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Summary

Familial dysautonomia (FD) is an autosomal recessive
disorder characterized by developmental arrest in the
sensory and autonomic nervous systems and by Ash-
kenazi Jewish ancestry. We previously had mapped the
defective gene (DYS) to an 11-cM segment of chromo-
some 9q31-33, flanked by D9S53 and D9S105. By us-
ing 11 new polymorphic loci, we now have narrowed
the location of DYS to !0.5 cM between the markers
43B1GAGT and 157A3. Two markers in this interval,
164D1 and D9S1677, show no recombination with the
disease. Haplotype analysis confirmed this candidate re-
gion and revealed a major haplotype shared by 435 of
441 FD chromosomes, indicating a striking founder ef-
fect. Three other haplotypes, found on the remaining 6
FD chromosomes, might represent independent muta-
tions. The frequency of the major FD haplotype in the
Ashkenazim (5 in 324 control chromosomes) was con-
sistent with the estimated DYS carrier frequency of 1 in
32, and none of the four haplotypes associated with FD
was observed on 492 non-FD chromosomes from oblig-
atory carriers. It is now possible to provide accurate
genetic testing both for families with FD and for carriers,
on the basis of close flanking markers and the capac-
ity to identify 198% of FD chromosomes by their
haplotype.
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Introduction

Familial dysautonomia (FD; also known as Riley day
syndrome or hereditary sensory neuropathy type III;
MIM 223900), with its extensive sensory dysfunction
and variable autonomic dysfunction, is the most com-
mon and widely recognized of the congenital sensory
neuropathies (Axelrod et al. 1974; Axelrod 1984; Ax-
elrod and Pearson 1984). FD affects the development
and survival of sensory, sympathetic, and parasympa-
thetic neurons. It is a devastating and debilitating dis-
ease, present from birth, with a variety of symptoms,
including gastrointestinal dysfunction, vomiting crisis,
recurrent pneumonias, altered sensitivity to pain and
temperature, and cardiovascular instability (Riley et al.
1949; Axelrod et al. 1974; Axelrod 1996). There is pro-
gressive neuronal degeneration throughout life, and, de-
spite recent advances in the management of FD, survival
statistics indicate that the probability of reaching 30
years of age is only 50% (Axelrod and Abularrage
1982). The diagnosis of FD is based on the following
cardinal criteria: absence of fungiform papillae on the
tongue; absence of axon flare after injection of intra-
dermal histamine; decreased or absent deep tendon re-
flexes; absence of overflow emotional tears; and, because
of its high prevalence in this population, Ashkenazi Jew-
ish ancestry (Brunt and McKusick 1970; Axelrod 1984;
Axelrod and Pearson 1984). There have been rare re-
ports of non-Jewish FD patients (Suzuki et al. 1976;
Levine et al. 1977; Orbeck and Oftedal 1977; Metha
1978; Harris et al. 1980; Klebanoff and Neff 1980). We
have examined two patients from these families (Levine
et al. 1977; Orbeck and Oftedal 1977) and have deter-
mined that they were affected with congenital sensory
neuropathies other than FD. Therefore, non-Jewish FD
probably is exceedingly rare, and Ashkenazi ancestry
remains an important criterion of the disease. FD is in-
herited in an autosomal recessive fashion, with an in-
cidence of 1 in 3,700 live births, which corresponds to
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a carrier frequency of 1 in 32 among the Ashkenazim
(Maayan et al. 1987).

The clinical features of FD are due to a striking pro-
gressive depletion of unmyelinated sensory and auto-
nomic neurons (Pearson and Pytel 1978a, 1978b; Pear-
son et al. 1978; Axelrod 1995). These pathological
findings have led to the suggestion that the FD gene,
named “DYS,” may encode a member of the growing
family of neurotrophic factors or their receptors that are
crucial for the embryonic development and postnatal
survival of neurons (Schwartz and Breakefield 1980;
Wrathall 1986). All such candidate genes identified to
date have been excluded either on the basis of their chro-
mosomal localization or by direct examination, but it is
conceivable that the FD gene may be an as yet undis-
covered neurotrophin or receptor or a downstream
participant in a related signal-transduction pathway
(Breakefield et al. 1984, 1986; Blumenfeld et al. 1993b;
Slaugenhaupt et al. 1995).

