d = (dl ~. . , d,) E NE (in 
short, a unitary d representation) will be given by assigning a matrix 
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A, E C”“” to each arrow c( : i --f j, i.e., by the sequence A = (AZ,, . . ,A+) (as- 
signing to each vertex i the unitary vector space @” with scalar product 
(x, y) = -~lyl + . ’ + id,.& > we obtain a unitary representation in the sense of 
Section 1). 

An isometry A G B of d representations ,4 and B (an autometry if A = B) is 
given by a sequence S = (St i.. ,S,) of unitary d, x dj matrices S, such that 
SiA, = B,Si for each arrow c( : i ----f j; we say also that B is obtained from A 
by admissible transjormations and write A ‘v B. An autometry S : A LA is sca- 
lar if S = alA, where a E @, lA = (Id), . . .I&). 

For two sequences of matrices A4 = (MI,. ,M,) and N = (N,, . . , N,), we 
denoteM&N= (MI @N,,... ,Mt @N,). A unitary d representation A of Q is 
indecomposable if (i) d # (0, . ,O) and (ii) A N B $ C implies B or C has di- 
mension (0, . . : 0). 

3.1. Canonical representations 

Let A be a unitary representation of Q. Using the algorithm (see Sec- 
tion 2. l), we reduce A,, to its canonical form A:, then restrict the set of admis- 
sible transformations with A to those that preserve A; (it gives certain unitary 
matrix problems for AX2, . . , AZy with partitions them into blocks) and reduce 
A,? to its canonical form A$ and so on. The obtained representation 
A” = (A$. . . , A%) (we omit the marking lines) will be called a canonical rep- 
resentation of the quiver Q; the sequence of the schemes Y(A”) = 
(Y(A,“;), . . , Y(Ac)) will be called the scheme of A”. 

Clearly, A e A” and A = B if and only if A” = B”. 

Theorem 3.1. (a) Every unitary representation is isometric to a representation of 
the form 

B = (P, @ I,, ) @ . . CB (pt @ I,,,,) 
rv P, @j . BP, CD...@ p,cB...ep, . 

ml copies m, copies 

(see Eq. (9)), where 9, . . , Pt are non-isometric indecomposable representations, 
uniquely determined up to isometry, and ml, . , mt are uniquely determined nat- 
ural numbers. Every autometry S : B;B has the form 

S = (1, @ UI) G3 . . CE (1, 63 Ut), 

where Ui is a unitary mi x mi matrix (1 6 i < t). 
(b) A unitary representation of dimension # (0:. . . ,O) is indecomposable I$ 

and only tf all its autometries are scalar. 
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Proof. Analogously Eq. (5), the matrices of every unitary representation A of Q 
can be accommodated in a block diagonal matrix A = diag(AX4, Au0 , ? . , 
A,, .O, . . ,O) with a certain set of marked blocks such that the admissible 
transformations with A correspond to the admissible transformations with 
M(A). Then M(A”) = M(A)” and we can apply Theorem 2.4. 0 

3.2. The set of dimensions of indecomposable unitary representations 

We will use the following designations: MC, = [mij] is the p x p matrix, in 
which mij is the number of arrows i -+ j and i +- j of the quiver Q; supp(z) 
is the full subquiver of Q with the vertex set {i ] z, # 0) for each 
z E NE; ei = (0,. . , 1,. . . , 0) E N{ with 1 in the ith position. Denote by o(Q) 
the subset of N: consists of ei. . , ep, all e; + ei with m,, = 1, and all non-zero 
z with connected supp(z) @ { ??, ??-+ ??} such that zA4, 3 z. In this section we 
prove the following theorem. 

Theorem 3.2. D(Q) is the set of dimensions of indecomposable unitary 
representations of a quiver Q. 

Put Ai := Cj m z lj j f orzEN~andl<i<~.ThenzMQ=(A,(z),....A,(z)). 

Lemma 3.3. D(Q) satisfies the following conditions: 
(i) rf’z E D(Q) and supp(z) $Z (0, ??+ ??3} therz zM~ > z. 
(ii) If z, u E D(Q) and z < u, then there exists i such that z + ei <u and 

z + e, E D(Q). 

Proof. (i) Let z E D(Q), supp(z) $Z { ??, ??-+ *a}, and zM~ = z. Fix i such that 
zi = max{zl , . . . zp}. Then miJ # o for a certain j # i. Since 
Z; = A;(Z) > mijzi > z;, zi = zj, mi, = 1, and mk,zk = 0 for all k # i. Taking z, 
and z, instead of zi and zj, we have mkizk = 0 for all k # j. Hence 
supp(z) = ??+ ??, a contradiction. 

