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a b s t r a c t

The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part

potentiated their success and diversification. Jaw development and patterning involves an intricate

spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic

epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated

regulation of these interactions is critical for both the ontogenetic registration of the jaws and the

evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development

and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as

mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have

been partnered by essential work attempting to understand the origins of jaws that has focused on the

jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within

extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their

critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw develop-

ment in chondrichthyans is still lacking. Recent advances in genome and molecular developmental

biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of

chondrichthyan jaw development. Here, following the ‘Hinge and Caps’ model of jaw development, we

have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative

changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula

embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in

the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw

development and further validating the utility of the ‘Hinge and Caps’ model in comparative studies

of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence
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Fig. 1. Vertebrate cladogram emphasizing specific ch
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of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in

chondrichthyans, further highlighting the importance of this region for the development and evolution

of jaw structure in advanced gnathostomes.

& 2013 Elsevier Inc. All rights reserved.
Introduction

Vertebrate evolution was profoundly affected by developmen-
tal innovations, many – such as the elaboration of the brain,
neural crest cells and ectodermal placodes – involving the head
(Gans and Northcutt, 1983; Langille and Hall, 1989; Shimeld and
Holland, 2000). One result of these innovations, the gnathostome
(jawed vertebrate) skull, is structurally complex. Adaptations
involving the gnathostome skull have been involved in nearly
every major vertebrate transition: in particular, the advent of a
segmented, iterated branchial arch skeleton associated with the
head enabled the eventual acquisition of jaws among a group
of vertebrates—a landmark event that, in large part, lead to an
immense gnathostome radiation and diversification (Fig. 1) (de
Beer, 1985; Carroll, 1988; Gregory, 1933; Hanken and Thorogood,
1993; Janvier, 1996; Jarvik, 1980; Jollie, 1962; Mallatt, 1997;
Radinsky, 1987; Romer, 1966; 1967). In particular, developmental
innovations involving the jaws and their primordia have been
connected with major evolutionary transitions, including the
colonization of land by tetrapods (being in part enabled by
acquisition of internal choanae) and the mammalian ability to
masticate while breathing (enabled by the presence of a second-
ary palate) (Carroll, 1992; Evans, 2003; Gans, 1988; Goodrich,
1958; Halstead, 1968; Hildebrand, 1988; Kemp, 2005; Kingsley,
1912; Moore, 1981; Panchen, 1967; Parrington, 1940; Rosen et al.,
1981; Schmalhausen, 1968; Tamarin, 1982; Zhu and Ahlberg,
2004).

As a result of this great diversification and radiation, gnathos-
tome skulls (including their jaws) are characterized by variegated
elaborations of cranial design that have manifested amazing
aracter states in the evolution of

g bony fish and tetrapods) in purpl

cific significant jaw-related charac
end-point phenotypes; however, regardless of the particulars of
end-point phenotype, gnathostome cranial skeletal ontogeny also
notably exhibits a high degree of fidelity to an initial, basic
structural design, or baüplan (Allin and Hopson, 1992; Barghusen
and Hopson, 1979; de Beer, 1926, 1931, 1985; Bellairs and Kamal,
1981; Cubbage and Mabee, 1996; Depew and Simpson, 2006;
Goodrich, 1958; Hanken and Hall,1993; Harrison, 1996; Janvier,
1993; Jarvik, 1980; Jollie, 1957, 1962, 1971; Moore, 1981; Nelsen,
1953; Novacek, 1993; Reynolds, 1913; Rieppel, 1993; Romanoff,
1960; Romer, 1967; Schultze, 1993; Smith, 1993; Trueb, 1993;
Watson, 1926; Zusi, 1993). This baüplan includes a chondrocra-
nium composed of a number of basic though fundamental neuro-
cranial and splanchnocranial units, containing the palatoquadrate
(PQ) and Meckel’s cartilage (MC) cores of the upper and lower jaws,
respectively, as well as an associated dermatocranium (in all but
chondrichthyans) (Fig. 2). That both structural fidelity and elabora-
tion of end-point phenotypes characterize gnathostome cranial
structural organization has led to a number of questions regarding
how the genetic, molecular, and cellular mechanisms underlying
this apparent fidelity and elaboration of design are (and have been)
manifested, maintained, coordinated and modified to generate the
known cranial skeletal morphologies.

We have chosen to address such questions by first focusing on
the comparative development of gnathostome jaws, initially by
asking whether all jaws are made (and patterned) in the same
manner. To this end, we have operationally defined and character-
ized primary jaws as articulated, appositional oral apparatuses
principally derived from the splanchnocranial, dermatocranial and
associated dental elements arising in the embryo from the anterior
most branchial arch (BA), or BA1, with a small yet significant
jaws. On the cladogram, agnathans such as the lamprey are highlighted in green,

e. The lesser spotted dogfish shark, Scyliorhinus canicula, is an elasmobranch (boxed

ter states are indicated in red.



Fig. 2. Jaw pattern and polarity and the adherence of S. canicula embryos to the general gnathostome cranial baüplan. (A) Generalized gnathostome chondrocranium. The

neurocranium (nrc) is in blue, the palatoquadrate cartilage (PQ) of the upper jaw is in yellow, and Meckel’s cartilage (MC) is in lavender. The position of the jaw

articulation, or hinge, indicated by the grey disc. (B) Schema of the elasmobranch cranial baüplan. (C) Stylized schema of structural organization of jaws emphasizing the

positioning of the hinge (grey disc). (D) Jaw structural polarity relative to the Hinge and the Caps (as representing points furthest from the hinge). (E) Diagram of the

integrated nature of the patterning system for developing jaws in amniote embryos, exemplified by the E10.5 mouse, as suggested by the ‘Hinge and Caps’ model. ((F)–(J))

Classic schemata ((F), (H)) and actual skeletal preparations ((G), (I)–(K)) emphasizing S. canicula embryonic cranial organization. The preparation in ‘(J)’ has had its jaws

removed. (L) Calcified adult jaws of an elasmobranch shark. The red arrowheads in ‘(F)’, ‘(G)’, ‘(K)’ and ‘(L)’ indicate the PQ elements run medially to articulate with their

contralateral, homotypic partners rather than running toward (and articulating with) the laterally placed nasal capsules as is typical for other gnathostomes, while the

purple arrowheads indicate the midline meeting of contralateral MC. Abbreviations: ch, ceratohyal cartilage; dml, distal mandibular midline; grk, gill raker; hm,

hyomandibular cartilage; lc, labial cartilage; lFNP, lateral frontonasal process; lrp, lateral rostral process; MC, Meckel’s cartilage; mdBA1, mandibular first branchial arch;

mFNP, medial frontonasal process; mrp, medial rostral process; mxBA1, maxillary first branchial arch; nc, nasal capsule; nrc, neurocranium; ns, nasal septum; oe, oral

ectoderm; olf, olfactory capsule; opt, optic capsule; otc, otic capsule; PP1, first pharyngeal plate; pq, palatoquadrate; RC, Reichert’s cartilage; RP, Rathke’s pouch; vert,

vertebrae; l, lambdoidal junction.
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contribution, in all but chondrichthyans, from the olfactory
placode-associated frontonasal prominences (FNP). Thus defined,
polarity is an inherent character state of jaws as minimally there is
the ‘Hinge’ and there is all ‘Other’ (i.e., everything else) (Fig. 2). A
significant consequence of such polarity is the potential for mod-
ularity within the appositional units (Depew and Compagnuicci,
2008; Fish et al., 2011). Modularity is a notable trait as (1) it
plausibly explains both integration within jaw structures and
autonomy between jaw structures and (2) it potentially provides
a key mechanism for evolutionary modifications and transforma-
tions of jaws.

The developmental system that coordinates and patterns the
craniofacial primordia that give rise to jaws involves an intricate
spatiotemporal series of reciprocal inductive and responsive
interactions between the cephalic epithelia (both endodermal
and ectodermal) and the cranial neural crest (CNC) and cephalic
mesodermal mesenchyme (reviewed in Depew et al., 2002b;
Francis-West et al., 2003; Minoux and Rijli, 2010). The coordi-
nated regulation of these interactions is critical for both the
ontogenetic registration of the jaws (i.e., yielding appositional
units working as a functional whole) and the evolutionary
elaboration of variable jaw morphologies and designs. Following
the above operational definition of jaws, a ‘Hinge and Caps’ model
has previously been proposed that addresses the mechanisms of
jaw development and evolution by placing the articulation, and
subsequently the polarity (and potential modularity), of the upper
and lower gnathostome jaws in the context of CNC competence to
respond to positionally located cephalic epithelial signals (for
discussions, see: Depew et al., 2005; Depew and Simpson, 2006;
Depew and Compagnuicci, 2008). Like most current models of
jaw development and evolution, which have arisen mostly from
molecular and cellular data in chicks and mice with some
augmentation from other osteichthyan model organisms such as
the zebrafish, this model expands on an evolving model of jaw
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development and polarity within the amniote BA1. The ‘Hinge
and Caps’ model seeks to explain a developmental patterning
system that apparently keeps gnathostome jaws in functional
registration yet tractable to potential changes in functional
demands over time. More specifically, it relies upon a system
for the establishment of positional information where pattern and
placement of the ‘Hinge’ is driven by factors common to the
junction of the maxillary (mxBA1) and mandibular (mdBA1)
branches of BA1 (including the oral epithelium and the first
pharyngeal plate), and of the ‘Caps’ by the signals emanating
from the distal-most BA1 midline and the lambdoidal junction
(where mxBA1 meets the FNP; hereafter l-junction) (Fig. 2). In
this particular model, the functional registration of jaws is
achieved by the integration of ‘Hinge’ and ‘Caps’ signaling, with
the ‘caps’ sharing at some critical level a developmental program
that potentiates their own coordination. The model further posits
that empirical patterns of regional gene expression at pharyngula
stages of gnathostome embryos reflects the ‘Hinge and Caps’
nature of the patterning system of jaws.