By studying 26 families with multiple affected mem-
bers, we previously mapped DYS to chromosome 9q31-
q33, in an 11-cM region between D9S53 and D9S105.
The genetic defect was completely linked to D9S58, with
a LOD score of 21, and showed strong disequilibrium
with the 18 allele at this marker (Blumenfeld et al.
1993b). To precisely localize the DYS gene and to ex-
amine the evident founder effect in the Ashkenazim, we
analyzed 11 additional DNA markers, 7 of which were
generated in this study. These markers enabled us to
locate DYS centromeric to D9S58, in a 0.5-cM interval
between markers 157A3 and 43B1GAGT. Haplotype
analysis revealed a major core haplotype on 198% of
FD chromosomes, indicating that almost all FD carriers
share a common ancestor.

Families and Methods

Families with FD

For this work we used patient samples from two major
sources, the Dysautonomia Diagnostic and Treatment
Center at the New York University Medical Center and
the Israeli Center for Familial Dysautonomia at Had-
assah University Hospital, with approval from the in-
stitutional review boards at these institutions and at
Massachusetts General Hospital. For all patients in-
cluded in this study, FD was diagnosed either by F.B.A.
or by C.M., on the basis of the standard criteria (Axelrod
1984; Axelrod and Pearson 1984). We studied 212 Ash-
kenazi families, including 41 families with more than
one affected member (siblings, first cousins, and affected
uncles or aunts) and 2 families with consanguinity and
a single affected child. Together, 271 individuals with
FD (441 distinct FD chromosomes) were studied. Un-
affected parents in all 212 families with FD were studied;

in 102 of the families, siblings of the affected members,
grandparents, and siblings of the parents also were stud-
ied (492 non-FD chromosomes from obligatory carri-
ers). Control chromosomes (total of 324) were obtained
from unaffected individuals marrying into the families
with FD.

Identification of New Markers

Seven new polymorphic markers were generated from
cosmids in the FD critical region, by hybridization with
synthetic dioligonucleotides, trioligonucleotides, tetra-
oligonucleotides, and pentaoligonucleotides. Positive
cosmids were shotgun subcloned, and the positive sub-
clones were sequenced. Four of these markers, 157A3,
D9S310, D9S309, and D9S311, are (GT)n repeats;
88B2GA is a (GA)n repeat; 43B1GAGT is a (GA)n(GT)n

repeat; and 164D1 is an (AAAAC)n repeat (table 1).

DNA Analysis

Genomic DNA was prepared either from lymphoblast
cell lines (Anderson and Gusella 1984), with the
SDS–proteinase K method followed by phenol extrac-
tion, or directly from blood, with the Chelex-100
method (Walsh et al. 1991). PCR analysis was performed
on genomic DNA, by use of published oligonucleotide
primer pairs and annealing temperatures (Kwiatkowski
et al. 1992; Weissenbach et al. 1992; Gyapay et al. 1994;
Dib et al. 1996; also see Genome Database) or in ac-
cordance withtable 1. Typing of simple-sequence–repeat
polymorphisms was performed as described by Blumen-
feld et al. (1993a).