(ii) Let z, u E D(Q) and z < U. If supp(z) # supp(u), then there exists a non- 
zero m;j with i E supp(u) \ supp(z) and j E supp(u) n supp(z). The z + e, satis- 
fies the requirements. 

We may assume that supp(z) = supp(u) = Q. Then Q @ (0, ??--f ??}. Fix a 
vertex I such that z1 < ul. We will suppose that A,(z) = zI and rn,/ = 0 (other- 
wise z + e/ satisfies the requirements). 

Assume first that zl <.zj for some mlj # 0. The condition A,(z) = zl implies 
z/ = z,, ml1 = 1, and m Ik = 0 for all k # j. Hence z, = z1 < uI <A,(u) = u,. 
Since Q # ??4 ??, m,k # 0 for some k # 1, and we can take z + ei. Next, let 
Z/ > zj (and hence z + ej E D(Q)) f or all non-zero ml,. If z, = Uj for all 
m/j # 0, then U/ <A,(U) = Al(z) = zl, a contradiction. Hence z, < u, for a cer- 
tain m/j # 0, and we can take z + ej. ??
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Lemma 3.4. If A is a unitary d representation of Q and d 6 D(Q), then A is 
decomposable. 

Proof. Assume to the contrary, that A is indecomposable. Then supp(d) is 
connected; Lemma 2.1 and d # D(Q) imply supp(d) @ {o, ?? -+ ??} and 
dA4e 8 d, i.e., there exists 1 such that A,(d) -C d!. Then ml1 = 0 and we can 
assume that there are no arrows starting from I (otherwise we replace each 
arrow a : 1 --) i by c(’ : i 4 1, simultaneously replacing A, by the adjoint 
matrix). 

Let c(, b, . , y be all arrows stopping at 1; combine the corresponding them 
matrices of A into a single d, x Al(d) matrix [A,(ABI . . IAj,]. The number of its 
rows is greater than the number of its columns; making a zero row by unitary 
transformations of rows, we obtain A cv B $ P, where P is the zero representa- 
tion of dimension e/, a contradiction. ??

Lemma 3.5. If there exists an indecomposable unitary z representation and 
zi < Ai for a certain vertex i, then there exists an indecomposable unitary 
z + e, representation. 

Proof. Let A be an indecomposable unitary z representation and zi < Ai (z). We 
can assume that each starting from the vertex 1 arrow is a loop (replacing each 
i : 1 + j, j # 1, by A* : j -+ 1 and, respectively, Ai by A;.). 

(1) Assume first that there is a loop CI : 1 -+ 1 and define a unitary z + el rep- 
resentation H in which H, is the nilpotent Jordan cell of size (zi + 1) x (zi + l), 
H8 := Ag @ O,, for each 8: 1 + 1, p#cc; H,: =A,@O,,, for each 
y : j ---f 1, j # 1; and Ha := A6 for each 6 : j -+ k, k # 1. The representation 
H is indecomposable. 

Indeed, let A- and H- denote the restrictions of A and H on the subquiver 
Q- :=Q\K By Th eorem 3.1(a), we may assume that 

A- = (P, @Z,i,,)63...@(p,@ZI,I), 

where PI, . . . , Pt are non-isometric indecomposable representations of Q-, PI is 
the zero representation of dimension ei, and m1 > 0, m2 > 0,. . . , m, > 0. 
Clearly, 

H- = (Pi @~I,,+I )~(P?~~,,)~...~(p,~I,I). 

Let S = (Si,&, . .) : HGH. Since S : H-;H-, by Theorem 3.1(a) 

s = (19 c+ UI) CB.. @ (1, c3 ut), 

s, = u,(dli) @ @ @IA, (12) 

where (dlj, . . ) dpl) = dim(P,) and U, is a unitary matrix (1 < j < t). Since 
SIH, = H,SI, H, is a Jordan cell and Si is a unitary matrix, we have 
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SI = al! a E C. The representation A is indecomposable, so that dli # 0 and by 
Eq. (12) U, = al for all 1 <j 6 t. Hence S = alH and H is indecomposable by 
Theorem 3.1(b). 

