Protein affinity reagents play an important role across a wide range of life science applications. Efforts to enhance affinity reagents through protein engineering or synthetic biology have been made to improve specificity and sensitivity of binding targets. Oligomeric protein nanoparticles with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. Oligomerization of functional proteins is essential for creating a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor.

The protein proopiomelanocortin (POMC) is a precursor several nerve peptide hormones, including MSHs, ACTH, CLIP, LPH, β-endorphin, and the Joining peptide (JP). The biological activity of POMC-derived peptides has been well studied except for JP. To investigate the biological function of JP, we chemically synthesized JP by an Fmoc solid phase method. However, the yield of the synthesized JP was poor and a highly efficient α/β-rearrangement in the Asp-Gly moiety was observed in the case of the Fmoc method but was not significant in the case of the Boc method.

To estimate the stability of the Asp-Gly moiety, JP was treated with several buffers in the pH range of 1-8. The α/β-rearrangement was gradually increased in a pH-dependent manner and was significantly observed under strongly acidic conditions. In addition, salt effects for the rearrangements were also estimated. The results will be discussed in this paper.

Photo-Regulation of Small G Protein Normal and Oncogenic K-Ras using Photochrome Molecules

Seigo Iwata1, Kaori Masuhara2, Nobuhisa Umeki1, Kazunori Kondo1, Shinzaku Maruta1,2

Ras is one of the small G-proteins known as a molecular switch mediating cellular signalling. Switching ON state of Ras is induced by exchange of bound GDP to GTP and GTP state is by hydrolysis of GTP to GDP. Interestingly, the core nucleotide-binding motif of Ras is considerably conserved with the ATP driven motor proteins, myosin, and kinesin. Therefore, it is believed that these nucleotide requiring proteins share common molecular mechanism utilizing nucleotide hydrolysis cycle. Previously, we have incorporated photochrome molecules, 4-phenylazophenyl maleimide (PAM), into the functional site of kinesin as a photo-switching nano device and succeeded to regulate kinesin ATPase activities reversibly upon visible light (VIS) and ultra-violet (UV) light irradiation. Therefore, it is expected that Ras can also be regulated using photochrome molecules.

In this study, we performed basic study to control the function of Ras using photochrome molecules upon VIS and UV light irradiations. We prepared normal and oncogenic Ras mutants which have a single cysteine at functional sites and modified with photochrome molecules of azobenzene and spiropyran derivatives stochiometrically. The GTPase activities of PAM-Ras were reversibly altered upon VIS and UV light irradiations. In order to monitor the effect on GTPase kinetic pathway by the photoisomerization of PAM, we synthesized fluorescent GTP analogue, NBD-GTP. The kinetic studies suggested that the initial binding step of NBD-GTP to Ras and the dissociation step of NBD-GDP from Ras were regulated by the photoisomerization of PAM.

Harnessing the Dynamical Movement of OmpG Loops for Protein Sensing

Monifa Fahie, Christina Chisholm, Min Chen

Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.

Oligomeric protein nanoparticles with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with several flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop’s movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity - even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin binding protein. Our exploitation of gating noise as a molecular identifier may open new possibilities for more sophisticated sensor design while OmpG’s monomeric structure greatly simplifies nanopore production.

Multicolor Monomeric Near-Infrared Fluorescent Proteins

Daria M. Scherbakova, Mikhail Balaban, Vladislav V. Verkhusha

Albert Einstein College of Medicine, Bronx, NY, USA.

The genetically encoded near-infrared fluorescent probes are preferable for non-invasive in vivo imaging. In the near-infrared spectral region (650-900 nm) mammalian tissues are relatively transparent to light because the combined absorption by hemoglobin and water is minimal. Previously, we have developed five spectrally distinct fluorescent proteins, iRFP670, iRFP662, iRFP702, iRFP713 (aka iRFP) and iRFP720, from bacterial photoreceptors. As a chromophore, IRPs use a heme derivative, called biliverdin, abundant in mammalian cells. All IRPs incorporate endogenous biliverdin efficiently and autocatalytically, do not require its exogenous supply and, therefore, can be used as easily as GFP-like proteins. IRFs are dimers and can mainly serve for labeling of organelles and whole cells. IRPs have enabled multicolor imaging of deep tissues in living animals.

Here we report a palette of monomeric IRPs suitable for protein tagging, which also do not require external biliverdin. To engineer these proteins we first used rational design to monomerize the proteins and engineer spectral shifts. Then we applied directed molecular evolution with the high-throughput screening for selection of mutants, which incorporate biliverdin efficiently and specifically. As the result, we have engineered three spectrally different monomeric IRPs, named miRFP670, miRFP703 and miRFP709. miRFPs are characterized by high efficiency of brightness in mammalian cells, high pH stability and high photostability. We demonstrated that miRFPs perform well as fusion tags for cellular proteins.

The set of miRFPs should enable imaging of several tagged proteins in living mammals, and thus will be useful in cell and developmental biology and biomedicine. The developed molecular evolution approaches could be used for optimization of genetically encoded tools derived from other photoreceptors including flavoproteins and opsins.

Design and Characterization of Force-Sensitive DNA Origami Components

Yi Luo1, Michael W. Hudah1, Michael G. Poirier1, Carlos E. Castro1

1Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA, 2Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA, 3Department of Physics, The Ohio State University, Columbus, OH, USA.

Scaffolded DNA origami is powerful design and fabrication tool for the creation of nanoscale objects for future molecular robots. Current applications of DNA origami exploit the large stiffness of bundles of dsDNA to create structures that maintain a well-defined and static geometry. However, DNA origami nanostructures with mechanical and functional components, such as springs or actuators have remained largely unexplored. We aim to make DNA origami devices that are responsive to force magnitude signals.

Scaffolded DNA origami is powerful design and fabrication tool for the creation of nanoscale objects for future molecular robots. Current applications of DNA origami exploit the large stiffness of bundles of dsDNA to create structures that maintain a well-defined and static geometry. However, DNA origami nanostructures with mechanical and functional components, such as springs or actuators have remained largely unexplored. We aim to make DNA origami devices that are responsive