Results

Order of Markers in the DYS Region

We previously had localized DYS close to D9S58, in
an 11-cM region between D9S53 and D9S105. For the
present study, 13 single-sequence–repeat polymorphisms
from the DYS region were used, including both D9S58
and D9S105. On the proximal side, we substituted the
closer marker D9S172 (6 cM from D9S58) for the more
distant marker D9S53 (8 cM from D9S58). The order
of the 10 additional markers (table 1), with respect to
the aforementioned three anchoring loci, is as follows:
cen–D9S172–D9S261–88B2GA–43B1GAGT–164D1–
D9S1677–157A3–D9S310–D9S309–D9S58–D9S160–
D9S311–D9S105–tel. This map order was determined
sequentially from recombination events in reference ped-
igrees (Povey et al. 1997) and from recombination events
in our families with FD. No crossovers were observed
between 164D1 and D9S1677, but their relative order
was established by isolation of a bacterial artificial chro-
mosome clone containing D9S1677 and 157A3 but not
164D1.
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Table 1

Polymorphic Markers in the FD Haplotype

Marker PCR Primers (5′r3′)a or Reference
Allele

(Size [in bp]b)
Allele

Frequencyc Heterozygosity
CEPH

Standards

88B2GA GCCTGGGTGACAAGAGC 1 (116) .38 .72 133101 1,4
CTCATTGTATCCTTACATGGTG 2 (118) .17 133102 1,1

3 (120) .01
4 (122) .31
5 (124) .01

11 (136) .12
43B1GAGT GATACACCATGCATTTGC 3 (80) .01 .59 133101 5,8

GAAAATACAACTGTTCCAAG 4 (82) .03 133102 8,8
5 (84) .09
6 (86) .10
8 (90) .61
9 (92) .01

10 (94) .15
164D1 CACCAGTATACTCCAGC 2 (149) .01 .61 133101 4,5

TTAGATAGAAGTTATATTGC 3 (154) .15 133102 3,3
4 (159) .35
5 (164) .49

157A3 CTGCTGTAATAGAAGGGAAAGG 12 (140) .03 .29 133101 12,15
TCAACACCTAAGTCTAATCACC 13 (142) .84 133102 13,14

14 (144) .08
15 (146) .02
16 (148) .01
17 (150) .02

D9S310 Slaugenhaupt et al. (1994) 1 .02 .75 133101 3,5
2 .01 133102 3,3
3 .20
4 .07
5 .24
6 .38
7 .08

D9S309 Slaugenhaupt et al. (1994) 1 .01 .78 133101 9,11
2 .02 133102 9,10
3 .02
4 .07
5 .03
6 .08
7 .08
8 .06
9 .37

10 .24
11 .01
15 .01

D9S311 Slaugenhaupt et al. (1994) �1 .01 .40 133101 6,9
1 .08 133102 9,9
3 .01
4 .01
5 .01
6 .01
7 .10
8 .03
9 .70

10 .01
13 .04

D9S172 Weissenbach et al. (1992) 1 .07 .67 133101 2,4
2 .48 133102 2,2
3 .05
4 .24
5 .10

(continued)
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Table 1 (continued)

Marker PCR Primers (5′r3′)a or Reference
Allele

(Size [in bp]b)
Allele

Frequencyc Heterozygosity
CEPH

Standards

6 .02
7 .03
8 .01

D9S261 Gyapay et al. (1994) 0 .01 .67 133101 8,8
1 .07 133102 2,4
2 .09
3 .01
4 .17
5 .01
6 .01
7 .05
8 .53

10 .01
15 .04

D9S1677 Dib et al. (1996) 1 .01 .71 133101 9,9
3 .02 133102 8,10
4 .02
5 .02
6 .23
7 .08
8 .14
9 .31

10 .08
11 .05
12 .02
13 .01
14 .01

D9S58 Kwiatkowski et al. (1992) 1 .01 .98 133101 8,10
2 .01 133102 7,19
3 .02
4 .02
5 .03
6 .02
7 .02
8 .06
9 .08

10 .04
11 .05
12 .05
13 .11
14 .11
15 .07
16 .06
17 .01
18 .05
19 .03
20 .10
23 .01
24 .01
26 .03

D9S160 Weissenbach et al. (1992) �1 .01 .72 133101 6,6
0 .01 133102 6,7
2 .03
3 .06
4 .10
5 .06
6 .34
7 .38

(continued)
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Table 1 (continued)

Marker PCR Primers (5′r3′)a or Reference
Allele

(Size [in bp]b)
Allele

Frequencyc Heterozygosity
CEPH

Standards

D9S105 Genome Database 1 .02 .83 133101 8,8
2 .07 133102 4,8
3 .14
4 .14
5 .08
6 .06
7 .11
8 .31
9 .05

10 .01
11 .01

a For new polymorphisms.
b For new markers.
c On the basis of the analysis of 497 non-FD Ashkenazi Jewish chromosomes.