(2) There remains the case ml, = 0. Let ~(1 : jl + 1,. . , cq : j, + 1 be all the 
arrows stopping at 1. We denote by A- the restriction of A on the subquiver 
Q~:=Q\{l:cc,,...,a,}.ByTheorem3.l(a),wemayassumethat 

where P, , . lP, are non-isometric indecomposable unitary representations of 

Q-. 
Let (&. . S,) : A- ; A-. By Theorem 3.1(a) 

where (d?,. . , d[,,) = dim P,. For an arbitrary unitary z, x Z, matrix S,, we de- 
finekbymeansofS=(S,,&~....S,): AGk(thenk- =A-).Takingintoac- 
count that k,; = S;‘A,lS,r and partitioning the sets of columns of every A,; and 
!Xr in the same manner as s/~, we obtain B := [A,, 1 IA,,] = [B, I.. iBm] and 
B := [A,, 1.. IA,,] = [B,I.. . IB,,,], where m = Ci_~,(d,., + ... +d,.,) and 
Z?,=S;‘B,U,,,, foracertainf(i)E (1, . . . . t}. 

Let zI x U, be the size of Bj and put r, = rank[B, / . lB,+, IB,+, I IB,,]. B is a 
zI x A,(z) matrix and -7, < A,(z), so zI - r, < U, for a certain i. Since SI and 
U,~i, are arbitrary unitary matrices. by Lemma 2.1(a) there exists S such that 

where the rows of [C, I . ]C,_, ]C,+, / ]Cm] are linearly independent and D is a 
(ZI - 7,) x u, matrix of the form diag(a, , a,,) CE Okh with real 
al 3 3 a,, > 0. Since k is indecomposable and zl - I’, < u,, we have k = 0 
and h > 0. 

Let a,,, I be a real number such that a, > a,,, , > 0. The replacement D by 
D’ = diag(a,. : a,,,~,,,) @ OO,h-l changes B to a new matrix 8’ and 2 to a 
new representation H of dimension z + el. 

Let R : HGH. Since H and A coincide on Qua and (R?, . . RP) : A- 1 A-, by 
Theorem 3.1(a) the matrices R,. . ,R, have the form R, = (C,,, _z V,) 
CEI ... @ (Z(i,, 12 6) with unitary 6.. , VT. By R;‘B’(R,, a.. 3 R,,) = B’, R, 
has the form RI1 CE R12: where R;,‘D’ffli,, = D’. Lemma 2.1 implies 
RI? = R,3 ~3 [cl. Putting R1 = RI, @RI3 and k, = R, (j > I), we have 
I?: k:k. By Theorem 3.1(b), !?, = al (1 <j<p) for some a E C, so 
VJ = al (1 <j < z). In particular, Iqiii = al and, since R;iD’V,,,, = D’, c = a 
and RI = aZ. Therefore R = alH and H is indecomposable by Theorem 
3.1(b). 0 
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Proof of Theorem 3.2. Let U(Q) denote the set of dimensions of indecompos- 
able unitary representations of Q. Lemma 3.4 implies U(Q) c D(Q). 

Let u E D(Q). Then ui # 0 for a certain i. Using Lemma 3.3(ii), we select a 
sequence u] := ei, Us,. . . , ut := u in D(Q) such that u2 - ul, . . . , ut - u,-~ E 
{el,. . . ,ep}. By Lemma 3.5, (~1,. . ,uJ c u(Q) and o(Q) c u(Q). •I 

3.3. The number of parameters in an indecomposable unitary representation 

By the number of real (complex) parameters of a unitary representation A we 
mean the number of circles (stars) in the scheme Y(A”). Recall that to circles 
correspond positive real numbers in A”, and to stars correspond complex num- 
bers; the other entries in A” are zeros. 

Kac [7], Theorem C, proved that the maximal number of parameters in an 
indecomposable (non-unitary) representation of dimension d over an algebrai- 
cally closed field is 1 - (pa(d), where 

x; + . . . 

is a Z-bilinear form called the Tits form of the quiver Q, and m,j is the number 
of arrows i -+ j and i +- j. 

We say that a zone (see Section 2.2) is in general position if all its diagonal 
entries are distinct and, if it is an equivalence zone, non-zero. A unitary repre- 
sentation A is said to be in general position if all zones in A” are in general po- 
sition. 

Theorem 3.6. (a) For every d E D(Q) ( see Section 3.2) there exists an 
indecomposable canonical unitary d representation of general position, its scheme 
is uniquely determined by d. 

(b) An indecomposable unitary d representation A has C di - 1 real parame- 
ters and at most 

complex parameters; this number is reached tf and only $‘A is in general position. 