Current models of jaw development and evolution have been
built on molecular and cellular evidence gathered mostly in
amniotes and partnered by essential work attempting to under-
stand the origins of jaws that has focused on the jawless lamprey
(Depew and Simpson, 2006; Myojin et al., 2001; Kuratani, 2004,
2005, 2012; Shigetani et al., 2002). Clearly lacking, however, is
any understanding of the molecular and cellular underpinnings of
jaw development in chondrichthyans, the gnathostome outgroup
to osteichthyans and the clade to be compared to agnathans and
osteichthyans in order to infer the ancestral state in the gnathos-
tome last common ancestor (Fig. 1). Chondrichthyans are
amongst the oldest, most basal extant gnathostomes making
them essential targets of investigations in the analysis of jaw
development and evolution (de Beer, 1931; Carroll, 1988; Coolen
et al., 2009; Daniel, 1934; Dean, 1909; El-Toubi, 1949; Godard and
Mazan, 2012; Goodrich, 1909, 1918; Gregory, 1933; Holmgren,
1940, 1942; Radinsky, 1987; Schaeffer and Williams, 1977; Wilga,
2002). Despite their apparent possession of the oldest, least
modified jaws, how similar or different the spatiotemporal
expression patterns are in chondrichthyans of genes known to
be critical for amniote jaw development is unknown.

The Chondrichthyan clade consists of the Elasmobranchii

(skates, rays and sharks) and the Holocephali (chimaeras) (Fig. 1).
Chondrichthyans exhibit fundamental vertebrate characteristics,
such as CNC and an adaptive immune system, as well as funda-
mental gnathostome characteristics such as jaws and teeth
(Coolen et al., 2007, 2009; Didier et al., 1998; Ferreiro-Galve
et al., 2008; Freitas and Cohn, 2004; Gillis et al., 2009a, 2009b,
2011; Holmgren, 1940, 1942; Kuratani and Horigome, 2000;
Maisey, 2001, 2008; Meyer and Zardoya, 2003; Nelsen, 1953;
O’Neill et al., 2007; Reif, 1980; Romer, 1966; Smith et al., 2009;
Wilga, 2002; Wotton et al., 2008). While in general gnathostomes
have, in addition to their splanchnocranial cores, a dermatocranial
component to their jaws, elasmobranches such as the shark have
much simpler jaw apparatuses: their upper jaws consist of
calcified PQ cartilages and associated teeth while their lower
jaws consist of calcified MC cartilages and associated teeth
(Barghusen and Hopson, 1979; de Beer, 1931; Carroll, 1988;
Daniel, 1934; Dean, 1909; El-Toubi, 1947, 1949; Goodrich, 1909,
1918; Gregory, 1933; Grogan et al., 1999; Kingsley, 1912).
Significantly, sharks do not possess FNP-premaxillary compo-
nents in their upper jaws. Due to its phylogenetic position within
the chondricthyes, the natural sister group of osteichthyes (bony
fish, amphibians, and amniotes), the shark has historically been a
significant model organism in comparative anatomy and physiol-
ogy (Balfour, 1878; de Beer, 1931; Dean, 1909; Daniel, 1934; El-
Toubi, 1949; Goodrich, 1918; Holmgren, 1940; Kingsley, 1907;
Schultze, 1993). Recent advances in genomic resources as well
availability of eggs, make the lesser spotted dogfish shark,
Scyliorhinus canicula, a significant model organism for the
renewed, molecular study of the origins and diversification of
jaws (Coolen et al., 2009; Godard and Mazan, 2012). Moreover, S.

canicula, as a scyliorhinid shark, is a basal member of the largest
order of extant sharks, the Carcharhininiformes, which comprise
one of the four groups of Galeomorph chondrichthyans. As such, S.

canicula is representative of the Elasmobranchii, one of the most
basal, extant natural groups of gnathostomes (Fig. 1; Arnason
et al., 2001; Iglesias et al., 2005). Herein, we further examine the
empirical foundation for the ‘Hinge and Caps’ model by investi-
gating evidence of heterotopic (relative changes in position) and
heterochronic (relative changes in timing) shifts in gene expres-
sion, relative to amniotes such as mice, in the jaw primordia of S.

canicula.
Materials and methods

Anatomical analyses

Staining of skeletal tissues of embryos harvested from egg cases
was achieved following established protocols, where the Alizarin
Red stained calcified cartilage and dermal denticles, while Alcian
Blue stained uncalcified cartilaginous tissues (Depew, 2008). Sam-
ples were stored in 100% glycerol at room temperature. Skeletal
preparations were photographed using a Leica MZFLIII microscope
with a Leica DFC300FX camera.

Scanning electron microscopy

Freshly harvested embryos were fixed in 4% paraformaldehyde
and 0.2% glutaraldehyde in PBS. The specimens were then washed
in PBS, dehydrated in a graded ethanol series, and critical point
dried in liquid carbon dioxide. Specimens were subsequently
mounted onto aluminum stubs and sputter coated with gold-
palladium. They were thereafter examined and photographed
with a FEI Quanta FEG scanning electron microscope operating
at 10 kV.
Whole embryo in situ hybridization

Digoxygenin-labelled ribroprobes were prepared from cDNA
extracted from S. canicula embryos and subsequently cloned
in pSPORT vectors. Cloned fragments were amplified using the
following primers: 50 cDNA-pSPORT1 (50AAAGC TGGTACGCCTGCA)
and T7-30pSPORT1 (50TAATACGACTCACTATAGGGAGAGCGTACG TA-
AGCTTGGATC). The obtained PCR product was purified using
a High Pure kit (Roche). Shark embryos were fixed with 4%
paraformaldehyde in PBS over-night at 41C on a rotating platform.
Samples were then rinsed, dehydrated in a MeOH series, and
subsequently stored at �201 C in 100% MeOH until use. Whole
mount in situ hybridization was performed following Depew et al.
(1999).
Results

The embryonic jaws and their branchial arch antecedents in

Scyliorhinus canicula

The developing chondrocranium (including the splanchnocra-
nium) of S. canicula has historically been used as illustrative of the
general elasmobranch chondrichthyan state (Fig. 2B, F and H) (e.g.,
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de Beer, 1931). Pre-hatching embryos harvested from egg cases
and subsequently stained with alcian blue demonstrate the adher-
ence of S. canicula embryos to the general gnathostome baüplan
(Fig. 2F–K). The chondrocranium consists of a neurocranium with
sensory capsules and a splanchnocranium containing significant
PQ and MC elements of the upper and lower jaws, respectively.
Two notable differences between the elasmobranch chondrichth-
yan and osteichthyan jaws are evident: first, elasmobranch jaws
such as those of S. canicula do not contain a dermatocranium
associated with the PQ and MC elements; and second, rather than
running toward (and articulating with) the laterally placed nasal
capsules, PQ elements run medially to articulate with their con-
tralateral, homotypic partners.

Despite a significant history in anatomical analyses, the
jaw-yielding branchial arches of S. canicula have rarely been the
Fig. 3. Characterization of pharyngeal stage S. canicula craniofacial primordia. ((A)–(F))

Various cranial primordia are pseudo-colored to facilitate comparison between stag

between mxBA1 and mdBA1, while the green and red arrowheads emphasize the distin

embryo (E, E0 and F, where E0 is an oblique view of the embryo in E and F is a magnified v

pouch (pseudo-colored blue) at the midline is clearly in evidence. This proximity furthe

the invaginating olfactory pit. The embryo in ‘G’ is hemi-sected to reveal the pharyngeal

The asterisks in ‘G’ indicates a discrete mandibular bulge. Pseudocoloring: red, optic pri

pit; yellow, maxillary first branchial arch; lavender, mandibular first branchial arch.

primordia (in green) in the shark (I). The BA of the shark, typically being proximo-dista

in ‘(J)’ and ‘(K)’ the oral–aboral, medial-lateral and proximal–distal axes of the branchi

the schematized BA of ‘(J)–(L)’ are indicative of the notion of modularity as a potenti

anticipated patterns of BA gene expression, as posited by the ‘hinge and caps’ model

anterior neuropore; BA, branchial arch; FB, forebrain; gbp, gill bud primordia; HB, hin

first branchial arch; nrc, neurocranium; olf, olfactory (nasal) capsule; olf plc, olfactor

primordia; otc prim, otic primordia; pc, pharyngeal cleft; pnrp, posterior neuropore; v
focus of investigation in and of themselves. To facilitate our
comparative analysis of the shark BA, we used scanning electron
microscopy, which exquisitely details the surface appearance of
anatomic, including embryonic, structures (Tamarin and Boyde,
1977; Tamarin, 1982), to further characterize the BA of S. canicula

embryos from stage 17 to stage 25 (see Ballard et al., 1993, for
staging criteria). Though differential translucence using light
microscopy reveals the presence of the first pharyngeal pouch
(Ballard et al., 1993), at stages 17 and 18 the external surfaces of
the cephalic region of S. canicula embryos do not yet evince
clearly demarcated individual BA (Fig. 3A and B). From stage 19
onward, however, discernable BA are present, and by stage 21 the
anterior pharyngeal plates uniting the pharyngeal clefts with
the pharyngeal pouches have begun to rupture between the BA
(Fig. 3C). At this stage the BA are dorso-ventrally oriented
Scanning electron micrographs of stage 17, 18, 21, 23 and 25 S. canicula embryos.

es. White bordered blue arrows indicate the maxillary–mandibular constriction

ctive oral (green) and aboral (red) subdivisions of the proximal BA. In the stage 25

iew of E0), the close proximity of contralateral mxBA1 to each other and to Rathke’s

r emphasizes the great distance, typical of elasmobranchs, between the mxBA1 and

endodermal (phar endo) surface of the BA and pharyngeal pouches (phar pouches).

mordia; turquoise, olfactory primordia; salmon, second branchial arch; green, otic

((H)–(L)) Color-coordinated schemata of the jaws (H) and their antecedent BA

lly elongated structures, are particularly amenable to schematization. For instance,

al arches are schematized in three (J) and two (K) dimensions. The green boxes in

al consequence of a ‘hinge and caps’ system of patterning of the BA. (M) Various

, superimposed on two-dimensional schemata of shark BA1. Abbreviations: anrp,

dbrain; MB, midbrain; mdBA1, mandibular first branchial arch; mxBA1, maxillary

y placode; olf prim, olfactory primordia; opt plc, optic placode; opt prim, optic

ert, vertebrae.
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and rod-like, with BA1 beginning to show the oral maxillary–
mandibular constriction (MMC) that characterizes later stage
embryos (white and purple arrowheads, Fig. 3). Moreover, otic,
optic, and olfactory placodogenesis has occurred and incipient
sensory primordia are developing dorsad to the BA (Fig. 3).