Table 2

Haplotypes Associated with FD

Haplotype
D9S-
172

D9S-
261 88B2GA

43B1-
GAGT 164D1

D9S-
1677 157A3

D9S-
310

D9S-
309

D9S-
58

D9S-
160

D9S-
311

D9S-
105

No. of
Chromosomes

Major 2 8 4 8 4 12a 13 5 10 18 7 9 8 435b

1 2 8 4 8 5 9 13 3 9 13 6 9 8 2
2 2 3 11 5 5 5 12 7 11 11 6 4 1 3
3 2 8 11 5 5 10 13 5 9 15 7 6 9 1

a 10-11-12-13-14 (see table 3).
b See figure 2 for details.

Fine Localization of DYS and Definition of New
Flanking Markers

To refine the minimum FD candidate region, we an-
alyzed 102 families with FD (41 with multiple affected
members). On the proximal side, the recombination
event depicted in figure 1A set 43B1GAGT as the closest
centromeric flanking marker. No additional crossovers
were detected by 88B2GA or D9S261, although the
more distant D9S172 (∼6 cM away) detected 14 recom-
binations with DYS. On the distal side, the closest flank-
ing marker is 157A3, on the basis of the crossover shown
in figure 1B. One additional crossover was found in each
of the following intervals: 157A3–D9S309, D9S309–
D9S310, and D9S309–D9S58. No recombinants were
observed between DYS and 164D1–D9S1677. Thus,
the FD candidate region has been reduced to the inter-
val 43B1GAGT–164D1–D9S1677–157A3, which, from
our analysis, was estimated to span !0.5 cM.

A Major FD Haplotype

We next undertook the haplotype analysis of FD, in
an attempt to further refine the candidate region and to
estimate the number of independent mutations repre-
sented in the FD population. A major founder haplotype

was observed for 435 (98.6%) of the 441 FD chro-
mosomes examined, with a core of alleles 8-4-12 at
43B1GAGT–164D1–D9S1677 (table 2) and with a con-
sensus set of alleles, for markers on either side, that
decayed because of historic recombination events. The
major founder haplotype in FD is recognizable across
the interval D9S261–D9S105, which is ∼3 cM. The
chromosomes that support historic recombinations
across the D9S261–D9S58 interval are depicted in figure
2. No events that would have narrowed the candidate
region were detected, although we observed one ances-
tral recombination event with 157A3 that confirms
157A3 as the closest telomeric flanking marker (fig. 2).
The next distal flanking markers, D9S310 and D9S309,
yielded evidence for an additional four and six ancestral
recombinations, respectively. On the centromeric side,
three apparent ancestral recombinations were observed
with 88B2GA, and six additional events were seen with
D9S261.

D9S1677 forms part of the conserved haplotype but
displays some allelic variation because of “slippage”
events that create new alleles (table 3). On most “major
haplotype” FD chromosomes, D9S1677 is represented
by a 12 allele (83.5%), but, on the remainder of FD
chromosomes, it is represented by a 10 allele (0.5%), an
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Figure 1 FD pedigrees showing recombination events that define
the candidate interval. A, Centromeric cross. B, Telomeric cross. Black-
ened bars represent FD chromosomes, and unblackened bars represent
non-FD chromosomes. The horizontal lines show the locations of the
recombination events.

11 allele (3%), a 13 allele (3%), or a 14 allele (10%),
even though adjacent markers remain unchanged. By
contrast, the extreme D9S1677 alleles—12, 13, and
14—are present on only 2.4%, 0.6%, and 0.6% of
non-FD chromosomes, respectively. The instability of
D9S1677 is further supported by our observation of two
allele changes from the 12 allele to the 13 allele, during
parent-child transmissions, in our families with FD.