Proof. We consider the set of zones of a canonical unitary representation 
AM = (A:,. . . , AC) as linearly ordered: 

21 < Z2 if il < iz; or il = i2 and 1, < 12; oril =i2, 

II = l2 and Bl(Z,) < B1(Z2) (13) 
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(see Eq. (2) and contents of Section 2.2); where Z, (k = 1: 2) is a zone of depth 
lk in A; . 

(a) Let d E D(Q). By Theorem 3.2, there exists an indecomposable unitary d 
representation A. Let A be not in general position, and let Z be the first (in the 
sense of Eq. (13) zone of A” that is not in general position. Changing diagonal 
entries of Z, we transform it into a zone Z of general position and A” into a 
new representation k. This exchange narrows down the set of admissible trans- 
formations that preserve all zones < Z, and, by Theorem 3.1(b), A”_has only 
scalar autometries (as an indecomposable representation), therefore, A has only 
scalar autometries and is indecomposable too. 

If k is not in general position, we repeat this process for it, and so on, until 
we obtain an indecomposable d representation B of general position. Its 
scheme is uniquely determined since, for each zone Z of B, the set of admissible 
transformations that preserve all zones < Z (and hence the matrix problem for 
the remaining part of B) does not depend on diagonal entries of Z such that it is 
in general position. 

(b) Let A be an indecomposable canonical d representation, and Z be its 
zone or the symbol x. Denote by J(Z) the set of all isometries of the form 
S : A G k that preserve all zones < Z (all zones if Z = 30). As follows from 
the algorithms of Sections 2.1 and 3.1, J(Z) consists of all sequences of the 
form S = (S1 . . . : S,), where 

0: {(ij) / 1 <i<p, 1 <j<ti} --f {l? , t} is a fixed surjection. and U,, . ci, 
are arbitrary unitary matrices of fixed sizes ml x ml. . m, x m, (we will write 
s = S(U,, . , cl,)). 

Put 

Al(Z) = ml +...+rn,, AI(Z) = rni + + mf. 

Let Z # co and Z’ be the first zone after Z (Z’ = 30 if Z is the last zone of A). We 
will prove that 

A, (Z) - A,(Z’) = n’(Z), (14) 
A?(Z) - Az(Z’) < 2n(Z) - n*(Z) - 2n*(Z) (15) 

and that the equality in Eq. (15) holds if and only if Z is a zone of general po- 
sition; where n(Z) is the number of entries in Z, and n*(Z) (resp., n*(Z)) is the 
number of circles (resp., stars) that correspond to the diagonal entries of Z. 

As follows from the algorithms of Sections 2.1 and 3.1, the block Bl(Z) is 
reduced by transformations 

Bl(Z) H U, -‘Bl(Z)U,, (16) 
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where S = S(Ut, . . , Ut) E J(Z) and i and j are determined by Z; moreover, this 
S is contained in J(Z’) if and only if transformation (16) preserves Z. 

(1) Let i # j, say, i = 1 and j = 2. Then, by Lemma 2.1, 
Z = Bl(Z) = all,, @ . . . @ ak_d._, $ Ox,, r,a 1, x30 and ~30. The trans- 
formation (16) preserves Z if and only if 

U, = 6 $...@ V, and U, = V, @...cE I$_, CD I$+lr (17) 

where K,...,vk+1 are unitary matrices of size I”1 x Yt ) . , Yk-1 

x rk-I, x x x, y x y. Hence, J(Z’) consists of all S E J(Z) with U, and U, of 
the form (17), that is, S = S( V,, . . V,,, , U, Ut). Therefore, AI (Z’) = 1-1 + . . . 
+Yk-I +x+y+m3+'.'+m,, A,(Z’) =Y;+...+Y;_, +x2+y’+m:+...+ 
m:. By Eq. (16), Bl(Z) has size ml x m2, ml = yI f. .. + ?“-] fx, rn2 = 
rl +..‘+rk_l +y, so n(z) =mlm2, n’(z) =rl +“‘+rk_l, n*(z) =o. We 
have At(Z) - At (Z’) = yl + . . . + t”k-1 = n*(z), AZ(Z) - A2(Z’) = (r, + ... 
f&l +x)2 + (r, + ’ ’ ’ + f-k-1 + y)’ - t-f - . ” - t-_, -x2 - y2 = [(Y, + ” +Yk-1 
+x) - (Y, + . . . +%I +y)12+ 2(r, +.“f r&l +x)(‘, +.“+%I +y) -6 
- . - p-z k-l -x2 - y2 = (x - y)’ + 2n(Z) - 4 - f.. - ri_, -x2 - y2 = -2xy 
+2n(Z) - ry - . . . - rip, < 2n(Z) - r1 - . . - r&l = 2n(Z) - n’(Z). Moreover, 
we have the equality if and only if rI = . = rk-] = 1 and xy = 0, i.e, Z is in 
general position. 