By stage 23, the first six BA are delineated, and, while clearly
still rod-like in nature, a dorso-lateral (proximal) to ventro-
medial (distal) orientation becomes evident. Two significant traits
are further apparent at this stage: first, unlike amniote embryos,
the proximal (dorsal) ends of each mxBA1 do not run toward
olfactory pits but rather run dorsad just caudal to the developing
optic primordia (compare Fig. 2E and Fig. 3D); second, an oral
(rostral)–aboral (caudal) polarity initially becomes evident, as
evinced by discrete bulges within the oral–aboral axes of the
individual BA (exemplified by green arrowhead, Fig. 3D).

Further intra-arch polarity is patent by stage 25 (a stage, based
on relative cephalic placode and BA development, roughly equiva-
lent to E10-11 in mice) when the proximal end of the first three
BA are distinctly comprised of two discrete, proximo-distally
oriented, bulges (see green arrowheads, Fig. 3E and F). The
MMC is accentuated at this stage, and gill bud primordia have
begun to sprout on the caudal (aboral) aspect of BA2–BA4 (Fig. 3E
and F). Notably, gill buds appear to sprout from a mid-way point
along the BA – proximo-distally aligned with the position of
MMC – and appear to proliferate both proximally and distally
from this point. The BA, moreover, have taken an overall chevron
shape (Fig. 3E0), bent at the position of the constriction and buds,
with the distal mandibular ends running toward the midline and
heart. The proximal-most mxBA1 of stage 25 embryos, while still
beneath the optic primordia, are also strikingly close to Rathke’s
pouch as they have begun to run toward their contra-lateral,
homotypic partners (Fig. 3F), and do not run toward the devel-
oping olfactory apparatus. Unlike similarly staged amniote nasal
pits, the olfactory invaginations of the shark at this stage are only
deep dorsally, creating a round, dorsal frontonasal mass with little
evidence of discrete medial and lateral FNP: thus, discrete
l-junctions are not seen. The linguo-caudal aspect of the proximal
end of mdBA1, just before the MMC, further exhibits a discrete
bulge (green asterisk, Fig. 3G), additionally highlighting the
patent morphologic polarity within the S. canicula BA.

Thus, by stage 25, the BA of S. canicula embryos exhibit clear
proximo-distal (dorso-ventral), oral–aboral (rostro-caudal) and
medio-lateral (buccal–lingual) morphologic – and therefore devel-
opmental – polarity (Fig. 3H–M). This polarity can be schematized
with reference to the expectations of gene expression patterns
posited in the ‘Hinge and Caps’ model, and aspects of the developing
axes (whether one, two or three dimensional) of the BA can be
visualized to facilitate comparisons with osteichthyan (or amniote)
embryos. For instance, gene expression may be hinge-centric (i.e.,
hinge-related), cap-centric, oral-centric, aboral-centric, nested, etc.
(Fig. 3M). For convenience, we utilize this ordering mechanism in
our analysis, presented below, of gene expression patterns investi-
gated in S. canicula embryos.

Gene nesting patterns within the shark BA: The elasmobranch Dlx

code

Dlx genes in amniotes are expressed in appendages, or out-
growths, from the main body axis, including in the basal ganglion,
limb buds, genital tubercle and BA (Panganiban and Rubenstein,
2002). In amniotes, six Dlx genes have been detected and
described: Dlx1, Dlx2, Dlx3, Dlx5, Dlx6 and Dlx4 (reviewed in
Depew et al., 2005). In the embryonic mouse, these six Dlx genes
are differentially expressed in a regional, nested pattern in
the ectomesenchyme along the proximo-distal axis of the BA
(Fig. 4A–C). Notably, Dlx genes are also variably expressed in the
cephalic ectoderm. Chromosomal organization is, moreover,
believed to be key to Dlx biology, with the six genes arranged as
tightly linked, convergently transcribed (tail-to-tail), bigene tan-
dems (or first-order (cis) paralogues) located near Hox gene
clusters (Stock et al., 1996; Panganiban and Rubenstein, 2002).
Protein structural similarity outside of the homeodomain, plus
chromosomal location, indicates that the Dlx genes can be placed
into two clades of second-order (trans) paralogous groups: Dlx1/6/4
and Dlx2/5/3. Tightly linked Dlx genes share regulatory regions
and are expressed in similar patterns within the developing BA
mesenchyme (Dolle et al., 1992; Bulfone et al., 1993; Robinson and
Mahon, 1994; Ellies et al., 1997a,b; Depew et al., 2002a, Panganiban
and Rubenstein, 2002; Ghanem et al., 2003; Qiu et al., 1995, 1997;
Sumiyama and Ruddle, 2003). Hence, the linked, first-order para-
logous Dlx bigenes share nested expression patterns within the
mesenchyme of the BAs: the linked pair Dlx1/2 are expressed
throughout mxBA1 and mdBA1 while the Dlx5/6 pair is essentially
restricted to mdBA1 and Dlx3/4 to a sub-domain therein (Fig. 4A–C).

Based on genetic loss-of-function experiments in mice, and the
familial nested expression pattern within the amniote BA ecto-
mesenchyme, it has been argued that a Dlx code for regional
specification along the proximo-distal axis of the BA regulates
intra-BA skeletal morphology (Depew et al., 2002a,b, 2005). This
code is in line with the ‘Hinge and Caps’ model as Dlx nesting and
morphologic transformations due to loss of nested genes roughly
correlate to mxBA1–mdBA1 divisions centered about the pre-
sumptive hinge region of BA1. Though stringent spatial and
temporal detailing has yet to be presented, Dlx nesting in the
BA of other osteichthyans, including zebrafish, cichlids and chicks,
has generally been in line with what has been published for mice
(Blentic et al., 2008; Ellies et al., 1997a, 1997b; Renz et al., 2011;
Talbot et al., 2010; Walker et al., 2006) (Fig. 4A–C). Lampreys,
which lack segmented branchial structures, possess multiple Dlx
genes but, notably, nesting does not appear to characterize
expression in their BA (Neidert et al., 2001; Kuraku et al., 2010;
Kuratani, 2012; but see also Cerny et al., 2010).

Previous work has demonstrated that chondrichthyans are
aligned with amniotes, rather than with teleostean bony fish such
as Danio rerio which exhibit additional chromosomal duplications
followed by loss, in possessing an array of three linked-pairs of Dlx

genes (Renz et al., 2011; Stock, 2005; Ellies et al., 1997a,b). To
determine whether Dlx nesting is a shared feature of chondrichthyan
and osteichthyan BA development (i.e., is symplesiomorphic), we
examined six S. canicula genes (ScDlx1, ScDlx2, ScDlx3, ScDlx4, ScDlx5

and ScDlx6; Debiais-Thibaud et al., 2011) homologous (orthologous)
to amniote Dlx1-6 and addressed the ontogeny of the patterns of
their gene expression in the BA, beginning with the ScDlx2/5/3 trans
paralogous group.
ScDlx2

At stage 19, streams of ScDlx2þ cells leaving the neural folds and
entering the BA are detected through in situ hybridization (blue
arrows, Fig. 4F). ScDlx2þ cells are also detected circling the dorsal
aspect of the optic primordia, as well as in two stripes, one
connecting the circum-optic population with the midbrain stream
entering BA1 (red arrows, Fig. 4F) and another directed, rostral to the
eye, dorsad over the forebrain (green arrows, Fig. 4F). At stage 20,
ScDlx2 transcripts clearly fill the entire lengths of the first three BA
(yellow arrows), including mxBA1 and mdBA1, and are beginning to
fill BA4. By stage 25, ScDlx2 transcripts are still detectable throughout
the proximo-distal axis of BA1–BA6, though the distal (e.g., mdBA1)
halves of BA1–BA3 show noticeably less strength of signal. Moreover,
at this stage the mid-way position of the BA, aligned with the MMC,
evince the weakest levels of transcript (yellow asterisks, Fig. 4F). At
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stage 27 this trend toward reduction of expression distally has
intensified such that, whilst proximal BA ectomesenchyme remain
highly ScDlx2-positive, relatively little expression is seen in the distal
halves of the BA including mdBA1. Unlike what is seen with murine
Dlx2, ScDlx2 transcripts are not detected in the epithelium of the
distal mdBA1 midline or at the proximal most mxBA1 at these stages
(orange arrows, Fig. 4F).
ScDlx5

ScDlx5 transcripts are initially detected at stage 18 in the
midline surface cephalic epithelium associated with the recently
closed anterior neuropore (Fig. 4G and Supplementary Fig. 2)
and continue to be expressed here through stage 25. ScDlx5

transcripts are clearly detected in BA1-3 by stage 21, though
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BA2 distinctly appears to have greatest levels at this stage (red
arrow, Fig. 4G). Stages 21–22 also highlight a subsequent trend
toward an oral–aboral (rostro-caudal) asymmetry of expression in
the BA as the aboral edge of ectomesenchymal expression extends
proximally further than the oral edge (see light blue arrows,
Fig. 4G). An additional trend, seen beginning stage 25, is the
extension of significant ScDlx5 expression (yellow arrows, Fig. 4G)
in the BA proximal to the position of the MMC. Moreover,
epithelial expression is also detected in the dorsal olfactory
placode and pit (orange arrows, Fig. 4G).