Other FD Haplotypes

Six of 441 FD chromosomes revealed three different
haplotypes across the candidate region (table 2). All
three of these other haplotypes were observed in com-
pound heterozygotes with the major haplotype. We ob-
served minor haplotype 1 in two unrelated families, hap-
lotype 2 in three families, and haplotype 3 in one family.
The third rare haplotype was inherited from a woman
who claimed not to be of Jewish descent; she was of
Irish-German/Sicilian origin. Other than the unusual
family history, this child exhibited all the diagnostic cri-
teria for FD and had classic symptoms.

Discussion

In an extensive study of families with FD, undertaken
to refine the location of DYS in 9q31, we used 11 new
polymorphic markers, including 7 specifically developed
as part of this research study. Within the 11-cM can-
didate region that we had reported previously (Blumen-
feld et al. 1993a), we observed recombination events, in
families with FD, that define a DYS candidate region of
!0.5 cM, between the new markers 43B1GAGT and
157A3.

One major haplotype for the DYS region was detected
on 198% of FD chromosomes. Indeed, all the patients
with FD studied have at least one copy of the major
haplotype. This dramatic linkage disequilibrium indi-
cates that one major founder mutation is responsible for
virtually all FD cases among the Ashkenazim. For several
other recessive hereditary diseases, a major founder mu-
tation has been observed among Ashkenazi Jews, but
none is a single founder mutation that is as predominant
as the haplotype found for FD. For example, the major
mutations found in Tay Sachs disease, Gaucher disease,
and cystic fibrosis are observed on 78%, 76%, and 48%
of disease chromosomes, respectively (Triggs-Raine et al.
1990; Abeliovich et al. 1992; Beutler et al. 1993).

Of our 271 patients with FD, only 9, from six families,
were compound heterozygotes with one atypical hap-
lotype. These three rare haplotypes may reflect indepen-
dent FD mutations. In particular, the inheritance of hap-
lotype 3 from a non-Ashkenazi parent suggests that at
least one of the rare FD haplotypes may have been in-
troduced from a non-Ashkenazi population. However,
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Figure 2 Extended haplotype analysis of 435 FD chromosomes,
with nine markers. The major haplotype is across the top of the box.
The other haplotypes, which are believed to be derived from ancestral
recombination events, are depicted, with the identical FD core markers
outlined.

Table 3

Allele Variation Observed at D9S1677

D9S261 88B2GA 43B1GAGT 164D1 D9S1677 157A3 D9S310 D9S309 D9S58
No. of

Chromosomes

8 4 8 4 10 13 5 10 18 2
8 4 8 4 11 13 5 10 18 10

6 9 13 3
x x 8 4 12 13 x x x 362
x 4 8 4 13 13 5 10 18 6

6 9 13 6
6 9 16 1

x 4 8 4 14 13 5 10 18 30
6 9 13 1
6 9 16 12
6 6 7 2

NOTE.—See figure 2 for details of “x” alleles.

the possibility that haplotypes 1 and 2 represent mu-
tations that have occurred more recently in the Ashke-
nazim cannot be ruled out. In addition, one of the minor
haplotypes observed in two affected individuals (hap-
lotype 1 [table 2]) has the same alleles as the major
haplotype for the centromeric markers D9S172–
43B1GAGT. Compound heterozygotes for this haplo-
type appear to express a classic FD phenotype. There-
fore, this haplotype conceivably could result from a
historic recombination event with the major haplotype,

between 43B1GAGT and 164D1, rather than repre-
senting an independent mutation.