(2) Let i = j, say, i = j = 1. Then, by Lemma 2.1, Bl(Z) = [&I, where 
F,p = 0 for c( > /j’, F,, = &Z,.z, rz 3 1) and rl + . . . + rk = ml. The transforma- 
tion (16) preserves Z = {FE0 1 c! < p} if and only if U, = V, $ . . CD vk, where 
VI, . . . . 6 are Unitary matriCeS Of Size Y1 X ?"I: . . . . rk X rk. Hence, J(Z’) COnSiStS 

of all S E J(Z) with UI = V, $ . . . cl3 &, i.e., S = S(K, . , V,, U2,. , Ut). So 
At(Z) - Al(Z’) = ml - r1 - .. . - rk = 0 = n*(Z), AZ(Z) - Az(Z’) = (rl + ... 
+rk) - < - ” ’ - ri = 2 Ergo r,r,j -2(< + . + r,‘) = 2n(Z) - 2(< + + 
$) < h(Z) - 2(rl + . + rk) = 2n(Z) - 2n*(Z). Moreover, we have the equal- 
ity if and only if t-1 = . = rk = 1, i.e., Z is in general position. 

Hence, relations (14) and (15) hold. 
Let Z1 < . < Z, be all zones of A ordered by Eq. (13) and let 

dimA = (d, . . . . , d,). Then Z: = Z,,, for i < r, and Zi = co. Since J(Z,) consists 
of all sequences S = (St,. ,S,) of unitary dt x dl, . . . ,dp x dp matrices, 
At (Zt) = dl + . + dp, A,(Zt) = df + . + di. Since A is indecomposable, by 
Theorem 3.1(b) J(W) consists of all sequences S = A(&, , . . ,Zdp), 
;1 E @, 121 = 1, so S = s([A]) and At(m) = A2(c0) = 1. By Eq. (14), 
dl + . . + dp - 1 = At (Z,) - At (co) = CL=, (A1 (Z;) - At (Zl!)) = C:=, “‘(Zi) is 
the number of circles in S(A”), i.e., the number of real parameters in A. 

By Eq. (151, d: + . . . + d; - 1 = Az(Z,) - AZ(M) = C:=, (Az(Z;) - A,(Z,l)) 
6 2 Cb, I - CL=, n*(Zi) - 2 C:=, n*(Zi). But C:=, n(Zi) is the number of 

entries in A 5(, , . , Aa4, hence, is equal to Cyj=, mijdidj, where m;, is the number 
of arrows i + j and i + j; n*(A) := C:=, n’(Zi) is the number of complex pa- 
rameters in A. Therefore, n*(A) < C mijdidj - i (C d,? - 1) - f (C d, - 1) = 
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l-[Cd,‘- 
the equality 
sition. 0 

Cm,j did,] +ic(d,? - di) = 1 - qe(d) +iCd,(d, - 1). We have 
if and only if all Zi are in general position, i.e., A is in general po- 

The proof implies the following corollary. 

Corollary 3.7. (a) Let d E D(Q) and m = max{dl ~ . ~ dp}. Then there exists an 
indecomposable canonicul d representation ?f general position with entries in 
(0, l,.... m>. 

(b) A decomposuble unitary d representation has Less than Cd, - 1 real 
purumeters cmd less than 1 - cpp(d) + $ C d, (di - 1) cor?zplex parumeters. 

Proof. (a) follows from Theorems 3.6(a) and 2.5. 
(b) This statement is proved as Theorem 3.6(b), but, in the last two para- 

graphs of its proof, we must use AI > 1 and Am > 1 instead of 
A,(X) = A?(X) = 1 since J(c0) contains a non-scalar authometry in the case 
of a decomposable representation A. Cl 

4. Euclidean representations of a quiver 

Let Q be a quiver with vertices l? . . ?p and arrows (zI.. ( xq. A Euclidec’eun 
representation A of dimension d = (d,, . . 
a matrix A, E [Wdfxdi 

. dP) E I+$, will be given by assigning 
to each arrow x : i + j; i.e., by the sequence 

A = (A,, , . AZ<,). An [W-isometry A 2 wB of Euclidean representations A and 
B will be given by a sequence S = (S, . . , S,) of real orthogonal matrices such 
that SjA, = BJ, for each arrow cx : i + j (analogously, R : AGcB denotes an 
isometry in the sense of Section 3). A Euclidean d representation A is said to 
be IW-indecomposable if (i) d # (0.. ~ 0) and (ii) A =w B @ C implies B or C 
has dimension (0; . ,O). 