ScDlx3

ScDlx3 displays an overall dynamic cephalic embryonic expres-
sion pattern, in particular outside of the BA (Fig. 4H). From stage
21 through stage 27, ScDlx3 expression is seen in the proximal-
most oral ectoderm of mxBA1 (orange arrows, Fig. 4H). ScDxl3 is
also detected in the distal BA, coming on simultaneously, or just
soon after, ScDlx5. Transcripts of ScDlx3 are clearly nested within
the ScDlx5 domain, but unlike ScDlx5 do not, at any stage, extend
proximally past the MMC. The oral–aboral asymmetry of expres-
sion characteristic of ScDlx5 is likewise evinced, to a lesser degree,
with ScDlx3 in BA1, but is not significant in the caudal BAs. ScDlx3

is extensively expressed in the ectoderm associated with the
primary sensory placodes, most notably in the ectoderm of the
olfactory primordia.

ScDlx1, ScDlx4 and ScDlx6

As stated above, ScDlx1, ScDlx4 and ScDlx6 form linked pairs
with ScDlx2, ScDlx3 and ScDlx5, respectively. As has typically been
seen in osteichthyans, the expression patterns of linked pairs in
S. canicula generally mirror each other though small differences are
encountered (Supplementary Figs. 1 and 2). For instance, ScDlx6 is
expressed in the distal halves of the BA, including mdBA1, but does
not extend proximally at later stages as its linked pair gene, ScDlx5,
does. Overall, S. canicula exhibits a tiered, terraced nested pattern of
Dlx gene family expression.
Conservation of hinge-centric patterns of gene expression

The ‘Hinge and Caps’ model suggests that the placement of the
jaw articulation (i.e., the hinge) is fundamental to the patterning
and organization of the jaws (Depew and Simpson, 2006; Depew
and Compagnuicci, 2008). Corollary to this notion is the expecta-
tion that unique, hinge-centric patterns of gene expression will
characterize the antecedent jaw articulation region of the BA. We
therefore examined whether S. canicula evinced patterns of gene
Fig. 4. Patterns of nested ScDlx expression in S. canicula. ((A)–(C)) Patterns of gene exp

schema of nested murine Dlx gene expression. (E) Reiterated schema of potential nested

19, 20, 25 and 27 S. canicula embryos. Red arrows indicate a distinct post-optic streak of
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mandibular BA1 (md). In the stage 25 panel, yellow asterisks are aligned with the positi

blue arrow in the magnified panel of the stage 27 embryo highlights the recession, just

bordered orange arrow points to the lack of signal in the maxillary ectoderm. (G) Sc

transcripts are detectable in the anterior ectoderm associated with the closing anter

subsequently found in the distal BA of stage 21 and 22 embryos. An oral–aboral as

proximally in the aboral (caudal) side of the BA (light blue arrows). The purple arrow

unclear (red arrow). Notably, by stage 25, ScDlx5 transcripts extend beyond the positi

canicula embryos. Dark blue and green arrows highlight distinct ectomeric boundaries

bordered orange arrows indicate mxBA1 ectodermal expression, while black arrows indi

of ScDlx3, which is distally restricted in general, is also seen (light blue arrows) although

expression in the first arch. Abbreviations: ba1–6, branchial arches 1 through 6; cth, ce

branch of the second branchial arch; md, mandibular first branchial arch; mx, maxillar

opt, optic primordia; otc, otic primordia; stg, stage; l, lambdoidal junction.
expression similar to amniote genes typically found at the
mxBA1–mdBA1 juxtaposition at the hinge (Fig. 5A). Specifically,
we examined the expression of S. canicula homologues of Emx1,
Emx2 and Bapx1, three genes expressed at the mxBA1–mdBA1
juxtaposition (i.e., the hinge) in amniotes (Bell et al., 2001; Gorski
et al., 2002; Lettice et al., 2001; Mihailescua et al., 1999; Santagati
et al., 2005; Tucker et al., 2004; Williams et al., 1997; Fig. 5).

We found that, in addition to being expressed in the brain
(Derobert et al., 2002), at stage 25þScEmx1 and ScEmx2 are both
expressed in the BA of pharyngula stage S. canicula embryos (Fig. 5).
Specifically, expression is centered midway along the proximo-distal
axis of the BA, positionally aligned with the MMC (Fig. 5B and C).
Expression of ScEmx1 is particularly dynamic in this position
(Fig. 5B), with transcripts being detectable orally and aborally at
the MMC as well as in a lateral proximo-distal stripe placed midway
between the oral and the aboral aspects of BA1 (yellow arrows,
Fig. 5B). Moreover, a slight asymmetric oral–aboral expression
pattern, still centered midway along the proximo-distal axis, char-
acterizes the caudal BA (Fig. 5B). ScEmx2 expression (Fig. 5C), much
like that seen with murine Emx2 (Fig. 5D), is highly hinge-centric.

Bapx1 expression in amniotes has been specifically cor-
related with the PQ–MC articulation (i.e., with the ‘primary’ jaw
articulation; Lettice et al., 2001; Miller et al., 2003; Tucker et al.,
2004), and therefore Bapx1 represents a notable hinge-centric
gene (Fig. 5G). In pharyngula stage S. canicula embryos from stage
19 to stage 27, ScBapx1 is hinge-centric, being elaborately
expressed around the MMC as well as in positionally aligned
cells of the caudal BA (Fig. 5E and F). In particular, at stages 25
and 27, ScBapx1 transcripts are found in both the endoderm and
the ectoderm associated with the pharyngeal clefts, being off-set
between the oral (rostral; blue arrows) and aboral (caudal; yellow
arrows) aspects of each BA (Fig. 5E and F).

We further considered evidence of either the specific absence,
or the relative down-regulation, of gene expression at the MMC
(and its positional correlates in the caudal BA) to be further
evidence of hinge-related patterns of gene expression. In this
regard, we found ScShh expression an exemplar of the latter
category. Specifically, the extensive ScShh expression that char-
acterized the proximo-distal axes of the endodermal linings of
the BA from stage 21 to stage 25 was found to be distinctly
diminished at the MMC as well as midway along the proximo-
distal axes of the more caudal BA (Fig. 5H).

Conservation of caps-centric patterns of gene expression

Finding that S. canicula shared with amniote embryos hinge-
centric patterns of expression of specific genes, we sought further
evidence of shared, conserved (symplesiomorphic) patterns of
expression within the ‘Caps’ regions of shark embryos.
ression of Dlx2 (A), Dlx5 (B) and Dlx3 (C) in E10.5 mouse embryos. (D) Summary

patterns in shark BA. ((F)–(H)) ScDlx gene expression. (F) ScDlx2 expression in stage
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ion (MMC). The yellow arrows indicate the distal extension of expression into the
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ymmetry in expression is apparent whereby transcripts extend slightly further

points to the MMC. The significance of greater expression in ba2 at early stages is

on of the MMC. (H) Dynamic cephalic ScDlx3 expression in stage 21, 25 and 27 S.
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Specifically, we examined three subtypes of gene expression:
(1) genes dually expressed in both the proximal BA1 associated
with the amniote l-junction and the distal mdBA1, including
Prx1, Alx4, Tbx2 and Bmp4 (Fig. 6; Ashique et al., 2002; Barlow and
Francis-West, 1997; Bei and Mass, 1998; ten Berge et al., 1998;
Beverdam et al., 2001; Foppiano et al., 2007; Furuta and Hogan,
1998; Chesterman and Kern, 2002; Depew et al., 2002b; Francis-
West et al., 2003; Gong and Guo, 2003; Liu et al., 2005a, b;
McGonnell et al., 2011; Qu et al., 1998, 1999; Satokata and Maas,
1994; Wall and Hogan, 1995; Wu et al., 2004; Zirzowa et al.,



C. Compagnucci et al. / Developmental Biology 377 (2013) 428–448 437
2009); (2) a gene, Hand2, solely associated in amniotes (and
osteichthyans) with the distal midline of mdBA1 and the more
caudal BA (Thomas et al., 1998; Kuraku et al., 2010; Miller et al.,
2003; Fig. 7); and (3) a gene, Raldh3, solely associated in amniotes
with the proximal BA1 associated with the l-junction (Dupe et al.,
2003; Compagnucci et al., 2011) (Fig. 7).

Genes expressed in amniotes in both sets of ‘Caps’ can be
further sub-categorized in a number of ways, including through
separation of those differentially expressed in epithelial cells of
one cap and mesenchymal cells in the other (such as Dlx3) and
those expressed the same type of cells in each cap, such as Prx1 in
the mesenchyme. With regard to the former, and as described
above, ScDlx3 is indeed expressed in the mesenchyme of BA1 of
the shark distal to the MMC while in the epithelium of the
proximal mxBA1 (Fig. 6B and C). It is further expressed in the
epithelium associated with the olfactory placode but is not
expressed in epithelial cells bridging the placode with mxBA1.

Prx1, moreover, bears a notable level of conservation between
its expression in amniotes and chondrichthyans (compare Fig. 6D
and E). Both ScPrx1 and Prx1 are expressed in the polar ends, or
caps, of BA1 (blue and white arrows at the mxBA1 portion of the
l-junction and blue arrows at the distal end of mdBA1) in their
respective taxonomic correlatives. Each, moreover, displays a
distinct oral/rostral-aboral/caudal separation in expression (com-
pare blue and yellow arrows with blue and white arrows in
Fig. 6D, stage 23 and 6E), especially within the proximal BA,
including a distinguished caudal swath of expression in cells of
the proximal BA2 (green arrows, Fig. 6D and E). This oral/aboral
separation correlates with the discrete bulges in the BA1 identi-
fied in the scanning electron micrographs (Fig. 3E). Notably, at
early stages of BA development, ScPrx1 expression is expansive
throughout the caudal BA but with ontogenetic progression
expression becomes restricted to the caps. In the mouse, the
mxBA1 and mdBA1 domains are connected by a small bridge of
expression, which is absent in the shark.