If haplotype 1 is a derivative of the major FD hap-
lotype, then DYS would be positioned between 164D1
and the flanking marker 43B1GAGT. Haplotypes on
non-FD Ashkenazi chromosomes also can be interpreted
as providing tentative support for a disease-gene location
proximal to D9S1677. None of the 497 non-FD chro-
mosomes tested has a haplotype that matches the con-
sensus FD haplotype. However, careful examination
of those non-FD haplotypes, with alleles 11–14 at
D9S1677, revealed four chromosomes that have the
haplotype (11,12)-13-6-9-13-7-9-X for the markers
D9S1677–157A3–D9S310–D9S309–D9S58–D9S160–
D9S311–D9S105, which matches the distal portion of
the haplotype observed on 40 (9%) of 435 FD chro-
mosomes (fig. 2). Centromeric to D9S1677, all four non-
FD chromosomes have the haplotype 11-5-5, instead of
4-8-4, for the markers 88B2GA–43B1GAGT–164D1. It
is intriguing to speculate that these non-FD chromo-
somes may reflect a historic recombination event telo-
meric to 164D1 that would place the DYS gene proximal
to D9S1677. Although we do not feel that our current
data provide strong enough evidence for definitively re-
fining the localization of DYS within the 43B1GAGT–
164D1–D9S1677–157A3 interval, these interpretations
of rare haplotype 1 and of the selected non-FD chro-
mosomes favor the centromeric portion of the candidate
region.

The FD candidate region now extends from
43B1GAGT to 157A3 and is defined on each side by an
actual recombination event that has been observed in a
parent-child transmission in one of our families with FD.
In other studies, haplotype analysis has assisted in pin-
pointing the location of a disease gene within a candidate
interval previously defined by actual recombinants. For
example, in Ashkenazi Jewish dystonia, haplotype anal-
ysis reduced the interval containing the DYT1 gene from
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∼1.8 Mb to ∼150 kb (Ozelius et al. 1997). Similarly, in
Huntington disease, haplotype studies that revealed an-
cestral crossovers progressively narrowed a 2-Mb can-
didate region to ∼200 kb (Gusella and MacDonald
1993). We observed significant linkage disequilibrium
on FD chromosomes across a region of ∼3 cM, from
D9S261 to D9S105. Despite the fact that we genotyped
a very large number of FD chromosomes, the candidate
region could not be narrowed further by use of ancestral
recombination events. Only one additional historic re-
combination event was observed, with 157A3, and none
were seen with 43B1GAGT (fig. 2). Thus, the extent of
linkage disequilibrium on FD chromosomes and the
comparison of historic and actual recombination events
in FD suggests that the major FD mutation probably
occurred relatively recently in the Ashkenazi population,
certainly within a few hundred years. The high incidence
of FD in the Ashkenazim suggests that the mutation
likely was present during a period of rapid population
expansion from a small number of founders (Risch et
al. 1995).

The incidence of FD is 1 in 3,700 live births among
Ashkenazi Jews, and the calculated carrier frequency is
1 in 32 individuals (Maayan et al. 1987). We genotyped
324 control chromosomes from spouses of FD carriers,
and the major FD haplotype was observed on 1.54%
(expected frequency 1.56%). The fact that none of the
FD-associated haplotypes was observed in non-FD chro-
mosomes, together with the ability to identify the major
FD haplotype in the general Ashkenazi Jewish popula-
tion, indicates that accurate and sensitive genetic testing
can be provided for family members with FD and their
spouses (Blumenfeld et al. 1995; Eng et al. 1995; Od-
doux et al. 1995).

The definition of a precise candidate region for DYS
has set the stage for the identification of the FD defect,
through location cloning. FD belongs to a family of he-
reditary sensory neuropathies for which accurate diag-
nosis challenges clinicians. The observation of at least
one non-Jewish FD chromosome in our data indicates
that other non-Jewish patients might have escaped di-
agnosis for FD. Cloning of the DYS gene, on the basis
of its chromosomal location, will provide the means for
direct comparison both of “atypical” cases and of cases
of other sensory neuropathies, to FD, allowing classifi-
cation based on the primary genetic cause rather than
on subtle symptomatic differences.
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