For a sequence of complex matrices M = (MI. , M,), we define the conju- 
gate sequence I@ = (M, , . . ,A?,), the transposed sequence MT = (MT,. . . , &Ii), 
and the udjoint sequence h4’ = kT. Clearly, the Euclidean representations are 
the selfconjugate unitary representations. 

4.1. A reduction to unitary representations 

We give a standard reduction of the problem of classifying Euclidean repre- 
sentations to the problem of classifying unitary representations. 

Let ind(Q) and indw(Q) d enote complete systems of non-isometric indecom- 
posable unitary representations and non-R-isometric R-indecomposable Eu- 
clidean representations, respectively. Let us replace each representation in 
ind(Q) that is isometric to a Euclidean representation by a Euclidean one, 
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and denote the set of such by indo (if A E ind(Q) and S : A -S c& then A is 
isometric to a Euclidean representation if and only if ST = S; see Theorem 4.4). 
Denote by indl (Q) the set consisting of all representations from ind(Q) that are 
isometric to their conjugates, but not to a self-conjugate, together with one rep- 
resentation from each pair {A, B} c ind(Q) such that A&A 21~ B. 

For a unitary d representation A = (AZ,, . . . , AmY), we define the Euclidean 2d 
representation A’ = (AZ”, , . . , A:), where A,, Iw is obtained from A, by replacing 
each entry a + bi (a, b E R) with 

a 

-b 

Since 

b 

a 

a b 

-b a 

with the unitary 

1 u 

we have 

ARzCA$A. 

a + bi 

0 

0 

a - bi I 

(18) 

Theorem 4.1. (a) Let A and B be Euclidean representations of a quiver Q. Then 
A rv~ B if and only ifA 2~ B. 

(b) Every Euclidean representation is R-isometric to a direct sum of indecom- 
posable Euclidean representations, uniquely determined up to R-isometry of 
summands. Moreover, 

indn(Q) = indo U {A” (A E indt(Q)}. (19) 

(c) The set of dimensions of R-indecomposable Euclidean representations of Q 
coincides with the set of dimensions of indecomposable unitary representations 
and is equal to D(Q) (see Section 3.2). 

A homomorphism (R-homomorphism) S : A ---f B of representations A and B 
of Q is a sequence of complex (real) matrices S = (St, . . , S,) such that 
S’A, = B,S, for each arrow c( : i --f j. Clearly, an isomorphism S is an isometry 
if and only if S* = S-’ . 

Lemma 4.2. The following properties are equivalent for a unitary (Euclidean) 
representation A. 
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(i) A is decomposable (E&decomposable). 
(ii) There exists an endomorphism ([W-endomorphism) F : A 4 A such that 

F=P=F’@{OA>lA}. 
(iii) There exists a non-scalar self-adjoint endomorphism (IW-endomorphism) 

S=S*: A+A. 

Proof. (i) 3 (ii) Let S : A 1 B @ C be an isometry of unitary representations 
(R-isometry of Euclidean representations) and B # 0 # C. Then 
F := S-‘(~B @ 0~)s : A + A satisfies (ii). 

(ii) + (iii) Put S := F. 
(iii) + (i) Since every S, in S is a Hermitian (resp., real symmetric) matrix, 

there exists a unitary (real orthogonal) matrix U, such that 
R, := U,S, C’!-’ = diag(a,, , . . .,a,,), where a,, E R’ and a,l 3 ... au,,. Define 
the unitary (Euclidean) representation B by means of the isometry 
U:=(lJ,....,U,): A 2 B. Then R := USV’ : B LB is an isometry and 
R = aI01 i?; ..‘$a,O,, where at > ... > a,. 0, = (I,, ,,..... I,,,,,)> n,, 3 0. Clearly, 
B=B, @...8B,. where dim(B,) = (n,, . . . . . n,,)). 0 

Proof of Theorem 4.1. (A) We first prove the statement (a) for an A- 
indecomposable Euclidean representation A. Let S = @ + iY : A:cB, where @ 
and Y are real matrices and B is a Euclidean representation. Then @ and Y are 
R-homomorphisms A ---) B. Since lA = S’S = (QT - iYT) (@ +iY) = ( Qr@+ 
YTY) + i(QTY -YT@), QT’Q, + YTY = 1A. By Lemma 4.2, the self-adjoint R- 
endomorphisms QT@ and YTY are scalar, i.e., QT@ = AlA, YTY = pl,,,, and 
i + ~1 = 1. Obviously, J. and ,U are non-negative real numbers. For definiteness, 
1” > 0. then K1’2@ : A--wB. 