As with Msx1 in amniotes, ScMsx1 transcripts are found in the
mesenchyme of both proximal and distal caps in pharyngula stage
shark embryos (Fig. 6F and G). Similar to ScPrx1, ScMsx1 is initially
expressed extensively through the BA as they form (stage 22, Fig. 6F)
but becomes restricted to the caps regions with ontogenetic progres-
sion of each BA (stage 25þ , Fig. 6F). Notably, the oral/aboral polarity
evinced with ScPrx1 in the proximal BA is also encountered with
ScMsx1 (see blue and white and blue and yellow arrows, Fig. 6F),
though in the caudal BA transcripts appear aborally restricted. There
are, however, differences with murine expression evident: for
instance, while Msx1 is continuously expressed from the frontonasal
processes through the mxBA1 at the l-junction, ScMsx1 is not.
Moreover, a thin hinge-positioned proximo-distal line of ScMsx1

expression is seen in BA1 of S. canicula, although whether this has
any correlation with the symmetrical expression of amniote Msx1 at
the hinge region is unclear (green arrows, Fig. 6F and G). Further-
more, ScTbx2 expression, which is rather dynamic, bears a numbers
of similarities with ScMsx1 and ScPrx1 and is likewise caps-centric in
expression (Fig. 6H and I).
Fig. 5. Hinge-centric gene expression in S. canicula. (A) Schema delineating the expe
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Bmp4 expression in the caps epithelium of the amniote BA1 of
both the l-junction and distal mdBA1 midline (Fig. 6K) has been
well recorded (e.g., Abzhanov et al., 2004; Ashique et al., 2002;
Barlow and Francis-West, 1997; Bei and Mass, 1998; Foppiano
et al., 2007; Gong and Guo, 2003; Lee et al., 2001; Liu et al., 2005a,
2005b; Shigetani et al., 2000) and was a distinct component of the
evidential scaffold establishing the ‘Hinge and Caps’ model (see
Depew and Simpson, 2006). In S. canicula embryos, ScBmp4

transcripts are detectable in the distal mdBA1 (blue arrows,
Fig. 6J) and the proximal, maxillary BA1 (blue and white arrows,
Fig. 6J). Although ScBmp4 is expressed in the optic primordia, just
as Bmp4 is in the mouse, we failed to detect frontonasal expres-
sion connecting with mxBA1 in shark embryos.

The osteichthyan BA, including those of the mouse, are
characterized by Hand2 expression solely at their distal, or
mandibular cap, ends (light green arrow, Fig. 7C). This pattern is
ancestral for gnathostomes as it likewise characterizes the BA of
S. canicula embryos (light green arrows, Fig. 7B). The opposite, or
l-junctional, pole of amniote BA1 in early pharyngula stage
embryos, moreover, is characterized by the expression of Raldh3

(Fig. 7F; Dupe et al., 2003), a gene encoding a dehydrogenase
involved in the synthesis of the potent signaling molecule,
retinoic acid (Brickell and Thorogood, 1997). Indeed, in murine
embryos at E9.5, Raldh3 transcripts are typically found in the
optic primordia and ventrally in the ectoderm positionally located
between the proximal most mxBA1 and the edge of the olfactory
placode, while by E10.5 transcripts are more restricted, being
detected in the optic primordia and the ventral olfactory pits (i.e.,
associated with the l-junction) (Fig. 7F). In a manner akin to E9.5
murine embryos, stage 21 S. canicula embryos express ScRaldh3

in the optic primordia as well in the ectoderm between the
proximal-most mxBA1 and the edge of the olfactory placode
(Fig. 7E). In line with homologous expression in the E10.5 murine
embryo (Fig. 7F), ScRaldh3 continues to be expressed in the optic
primordia of stage 25þ shark embryos, as well as in cells
associated with the ventral most portion of the olfactory pit
(Fig. 7E); in the shark embryo, however, additional circum-optic
expression is encountered at this later stage.

Detection of heterotopic patterns of gene expression between

amniote and Scyliorhinus canicula embryos: Exemplars

While we were interested in assessing whether a basic ‘cap-to-
hinge-to-cap’ architecture of gene expression was a shared
feature of gnathostome craniofacial primordia, we were equally
interested in discerning the possible presence of heterotopic and/
or heterochronic patterns in gene expression between amniote
and chondrichthyan embryos. Below, we present three further
examples of heterotopic patterns of gene expression of varying
degrees between amniotes and chondrichthyan embryos.

As the Alx homeobox genes are thought to have disparate
patterns of gene expression in tetrapods (McGonnell et al., 2011),
we examined the expression of one member of this family, Alx4,
in pharyngula stage S. canicula embryos. In amniotes, Alx4 is
cted positioning of hinge-centric patterns of gene expression. The purple arrow
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expressed in a caps pattern, being detected in the both the mxBA1
and FNP of the l-junction and in the distal midline of mdBA1
(McGonnell et al., 2011; Twigg et al., 2009, and Supplementary
Fig. 3B). Moreover, in chicks – but not in mice – Alx4 is also
expressed circum-orbitally. ScAlx4 is detected circumscribing the
developing eye, as well as in the developing FNP, like its
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orthologue in the chick (Supplementary Fig. 3A). However, we
failed to detect significant ScAlx4 signal in mdBA1 mesenchyme in
stage 21 to 27 shark embryos.

Meis genes encode proteins that form dimerization partners
with the protein products of Pbx1-3, genes that have recently
been implicated in playing significant-tissue specific roles in
amniote craniofacial development (Ferretti et al., 2011; Selleri
et al., 2001), as well as acting as Hox-cofactors. We therefore
examined ScMeis2 expression in S. canicula embryos (Supplemen-
tary Fig. 3C). We found that, as might be expected of a Hox

co-factor, ScMeis2 expression is absent in BA1 in stage 20 and 23
S. canicula embryos although significant proximo-distal lines of
expression were detected from BA2 and the caudal BA. Unlike
what we see with its murine orthologue (Supplementary Fig. 3D),
significant levels of ScMeis2 were also found associated with the
optic primordia (black arrows, Supplementary Fig. 3C). In line
with amniote expression, ScMeis2 was detected in the FNP and in
mxBA1 (yellow arrow, Supplementary Fig. 3C) though, unlike in
amniotes, it was not detected in the non-optic cells between the
two. In contrast to what we found with ScMeis2, murine Meis2 is
also found in mdBA1 and in a more significant proportion of BA2.

Fgf8, encoding a fibroblast growth factor with significant
developmental roles during development, has distinct cephalic
expression patterns during ontogeny (Fig. 8; Abu-Issa et al., 2002;
Abzhanov and Tabin, (2004); Compagnucci et al., 2011; Crossley
and Martin, 1995; Neubüser et al., 1997; Song et al., 2004; Szabo-
Rogers et al., 2008; Trumpp et al., 1999; Tucker et al., 1999). In
both the chick and mouse, for instance, Fgf8 is expressed in the
isthmus (the midbrain/hindbrain boundary), in the ventro-lateral
cephalic ectoderm (including the lining of the olfactory pits), in
the pharyngeal plates, and, significantly, in the hinge-centric oral
ectoderm of both mxBA1 and mdBA1 (Fig. 8D and E). One notable
distinction between the chick and the mouse, however, is that in
the mammal Fgf8 expression along the dorsal olfactory pit
spreads ventrally during ontogeny and eventually unites at the
l junction with the ectoderm of the mxBA1 (see red arrows, E10.5
embryo, in Fig. 8E) while that in the avian does not (as exempli-
fied by red arrows in the HH23 embryo, Fig. 8D). As with the
amniote embryos, ScFgf8 is detected at the isthmus and in the
ventro-lateral cephalic ectoderm, including in the dorsal olfactory
pit (Fig. 8B and C). ScFgf8 is also significantly expressed in both
the rostral/oral and caudal/aboral aspects of the pharyngeal clefts.
Strikingly at odds with what is seen with the amniotes, however,
we failed to detect expression within the oral ectoderm of either
mxBA1 or mdBA1 of the shark embryo.
Discussion

As their taxonomic appellation implies, jaws have been of
central importance to the evolution and diversification of gnatho-
stomes. Tracing the paleontologic pattern of the intricate evolution
of jaws and their associated structures has long been an active
Fig. 6. Comparative shark (S. canicula) and murine (Mus musculus) caps-centric gene ex

of gene expression. PC: proximal cap. DC: distal, mandibular cap. O: oral. AB: aboral. (

distinct conservation both of the mesenchymal expression (purple arrows) distal to the

olfactory ectoderm (purple-bordered white arrows). Unlike the shark, the mouse has co

Prx1 expression. Purple-bordered white arrows indicate rostro-proximal caps express

expression. Purple-bordered yellow arrows indicate distinct caudo-proximal maxilla

expression of Prx1 evinced in the proximal-most ba2 of both the shark and the mouse
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((F), (G)) Comparative Msx1 expression. Arrows as above though the purple-bordered ye
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endeavor. More recently, approaching a molecular, cellular, and
genetic reconstruction of this pattern has also come to the fore to
partner these studies.

The seminal evolutionary event leading to jaws appears to
have been the acquisition in an ancient agnathan taxa – possibly
one related to a diplorhinic ostracoderm – of a segmented,
articulated, iterated branchial skeleton (Fig. 1; Forey and
Janvier, 1993; Gai et al., 2011; Gregory, 1933; Janvier, 1993,
1996; Kuratani, 2012; Kuratani et al., 2012; Mallatt, 1997; Moore,
1981; Radinsky, 1987; Romer, 1966; Young, 1981). From this, the
first gnathostome fish subsequently appeared, over 400þ million
years ago, and rather quickly thereafter four major groups of
jawed fish appeared: Placoderms, Acanthodians, Chondrichthyans
and Osteichthyans (Carroll, 1988; Janvier, 1996; Jarvik, 1980;
Jollie, 1962; Moy-Thomas and Miles, 1971; Miles, 1964; Schultze,
1993; Watson, 1937). In line with a fundamental reorganization
of the agnathan crania, these first gnathostome fish all possessed
paired nostrils, paired nasal capsules and paired trabecula cranii,
as well as three semicircular canals: notably, moreover, these
initial gnathostomes shared a fundamental design and structural
organization to their jaws, features that have been conserved
attributes of all subsequent gnathostomes (e.g., Barghusen and
Hopson; 1979; de Beer, 1985; Goodrich, 1958; Gregory, 1933;
Halstead, 1968; Hildebrand, 1988; Moore, 1981; Schultze, 1993).
Placoderms, however, possessed a number of anatomical features
differing from the other three groups: for instance, the placoder-
mal PQ was lateral to the jaw musculature rather than being
medial and typically a joint formed between the well sutured (but
rigid) head and the shoulder portions (Carroll, 1988; Dean, 1909;
Maisey, 2001; Schaeffer and Williams, 1977). Such differences,
among others, have suggested to many that Placoderms were
derived from a basal lineage different than that giving rise to the
Acanthodians and the extant gnathostomes (Davis et al., 2012;
Schaeffer and Williams, 1977).

