Conclusions: The risk of stroke in WPW syndrome is very low (0.7%). Only one clinical factor differs significantly from remaining population, the relatively old age (mean 62±49 years). All other clinical factors as sex, associated heart disease, spontaneous symptoms and all electrophysiological data did not differ from remaining population.

Identification of electrophysiological substrate for ventricular arrhythmias in patients with repaired tetralogy of Fallot.

Maxime De Guillebon (1), Frederic Sacher (2), Nicolas Derval (2), Pierre Bordachar (2), Xavier Iriart (1), Philippe Ritter (2), Melleze Hocini (2), Pierre Jais (2), Michel Haissaguerre (2), Jean-Benoît Thambo (1)

Introduction: Patients with repaired tetralogy of Fallot (TOF) represent a new category of patients referred to electrophysiology laboratory for ventricular arrhythmias (VA) mapping and ablation. Different anatomical regions have been identified as potentially responsible for reentry: ventricular septal defect (VSD) patch, surgical incisions, right ventricular outflow tract (RVOT) patch. We aimed to investigate electrophysiological substrate responsible for potential VA in patients with repaired TOF.

Methods: All patients with repaired TOF referred to the CHU de Bordeaux for VA evaluation from January 2008 to April 2010 underwent right ventricular (RV) 3D mapping. Sinus activation and voltage mapping was then performed before VA induction ± ablation.

Results: 7 patients (4 male, 42.5 ± 12 years old) underwent RV mapping during VA evaluation. Surgical repair of TOF had been realized 36 ± 11 years before the procedure. All patients displayed a right bundle branch block on 12 lead electrocardiogram.

Sinus rhythm RV activation begins in all patients in the septum and then activates the RV centrifugally with a zone of slow conduction with a double potential (100 ± 30 ms) going from the tricuspid annulus (TA) to the RVOT. Voltage maps (figure) show systematically the same pattern of a zone of low voltage (< 1.5 mV) due to the VSD repair close to the RVOT scar area. This area fits with the slow conduction area. In the 2 patients with sustained ventricular tachycardia (VT), critical isthmus was located in this area.

Conclusions: Specific activation and voltage pattern was found in these Fallot patients. In the 2 patients with sustained VT, the critical isthmus was found between VSD repair patch and RVOT scar.

Conclusions: There are important variations of AP refractory periods during electrophysiological study except in patients with very short AP refractory periods. Therefore the values of AP RP’s should be interpreted carefully in association with the other data of electrophysiological study as the induction of tachycardias.

Changes in T wave morphology prior to onset of ventricular arrhythmias in ICDs

Philippe Maury (1), Frank Raczka (2), Jean Luc Pasquie (2), Lionel Beck (3), Jerome Taeb (4), Alexandre Duparc (5), Benoit Hallier (6), Pierre Mondoly (1), Anne Rollin (1), Fujian Qu (6), Riddhi Shah (6), Taraneh G Farazi (6), Marc Delay (1), Claude Barnay (4), Jean-Marc Davy (2)

Introduction: T wave morphological changes before onset of ventricular arrhythmia are poorly known. ICD-stored intracardiac electrograms (EGM) present a unique opportunity for detecting temporal changes in repolarisation before initiation of VT/VF.

Methods: 57 implanted patients with St Jude Medical ICDs (45 men, 64 ± 12 yo, mean EF 34 ± 15 %) were prospectively enrolled. Eleven different T wave parameters were extracted from EGM (T amplitude, T peak time, T end time, T duration between baseline crossing and between points of maximal slopes, T peak to T end, maximal ascending and descending slopes, timing of points of maximal slopes and T wave area). Values of each parameter in recordings prior to VT/VF were compared to control recordings sharing comparable QRS and T wave morphology and similar heart rate in the same pts.

Results: 23 VT/VF episodes (24 ± 13 beats) and 13 baseline (25 ± 9 beats) (ns) were analyzed in 12 pts (1.9 episodes/ pt). Mean heart rate was 71 ± 17 bpm for episodes and 66 ± 16 bpm for baseline recordings (ns). Significant differences were found in T wave amplitude, T wave maximal slopes, T peak.
time and timing of the T wave maximal ascending slope (although ns when corrected by the heart rate).

Conclusions: T wave amplitude is higher, T wave slopes are steeper and initial parts of the T wave are earlier before ventricular arrhythmia compared to baseline. Detection of T wave changes prior to VT/VF might be useful in predicting imminent arrhythmia occurrence.

Example of T wave changes before VT

184
Predictive factors of difficult implantation procedure in cardiac resynchronization therapy

Laurence Bisch, Antoine Da Costa, Cécile Rromeyer-Bouchard, Lyla Khriiss, Karl Izaa
Université de Saint Etienne, Cardiologie, Saint Etienne, France

No studies have been published regarding factors related to difficult CRT implantation procedure and primary left ventricular (LV) lead implant failure.

Objectives: The aim of this prospective study was twofold: (1) to evaluate the prevalence and predictive factors of prolonged CRT implantation procedure; (2) to identify the predictive factors of primary LV lead implantation failure.