(B) Let A be an If&‘-indecomposable Euclidean representation that is decom- 
posable as a unitary representation. We prove that il hiR B’ =c B e B, where B 
is an indecomposable unitary representation that is not isometric to a Euclid- 
ean representation. 

Indeed, by Lemma 4.2 there exists an endomorphism F : A + A such that 
F = F* = F’ +Z {q3. lA}. Let F = @ + iY, where @ and Y are sequences of real 
matrices. Since F = F” = Q7 - iYT, it follows that @ = @’ and Y = -YT. By 
Lemma 4.2, the endomorphism @ is scalar, i.e., @ = il,. i E R. If 2 = 0, then 
iY = F = F’ = -Y2 and Y = OA, a contradiction. 

Hence I # 0. Since F = F’ = (i-IA + iY)’ = (i’lI - Y’) + 2GY. we have 
i’l.A ~ Y’ = Al, and 2i.Y = Y. The condition F # l/j implies ‘I/ # 0,. jL E !. 
and Y’= -dlA. 

2. 

By [21], Section 4.4, Exercise 25, every non-singular skew-symmetric real 
matrix is real orthogonally similar to a direct sum of matrices of the form 

0 a 

[ I> a > 0. 
-a 0 
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Since YT = - Y and Y2 = - a lA, there exists a sequence S of real orthogonal 

matrices such that SYS-’ = $0 @ (see Eq. (9)) where II = (I,. . ,I). 
Put [ 1 

“1 h 

G:=St;S-‘+ 
1 i 

[ I -i 1 

Define the Euclidean representation C by means of S : A&C. Then 
G : C + C is an R-endomorphism. It follows from the form of G and the 
definition of homomorphisms, that C = B’ for a certain B. If B is a decompos- 
able unitary representation, say, B No X @ Y, then by Eq. (18) A en B” 
~a:B~B”a:X$Y~X~Y”cXIW$Y”, by (A) A=aXa@Y”, a contra- 
diction. If B is isometric to a Euclidean representation, say, B q D = 0, 
then A ~a B” ~a: B @ B zC D @ D, by (A) A ~a D $ D, a contradiction. It 
proves (B). 

(a)-(b). Let A and B be Euclidean representations, A =a B, 
A “RA, @... $ A, and B rv~ B1 $ . @ B,, where Ai and Bj are R-indecompos- 
able. From (B) and Theorem 3.1(a), I = Y and, after a permutation of summ- 
ands, Ai zc Bi. By (A), Ai NW Bi. The equality (19) is obvious. 

(c). By Corollary 3.7(a), there exists an R-indecomposable Euclidean repre- 
sentation (with entries in N,) of dimension z for every z E D(Q). Conversely, let 
A be an R-indecomposable Euclidean representation. If A is indecomposable as 
a unitary representation, then by Theorem 3.2 dim(A) E D(Q). Otherwise by 
(B) A ~c B $ B, where B is an indecomposable unitary representation, i.e., 
d := dim(B) E D(Q). S ince B is not isometric to a Euclidean representation, 
supp(d) @ {o, ?? ---f ??}. Applying twice the definition of D(Q) (see Section 3.2), 
we have dMp > d, 2dM, > 2d, and dim(A) = 2d E D(Q). 0 

4.2. Unitary representations that are isometric to Euclidean representations 

Theorem 4.1(b) reduces the problem of classifying Euclidean representations 
of a quiver Q to the following two problems: 
1. to classify unitary representations of Q (i.e., to construct the set ind(Q)); 
2. to determine for each A E ind(Q) whether it is isometric to a Euclidean rep- 

resentation and to construct that representation. 
In this section we consider the second problem. 

Lemma 4.3. (a) If S is a symmetric unitary matrix, then there exists a unitary 
matrix U such that S = UTU. 

(b) If S is a skew-symmetric unitary matrix, then there exists a unitary matrix 
U such that 
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Proof. Analogous statement for a non-unitary matrix S is in [21], Section 4.4, 
Corollary 4.4.4 and Exercise 26. The condition of unitarity makes its proof 
much more easy. We give it sketchily since an explicit form of U is needed for 
the applications of the next theorem. 