The evolutionary inter-relationships between the other three
groups – the Acanthodians, Chondrichthyans, and Osteichthyans
– have been somewhat more elusive but have been intriguing
points of investigation for some time (Brazeau and Ahlberg, 2006;
Carroll, 1988; Davis et al., 2012; Dean, 1909; Halstead, 1968;
Holmgren, 1942; Miles, 1964; Schaeffer and Williams, 1977;
Schultze, 1993; Watson, 1937). Acanthodians, though restricted
to the Paleozoic, are particularly significant in these investiga-
tions as they constitute one of the oldest known groups (if not the
oldest) of gnathostomes and possessed characteristics of both
Chondrichthyans and Osteichthyans. For instance, they possessed
bony cranial skeletal elements but also had upper jaw PQ
elements with shark-like morphology (Carroll, 1988). Historically,
the questions have been whether Acanthodians were thus to be
aligned with basal sharks or with basal bony fish and what this
then might tell us about which morphologic (or, by extension
with the extant groups, what molecular) character states might
be ancestral (plesiomorphic) and which derived (apomorphic) in
nature.
pression. (A) Schema delineating the expected positioning of caps-centric patterns

(B), (C)) Comparison of shark ScDlx3 (B) and mouse Dlx3 (C) expression evincing a

maxillary–mandibular constriction (MMC; black arrows) and of the maxillary and

ntinuous expression of Dlx3 at the lambdoidal junction (l). ((D), (E)) Comparative

ion associated with the maxillary ba1 while purple arrows point to distal caps

ry expression. The dark green arrows highlight the distinct trans-ba2 swath of

. Black arrow: mmc. The yellow arrows and asterisks in the stage 21 and stage 23

cript is initially found in the post-ba1 arches but which dissipates during ontogeny.

llow arrows indicate the proximo-caudal aspect of the caudal BA in addition to that

ximo-distally oriented medial line in the shark and at the first pharyngeal plate in

lambdoidal junction (l) of the mouse. ((H), (I)) S. canicula (H) and M. musculus

xpression. Yellow arrow indicates expression in ba1 and ba2 at the first pharyngeal

ugh 6; hym, hyomandibular second branchial arch; md, mandibular first branchial

, optic primordia; otc, otic primordia; stg, stage; l, lambdoidal junction.



Fig. 7. Conserved expression of restricted proximal caps and restricted distal caps expression in shark (S. canicula) and murine (M. musculus) embryos. (A) Schema
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Recent investigations, including principle component (phenetic)
analysis coupled with phylogenetic analysis of Acanthodian, Chon-
drichthyan and Osteichthyan crania, have suggested that the
more shark-like characteristics of Acanthodians are, in fact, shared
ancestral states (symplesiomorphic) for crown group gnathos-
tomes: that is, the last common ancestor of extant gnathostomes
was shark-like (rather than bony fish-like) in morphologic specifi-
city and character (Davis et al., 2012; Brazeau, 2009). Thus, our
advances in the understanding of the molecular, cellular and
genetic characteristics of the developing shark jaw primordia yield
further insight into the basal organizational state of the gnathos-
tome jaw and subsequently provide a platform for investigations
into the patterning mechanisms underlying jaw development and
evolution throughout the Gnathostomata.
Pattern and polarity in gnathostome jaw development

Herein, we have presented an anatomical and molecular exam-
ination of early jaw development, conceptually centered around the
‘Hinge and Caps’ model, in embryos of the lesser spotted dogfish
shark, S. canicula. One patent purpose was to gain insight into the
basal molecular organizational state of the gnathostome jaw pri-
mordia, as epitomized by this particular elasmobranch, and then
initiate a comparison with other gnathostome taxa by searching for
evidence of heterotopic and/or heterochronic patterns of gene
expression through comparison with other taxa about which we
have a greater degree of understanding of their jaw development—
namely the amniotes Gallus gallus (chicks) and Mus musculus (mice).

Though a developmental staging series (followed herein) has
been put forth for early S. canicula embryos (Ballard et al., 1993) it
does not give any specific thought to the relative development of
the craniofacial primordia that give rise to the jaws. To facilitate
subsequent comparisons with amniote development, we followed
this staging series and utilized scanning electron microscopy to
examine the ontogeny of the early embryonic development of
S. canicula, paying particular attention to the relative development
of the BA and the olfactory, optic, otic, and hypophyseal placodes
and pits (Fig. 3). From our SEM analysis, it became clear that
proximo-distal, medio-lateral and rostro-caudal polarities in
morphology are patent early in shark BA ontogeny and that some
of these polarities are iterative within the BA as a series. Thus
both the jaws and their primordia exhibit polarity; a significant
consequence of such developmental polarity is the potential for
the establishment of modularity in jaw construction (Depew and
Compagnuicci, 2008; Fish et al., 2011).

We found that polarity of gene expression patterns also
characterizes the developing branchial arches of S. canicula. For
instance, along the proximo-distal axes of the BA, we recognized
at least four basic patterns: (1) expression centered at the mid-
points of the BA (i.e., at the ‘hinge’), as evinced by ScBapx1,
ScEmx1, and ScEmx2; (2) expression, complementary to this first
category, at the polar ends of the BA (i.e., the ‘caps’), as exempli-
fied by ScMsx1, ScPrx1, ScTbx2, and ScBmp4; (3) nested expression
of related genes, such as the tiered, terraced nesting of ScDlx1/2,
ScDlx3/4 and ScDlx5/6; and (4) expression confined to one BA1
polar extreme or the other, as typified by expression of ScHand2 in
the distal-most mdBA1 and ScRaldh2 at the proximal end of
mxBA1. These patterns also characterize the amniote state.

Sharks and modeling the etiology of BA polarity and modularity in

jaw development

Because modularity plausibly explains both integration within
jaw structures and autonomy between jaw structures, as well as
potentially providing a mechanism for evolutionary modifications
and transformations of jaws, understanding the developmental
origins of polarity and modularity within the developing jaws
is a key endeavor in addressing jaw development and evolution
(Fish et al., 2011). Current models of jaw development typically



Fig. 8. Notable heterotopy of Fgf8 expression in the oral ectoderm. (A) Schema delineating the expected positioning of caps-centric patterns of gene expression. O: oral

(in green). AB: aboral (in yellow). ((B), (C)) ScFgf8 in S. canicula embryos ranging from stage 19 to stage 27. Green arrows indicate the oral ectoderm, while yellow arrows

indicate the pharyngeal clefts formed from the plates. Red arrows highlight the ectoderm between the olfactory pit and mxBA1. (D) Fgf8 in HH19 and HH23 chick (G. gallus)

embryos. Red arrows highlight the positioning of the l junction, while other arrows are as above. (E) Fgf8 in E9.5, E10.25 and E10.5 mouse (M. musculus) embryos. Arrows

are as in ‘(D)’. Abbreviations: ba1–6, branchial arches, 1 through 6; cBA, caudal branchial arches; cp, commissural plate; gbd, gill bud; is, isthmus at midbrain-hindbrain

boundary; lb, limb bud; lFNP, lateral frontonasal process; md, mandibular first branchial arch; mFNP, medial frontonasal process; mx, maxillary first branchial arch; odl,
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address, at a minimum, the polarity of BA gene expression
patterns and subsequent structure in the developing jaws.

For example, genetic and experimental manipulation mainly in
zebrafish and lamprey embryos, but including some murine studies,
coupled with analysis of basic patterns of gene expression, has led to
one model of ‘dorso-ventral’ polarity of the BA that postulates the
presence of a regulatory network involving the ‘ventral’ (i.e.,
topographically synonymous with ‘distal’ as used herein) expression
of Bmp4 and Endothelin 1 (Edn1), and their Msx and Hand2 targets,
reciprocally regulating (in part through Mef2c) the nested Dlx genes
to establish a combinatorial expression code which resolves into
zones within the developing BA of ‘ventral’ and ‘intermediate’ nature
(e.g., Talbot et al., 2010; Medeiros and Crump, 2012; Tavares et al.,
2012). In this model, the intermediate zone becomes permissive of
‘jaw joint’ formation as revealed by the eventual induction of Bapx1

(Nkx3.2), and a ‘dorsal’ (proximal) zone is further established by
repulsion of the intermediate zone. At the heart of this mandibular-
centric model, however, is the establishment of the ventral/distal
zone as established by Edn1 signaling as dorso-ventral polarity is
posited to flow form this.
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We find that a number of patterns of gene expression in
S. canicula are, on their surfaces at least, in line with such a model.
ScHand2, as a presumed target of Edn1 signaling in the shark, is
distally (ventrally) expressed in the BAs. Likewise, both ScBmp4

and its presumptive target, ScMsx1, are expressed in the distal
BAs. We further find that ScDlx genes are nested, and that ScBapx1

is expressed around the MMC, which is in line with a potential
intermediate position.

A number of additional, compounding factors, however, must
be taken into consideration when modeling the etiology of
polarity and modularity within the developing jaws: For instance,
in addition to establishing a developmental mechanism to reg-
ulate and elaborate the inherent polarity of the BA, it is patent
that whatever patterning mechanisms inform the developing jaw
primordia must (1) account for the functional integration and
registration of the upper jaws with the lower jaws (and neuro-
cranium) as well as (2) be tractable to potential selective
pressures for disparate upper and lower jaw development
(Depew and Compagnuicci, 2008; Depew and Simpson, 2006;
Fish et al., 2011).