Methods and Results: Between November 2008 and September 2009, 106 pts underwent primo CRT implantation. Population characteristics were a mean age of 69±10 years; 28.3% female; NYHA class 3.2±0.3; LVEF (29±6%); QRS width 146±23 ms. Primo CRT implantation was obtained in 96/106 pts (90.5% primary success). A second procedure was successfully attempted in 6/10 pts with a second more experienced operator (5.7%). Among the remaining 4 pts, 1 pt required an epicardial LV lead implantation, and the implantation was not reattempted in the other 3 pts. The overall success rate of CRT implantation was 96.2% (102/106 pts). Procedure parameters were as follows: LV threshold (1.4±0.9 V); LV wave amplitude (152±85 mV); LV impedance (874±2150 ohms); median procedure time (skin to skin), 55 min. [45-80] and median of procedure fluoroscopy time, 11 min. [6-2-29]. In 24 patients (22.6%), difficult procedures requiring 85 min of implantation duration occurred. By univariate analysis, predictive factors of difficult implantation were LV ejection fraction (25.6±6 vs. 30.2±8%; p=0.02), LVESD (62±12 vs. 56±12 mm; p=0.04) and the operator’s experience (very experienced operator vs. less experienced operator; p=0.006). By multivariate analysis, only primary LV lead implantation failure, LVESD and operator’s experience were independently associated with difficult procedures. In this patient subset with primary LV lead implant failure (n=10), the only independent predictive factor was the LVESV (p=0.03).

Conclusions: In this study, the rate of difficult CRT device implantation procedures approached 25%. Both the degree of LV dysfunction and the operator’s experience were independent predictors of surgical difficulties.

185
T wave alternans in short QT Syndrome

Philippe Maury (1), Alexandre Duparc (2), Pierre Mondoly (1), Anne Rol-lin (1), Marc Delay (1)
(1) CHU Rangueil Toulouse, Cardiologie, Toulouse, France - (2) CHU Rangueil, Toulouse, France

Introduction: T wave alternans (TWA) is a reliable marker of risk for malignant ventricular arrhythmias whose prognosis value has been established in many populations. Short QT syndrome (SQTS) is a recently described and very rare channelopathy defined by a decrease in repolarisation duration and carrying a risk of ventricular fibrillation. TWA in SQTS has not been evaluated at yet.

Methods: 6 patients with SQTS (QT 310 ± 16 ms, QTc 329 ± 11 ms) underwent microvolt TWA measurement using spectral analysis. TWA testing was performed using Heartwave II (Cambridge Heart ™) during bicycle exercise and classified as negative, positive or indeterminate according to the published standards for clinical interpretation.

Results: there were 6 men (mean age 24 ± 2 yo): 4 asymptomatic, 1 with previous sudden cardiac death and 1 with unexplained syncope. 3 patients belonged from the same family. Familial history of SQTS was present in 4 (2 families) and history of unexplained sudden death was found in both families. Ventricular fibrillation was induced in 2 of 5 investigated patients. Two patients were implanted with an ICD without any appropriate therapy during follow-up. No patient was on any medical therapy. Genetic analysis was pending in each but without result at yet. TWA was negative in each patient except in one indiscernible asymptomatic patient (indeterminate due to too fast heart rate). Maximal negative heart rate was 113 ± 5 bpm.

Conclusions: Conversely to what is observed in other settings, TWA testing is negative in most SQTS patients even in the symptomless or indiscorable ones. This may be explained by the longer diastolic interval according to the restitution curve theory. Measurement of TWA for risk stratification in SQTS is therefore useless.

186
Outcome of patients over 75 years old receiving a pacemaker to treat sinus-node dysfunction.

Mathieu Steinbach (1), Marie-Pierre Douchet (2), Babe Bakouboula (2), François Bronner (2), Michel Chauvin (2)
(1) CH Haguenau, Cardiologie, Haguenau, France - (2) NHC Hôpital Universitaire de Strasbourg, Cardiologie, Strasbourg, France

Background: The prognosis of patients over 75 years old receiving a pacemaker in the context of sinus-node dysfunction is unclear.

Objective: This study sought to evaluate the incidences of atrial fibrillation (AF), heart failure (HF) and death in this population and the role of the pacing mode in their prognosis.

Methods: This was a retrospective study on 102 patients over 75 years old (mean 82.2 ± 8.6 years) who received a pacemaker in the context of sinus-node dysfunction.

Results: During the follow-up period (mean: 806 days), 36 patients (35.3%) experienced HF and 47 patients (46.1%) an episode of paroxysmal AF, 19 patients (18.6%) progressed to chronic AF, and 29 (28.4%) died, the fatal event being sudden death or of cardiac origin in almost half these patients (44.8%). Patients assigned to dual-chamber minimal ventricular pacing showed a significantly lower rate of HF episodes (p=0.023), and a lower all-cause mortality (p<0.001) than those assigned to conventional dual-chamber pacing. In contrast, the two groups did not differ with regard to either paroxysmal or chronic AF, regardless of whether or not the algorithms designed to prevent AF were activated.

Conclusion: In patients with a high risk of mortality and morbidity, the use of dual-chamber pacemakers incorporating an algorithm minimizing ventricular pacing seems to decrease the number of HF episodes and mortality. On the basis of this finding, the implantation of such devices even in this age group seems justifiable.