Given a symmetric (skew-symmetric) unitary matrix S, with rows sI . ~ s,,. 
Ifs, # el := (1.0, . ,O), we take a unitary matrix U,, with rows ul, ~ u, such 
that u1 = x(e] + sr), a E @. (resp.. C3u1 + @IQ = Ce, + @s,). Then tirS,, = 
a(er + Sr)S,, = x(elS, + SlS,) = x(sr -t el) = uI = el U,,, hence (U,;‘)‘S,,U!;’ = 
u,,S,,U; ’ = [I] $3 S,_, (resp., then 

replacing uz by PLQ, we make /I = 1). Ifs, = el, we have S,, = [l] CE S,_, . U, := I,. 
We repeat this procedure until we obtain the required u : = u,, 
(11 Bs U,z-~)(12 8 Un-2) . . (L-l 83 U,) (resp., U := Un(Iz G Unm2) . . .). 0 

Theorem 4.4. (1) Let A be a unitary representation and A&A. Then A is not 
isometric to u Euclidean representation. 

(2) Let A be an indecomposable unitary representation and S : A:(.k. 
(a) [f S = ST, then A is isometric to a Euclidean representation B given hi 

U : A&B, where U,, . , UP are arbitrary unitary matrices such that 
UTU, = S, (they exist by Lemma 4.3(a)). 

(b) [f’s # ST, then S = -ST and A is not isometric to a Euclidean representa- 
tion hut is isometric to a unitary representation C qf’ the form 

given b?‘ V : A&C, where VI,. . . l$ are arbitrary unitary matrices such that 

YT 
0 I 

[ 1 -I 0 
K = s, 

(they exist by Lemma 4.3(b)). 

Proof. (1) Let R : A 1 @B, where B is a Euclidean representation. Then 
RT = k’ : &&A and H := RTR : A&? (observe that H = HT). 

(2) Let A be an indecomposable unitary representation and S : ALcj. Then 
SS : A:[ A, by Theorem 3.1(b) SS = ilA. S = AS-’ = IST = l(jST) = j?S, 
and i. E { 1, -1). 
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(a) Let 1b = 1, U : A&B and UTU = S. Then U = (UT)-‘S = US : A&i? 
and B = L?. 

(b) Let ,? = -1. Then A is not isometric to a Euclidean representation 
(otherwise, by (1) there exists H = HT : A && by Theorem 3.1(b) S-‘H = ,ulA 
and HT = pST = -pS = -H, a contradiction). Let V : A-&C, where 

yT O z [ 1 -I 0 
6 =Si. 

Then VSV-’ : C&C. If cx is an arrow of Q, then 

and C, is of the form 

Applying this theorem to unitary representations of the quiver G, we obtain 
the following corollary. 

Corollary 4.5. Let A be a complex matrix that is not unitarily similar to a direct 
sum of matrices, and let S-‘AS = A-for a unitary matrix S (such S exists ifA is 
unitarily similar to a real matrix). Then A is unitarily similar to a real matrix if 
and only if S is symmetric. 

4.3. Friedland’s problem 

Friedland [lo] proved that the characteristic polynomial 

~A,(d,x) = Iu - (AI +A2~)l 

determines a finite number of similarity classes for almost all pairs A = (A,, A2) 
of complex symmetric n x n matrices under complex orthogonal similarity. In 
Problem 11.11 he asked if the characteristic polynomial determines a finite 
number of similarity classes for pairs of real symmetric n x n matrices under 
real orthogonal similarity. The next theorem gives a negative solution of this 
problem. 

Theorem 4.6. There exists an injinite set of real orthogonally non-similar pairs of 
real symmetric 6 x 6 matrices having the same characteristic polynomial. 

Proof. Pairs of Hermitian matrices 

A(a) = 

i[ 2 0 

010, 

0 0 0 0 I[ 0 -ia t/F%3 I) 
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have the same characteristic polynomial ~+)(/l.x) = A” - 3R2 + (2 - x2)A +x’ 
and are not unitarily similar for all a E R, 0 < a < l/v”?; since they determine 
indecomposable canonical unitary representations of the quiver C’J. The 
corresponding pairs of real symmetric 6 x 6 matrices A(a)“, 0 < a < 1 /a, 
have the same characteristic polynomial ~AcoiR(A.xj = ~4,0,(,Lx)2 and are not 
real orthogonally similar by Theorem 4.1(a). ??
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