These additional notions are fundamental to, and explicit
within, the ‘Hinge and Caps’ model, making this model distinct
from other models (such as the one described above) of jaw
polarity and modularity. This particular model posits that the
achievement of notions 1 and 2 above is possible if the patterned
placement of the articulation of the upper and lower jaws – the
position where registration is absolutely required – is balanced
by patterned placement of the developing tips of both the upper
and lower jaws, i.e., the proximal-most mxBA1 and distal-most
mdBA1. Jaw registration is thus plausibly achieved by the inte-
gration of patterning cues from the hinge-associated region
with those from each of the two caps. In effect, epithelial-
mesenchymal interactions emanating from the hinge region,
integrating with those from the caps, set up coordinated, polar-
ized BA tissues: Polarity is thus oriented from hinge to cap for
both the developing upper and the lower jaws (see arrow
orientation in Fig. 2c and d). Integrated signaling along the polar
axes subsequently partitions the developing jaw primordia into
multiple nested and overlapping developmental fields (discussed
in Fish et al., 2011). Within these developmental fields of the jaw
primordia, relatively independent sets of character states, includ-
ing focalized autonomous cellular behaviors, are encountered.
One reflection of such behaviors is the presence of coordinated
cellular transcription within subpopulations of each primordia:
Understanding that modules can be minimally defined as units
consisting of integrated characters that are relatively independent
of other characters, these focalized autonomous cellular behaviors
delineate modules.

The ‘Hinge and Caps’ model suggests at least two significant,
testable notions with regard to polarity and modularity in the BA.
First, it would be expected that a hallmark of hinge-associated
patterning cues would be the expression of genes in a symme-
trical pattern within the center of the proximo-distal axis of BA1
(i.e., at the mxBA1–mdBA1 junction, or MMC) and caps-associated
patterning cues by the balanced expression of genes likewise
symmetrically expressed at both caps. These expectations are
indeed met with in S. canicula embryos. As noted above, analysis
of ScBapx1, ScEmx1 and ScEmx2 expression demonstrated that
these genes are expressed in the center of the proximo-distal axes
of the BA (e.g., at the MMC) and represent conserved, hinge-
associated genes in gnathostomes. Moreover, we found evidence
of balanced expression of genes symmetrically expressed at both

caps of the BA, as exemplified by ScMsx1, ScPrx1, ScTbx2, and
ScBmp4. This pattern of hinge-to-both caps expression is notably
associated with the bi-directional pattern of gill bud florescence
emanating from the BA-midpoints to the caps ends.
Second, the ‘Hinge and Caps’ model posits a correlation between
patterns of expression and modular behavior during development.
Gnathostome BAs are meristic (segmentally repeated) vertebrate
structures. One demonstration of modularity in development of
meristic structures is their capacity for homeotic transformation.
Homeosis has been demonstrated for the BA of amniotes, which are
metameric both between each other within the rostro-caudal series
and within each individual arch along the proximo-distal axis (e.g.,
Beverdam et al., 2002; Depew et al., 2002a,b; Goodrich, 1958;
Halstead, 1968; Kuratani, 2004, 2005, 2012; Nelsen, 1953; Rijli
et al., 1993). Developmental mechanisms are in place to ensure that
each BA of the series acquires a unique identity and that each
structure within the proximo-distal axis of each arch does so as well.
It is believed that regional specification of metameric structures is
controlled by the nested expression of related genes resulting in a
regional code: such is the case with the amniote BA, where the Hox

and Dlx gene families regulate inter- and intra-BA identity, respec-
tively (reviewed in Depew et al., 2005; Kuratani, 2004, 2012;
Minoux and Rijli, 2010).

Individual BA-identity as regulated by the rostro-caudally
nested Hox genes has been well investigated in mice. The genetic
ablation in mice of Hoxa2, whose proximal-most BA expression
is BA2, yields skulls with a notable enantiomorphic homeotic
transformation of BA2 jaw-related structures into BA1 structures
(Rijli et al., 1993). Significantly with regard to the polarity of the
developing jaws, it is those structures formed nearest to the hinge
region – a region topographically akin to the MMC in the shark
embryo – associated with the pharyngeal plate between BA2 and
BA1 that are found to be transformed in these mice. Together,
with anatomical and paleontological evidence demonstrating that
basal gnathostomes exhibit significant reliance on the coordination of
BA2 skeletal structures with BA1 structures for the important task of
connecting their jaws to their neurocrania (Barghusen and Hopson,
1979; de Beer, 1985; Carroll, 1988; Gregory, 1933; Halstead,
1968; Jollie, 1962; Maisey, 2001, 2008; Romer, 1966; Schaeffer and
Williams, 1977; Wilga, 2002), this suggested the presence of a focal
BA-associated source of patterning information centered at the hinge
region—a notion that is very much in line with the ‘Hinge and
Caps’ model.

Hox profiles have recently been examined in chondrichthyans,
including in S. canicula and the holocephalan Callorhincchus milli

(Freitas et al., 2006, 2007; Mulley et al., 2009; Oulion et al., 2011;
Ravi et al., 2009; Rodriguez-Moldes et al., 2011; Sakamoto et al.,
2009). Studies of ScHoxa2 indicate that a rostral expression limit
set at BA2 is ancestral for Hoxa2 orthologues. Likewise, expression
profiling of ScOtx2, thought to be a default marker of BA1 as it is
expressed throughout BA1 but not in the caudal BA (Kuratani,
2005; Matsuo et al., 1995), has suggested amniote Otx2 likewise
represents a conserved cognate (Germot et al., 2001; Plouhinec
et al., 2005). Thus, it appears that this core molecular architecture
for inter-BA identity is a conserved feature of gnathostomes.
It is worth noting, however, that we did find differences in BA
expression profiles of genes implicated as co-factors for the Hox

genes, including between the TALE co-factor ScMeis2/Meis2 ortho-
logues (Fig. 8C).

To correlate intra-BA morphologic polarity and potential
modularity in S. canicula with its plausible genetic etiology, we
asked whether S. canicula embryos displayed an amniote-like
nested pattern of Dlx expression in their developing BA. We found
that S. canicula embryos did indeed display an overall amniote-
like pattern of tiered, terraced nesting of Dlx genes (Fig. 4 and
Supplementary Figs. 1 and 2), which makes such nesting of Dlx

genes ancestral (symplesiomorphic) for crown group gnathos-
tomes. Moreover, although it has been suggested that Dlx2

orthologues may be expressed in CNC only once they enter the
BA (see Blentic et al., 2008), we detected the presence of ScDlx2
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transcripts in streams of CNC entering the shark BA just as has
been seen with mice (Fig. 4F). A number of differences in cephalic
Dlx expression between the shark and chicks and mice are,
however, notable. For instance, a regression, similar to that seen
by stage 27 in ScDlx2 expression, from the mdBA1 to a position
proximal to the MMC has yet to be reported for any other Dlx2

orthologue in a similarly staged amniote embryo. This regression
is accompanied by an expansion of ScDlx5 expression proximal to
the MMC in later stage embryos. It is uncertain whether such an
expansion in ScDlx5 represents either a heterotopy or hetero-
chrony as a similar expansion actually occurs in murine embryos
after E10.5 and in chick embryos at later stages; what is distinct
in S. canicula expression, however, is the oral–aboral asymmetry
in expression in this proximal ScDlx5 domain.

Notably, extant agnathans such as the lamprey have a BA
skeletal architecture that is neither hinged nor articulated and
thus they do not have jaws: this lack of articulated segmentation
within the BA is correlated with a pattern of Dlx gene expression
that is not nested (Kuraku et al., 2010; Kuratani, 2005, 2012;
Neidert et al., 2001; Myojin et al., 2001; but also see Cerny et al.,
2010). A number of issues regarding the relationship between Dlx

nesting and jaw evolution are outstanding, however: It remains
unclear, for instance, whether Dlx nesting is a prerequisite for
articulated segmentation, and therefore for jaw formation, or if it
is simply a permissive factor (though the latter might seem most
parsimonious). Approaching these questions is now possible as a
much more comprehensive comparative analysis of vertebrate Dlx

gene expression and biology is now a salient, achievable goal.
The developmental mechanism patterning the gnathostome

BA thus includes a molecular baüplan involving the coordinated,
nested expression of Hox (plus Otx) and Dlx genes. Such nesting
reflects the potential for modularity, and evidence from the
expression of ScHox and ScDlx genes in S. canicula embryos
therefore supports a correlation between patterns of expression
and modular behavior in gnathostome BA development.

The evolving upper jaw: On the maxillary BA1 and eventual FNP

involvement in gnathostomes

Although a coordinated Hox-Dlx grid might regulate both inter-
and intra-BA skeletal identity, it is clear that proximo-distal polarity
in BA1 involves more than just nested Dlx gene expression (Depew
and Compagnuicci, 2008; Depew and Simpson, 2006). Indeed, even
the lack of an articulated BA skeleton does not mean that a proximo-
distal polarity is absent in the BA of the jawless lamprey: For
instance, an inherent molecular polarity is attested to by the distally
restricted expression of the Hand2 orthologue in the developing
lamprey BA (Cerny et al., 2010; Kuraku et al., 2010; Kuratani, 2012).
Such distal restriction appears to be a shared character state of the
vertebrate BA as all known gnathostome Hand2 orthologues (Fig. 7)
are distally restricted in the BA, though this does not mean that the
extent and nature of such restriction is conserved (for instance, see
arguments presented Kuratani, 2012). ScHand2 and Hand2 epitomize
gene orthologues restricted to the mdBA1 ‘Cap’: This restriction is
not unexpected when consideration is given to the fact that during
their ontogeny the BA are topographically positioned between the
developing heart and the brain. The distal domains of the BA
develop in close association with the heart, and it is thus perhaps
of little surprise that integrative patterning involving cognate genes
such as ScHand2 and Hand2 is a feature of regional development of
both the heart and the distal BA. Indeed, functional studies demon-
strate that Hand2 regulates both cardiac and jaw development
(Yanagisawa et al., 2000).

Likewise, it is not unexpected that genes, such as ScRaldh3–
Raldh3 (Fig. 7), exist that characterize the developing nervous
system and the juxtaposed proximal-most mxBA1 ‘Cap’ but not
the mdBA1 ‘Cap’—especially when considering that the upper
jaws are more intimately associated with the neurocranium than
are the lower jaws. Such genes highlight the facts that ‘maxillary
BA1’ is more than just ‘non-mandibular BA1’ and that formation
of the upper jaws is more than just an afterthought to the
formation of the lower jaws and trabeculae cranii (i.e., rostral
neurocranium). Indeed, mdBA1 expression of ‘Caps’ related genes
is equally represented by mxBA1 ‘Caps’ expression: In the
expression patterns of ScMsx1, ScPrx1, and ScTbx2 we note an
overall correspondence between the amniote and chondrichthyan
homologues with regards to dual (presumably coordinated) ‘Caps’
expression (Fig. 6).

Notably, amniote Bmp4 expression in the ‘Caps’ epithelium of
both the l-junction and distal mdBA1 midline and in the
pharyngeal plate region (as well as functional data stemming
from gene-targeting experiments in mice) provided substantive
evidential support to the ‘Hinge and Caps’ model (see Depew and
Simpson, 2006; Depew and Compagnuicci, 2008); ScBmp4 tran-
scripts are similarly detectable in the distal mdBA1 as well as in
the proximal mxBA1. Two areas of difference in expression are
notable, however. First, we did not detect an ScBmp4 pharyngeal
plate expression pattern topographically akin to that of amniote
Bmp4 (Fig. 6). Second, though ScBmp4 is expressed in the optic
primordia, just as its orthologue Bmp4 is in the mouse, frontonasal
expression connecting with mxBA1 is absent in shark embryos. Such
a lack of connection, or continuity of expression, between the
developing fronto-nasal/olfactory apparatus and mxBA1 is a com-
mon theme with the gene expression patterns of chondrichthyans,
also characterizing, for example, ScDlx2, ScDlx3, ScMsx1 and ScMeis2

expression.
This lack of expression highlights a central difference between

elasmobranch chondrichthyans and osteichthyans in the elabora-
tion of the developing upper jaw’s association with the neuro-
cranium: With osteichthyans, there is a fundamental association
(incorporation) between the premaxillary skeleton, derived from
the FNP, and the mxBA1-derived maxillary and palatoquadrate
skeletons (Fig. 1; detailed in Gregory, 1933; Schultze, 1993). The
osteichthyan premaxillary arcade further develops in intimate
association with the rostral neurocranium, in particular with
the derivatives of the trabecular crainii and the nasal capsules,
integrating and binding the BA derivatives with the rostral
neurocranium and its associated dermatocranium. Generating
an integrated upper jaw arcade, one involving integrated max-
illary and premaxillary elements, necessitates coordinated fron-
tonasal and mxBA1 development. Hence, it is reasonable to
expect that such coordination would be reflected at some level
in osteichthyan patterns of gene expression and not in chon-
drichthyan patterns.

Once established, maxillary–premaxillary–neurocranial oss-
eous interconnectivity was central to a number of significant
evolutionary transitions and radiations: For instance, making the
maxillary–premaxillary–neurocranial connectivity less rigid and
more movable enabled a distinct adaptive radiation in teleost (i.e.,
ray-finned fish such as the zebrafish) lineages (Gregory, 1933).
Moreover, many of the most profound, propulsive gnathostome
transitions involved elaborated development at the mxBA1–FNP
connection, including both the acquisition of internal choanae
enabling the colonization of land by tetrapods and the presence of
a secondary palate, forming at the l-junction, enabling mastication
while breathing in the lineage leading to mammals (Fig. 1; see
Halstead, 1968; Hildebrand, 1988; Kemp, 2005; Kingsley, 1912;
Moore, 1981; Panchen, 1967; Rosen et al., 1981; Schmalhausen,
1968; Tamarin, 1982; Zhu and Ahlberg, 2004).

It is apodictic, then, that gaining greater understanding of jaw
evolution, and the significant evolutionary transitions involving
the jaws, requires further detailing which of the aspects of
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gnathostome jaw development are shared within gnathostomes
and which are derived and specific to a particular lineage, and
then correlating molecular and genetic etiology with phenotypic
end-product. Recognition, stemming from its posited importance
in the ‘Hinge and Caps’ model, of the central importance of the
l-junction in craniofacial evolution has allowed us, for instance,
to characterize a Pbx-Wnt-p63-Irf6 regulatory module that corre-
lates with the gradual increase in complexity of the mxBA1–FNP
connection and associated structures (e.g., the choanae, upper lips
and secondary palate) through evolutionary transitions from bony
fish to mammals (Ferretti et al., 2011). Despite not possessing an
elaborate mxBA1–FNP connection, chondrichthyans do exhibit
clear ‘Caps’ associated gene expression patterns as predicted by
the ‘Hinge and Caps’ model: Further investigation of the chon-
drichthyan maxillary ‘Cap’, therefore, will enable understanding
of the evolution of the osteichthyan l-junction.

Evidence of heterotopy as exemplified by Fgf8 expression

Gnathostome BAs therefore exhibit, in addition to a Hox-Dlx

molecular construction, a well-conserved, basic ‘cap-to-hinge-to-
cap’ architecture of gene expression along their proximo-distal
axes. We found, however, a number of heterotopic patterns in
gene expression. While we believe in the general caveat that each
identified change in the timing and/or topography of the expres-
sion of a particular gene, whether seemingly minute or striking,
must be further scrutinized and considered with more refined
reference to homologous tissues and developmental staging – not
necessarily a straight-forward endeavor – we also believe that
some of the differences that we noted in gene expression between
shark and amniote embryos will prove to be more profound than
others. In particular, we believe that heterotopic differences
between shark and amniote oral ectodermal expression of Fgf8 –
a secreted signaling factor with notable roles during development
and a distinct cephalic expression pattern during ontogeny – is
potentially significant (Fig. 8; Compagnucci et al., 2011; Crossley
and Martin, 1995; Trumpp et al., 1999; Griffin et al., 2012). In
both chick and mouse, Fgf8 is expressed in the isthmus, ventro-
lateral cephalic ectoderm, the olfactory pits, the pharyngeal plates
and the hinge-centric oral ectoderm of both mxBA1 and mdBA1
(Fig. 8C and D). One notable difference between the chick and the
mouse, however, is that murine Fgf8 expression extends along the
dorsal olfactory pit and spreads ventrally during ontogeny to
eventually unite ventrally at the l junction with the expression
from the mxBA1 while that in the avian does not appear to. As
with amniote embryos, ScFgf8 is detected at the isthmus and in
the ventro-lateral cephalic ectoderm, including in the dorsal
olfactory pit (Fig. 8B and C). ScFgf8 is also significantly expressed
in the pharyngeal clefts: Strikingly, however, we failed to detect
expression within the oral ectoderm of either mxBA1 or mdBA1 of
the shark embryo at anytime point.

Using a Cre-mediated cephalic ectodermal conditional knockout,
we previously demonstrated that loss of Fgf8 in the oral ectoderm of
the mouse is accompanied by catastrophic loss of the hinge region of
the jaws (Trumpp et al., 1999). Notably, however, in these experi-
ments the loss of Fgf8 in the pharyngeal plate occurred slightly later
and was correlated with the maintenance of a small population of
cells at the pharyngeal cleft that gave rise to the malleus, the
mammalian articular element homologue. Moreover, genetic attenua-
tion of Fgf8 dosage in mice leads to an associated disintegration of
hinge structure and morphology (Griffin and Depew, in preparation).
These and other studies have indicated that in amniotes, hinge-
related Fgf8 signaling is balanced between the epithelium of the oral
ectoderm and that of the pharyngeal plate (Depew et al., 2002b;
Depew and Compagnuicci, 2008). Moreover, Fgf8 cognate expression
in the lamprey, in a position topographically akin to the oral
ectoderm, has been hypothesized as part of a heterotopic shift during
the transition of gnathostomes from agnathans (see discussion in
Shigetani et al., 2000, 2002, and Kuratani, 2012). Thus, discerning the
functional significance of the absence of ScFgf8 in the oral ectoderm is
conceivably profound with regard to our understanding jaw devel-
opment and evolution.
Conclusions

At present, the non-amniote gnathostome most studied at any
depth for its jaw development is the teleostean fish, D. rerio (the
zebrafish). While the zebrafish has proven to be a model organism
tractable to genetic manipulation, at least two caveats regarding
aspects of zebrafish jaw development and evolution must be taken
into consideration when appraising zebrafish data with an eye
toward comparisons amongst gnathostomes. First, teleosts repre-
sent a highly diverse, speciose crown group amongst gnathostomes
(Gregory, 1933). The importance of this is epitomized by the fact
that the developmental consequences for the patterning of the
jaws of the additional chromosomal duplications that characterize
the teleost radiation are yet to be fully understood. Second, the
zebrafish embryo is extremely small, especially the region gener-
ating the jaws, and it is conceivable that such miniaturization
effects how patterning information is exchanged between devel-
oping tissues. This issue is especially important, for example, when
considering the effective radius, or sphere of influence, of secreted
signals and their associated buffering.

Focused comparisons between chondrichthyans and the
osteichthyans clades, including both bony fish and tetrapods, is
nonetheless essential and is now possible. The great similarities
between shark and amniote BA patterning may be reflective of a
shared ancestry; they may also be reflective of convergence in jaw
patterning. For numerous reasons, including its more parsimo-
nious nature, we favor the former interpretation. Further inves-
tigation of the genetic, molecular and cellular underpinnings
of BA patterning in other, and more basal, osteichthyan fish in
comparison to those evinced in chondrichthyan as well as tetra-
podal organisms, will enable a fuller picture of which molecular
characteristics are ancestral for gnathostomes and which are
derived and specific for each clade.

In summary, the presence of clear caps-to-hinge-to-caps
polarity in gene expression patterns in the shark embryo estab-
lishes a baseline molecular baüplan for BA-derived jaw develop-
ment, and further validates the utility of the ‘Hinge and Caps’
model in comparative studies of jaw development and evolution.
Moreover, the absence of an elaborated l-junction in chon-
drichthyans makes the investigation of shark jaw development
all the more important for purposes of comparing and under-
standing jaw development and evolution. Because the elaboration
of structure and function associated with the junction of the
mxBA1 and FNP have been integral to so many gnathostome
radiations, further understanding the basal molecular baüplan
informing jaw development, as represented by the shark, becomes
essential.
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