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Adiponectin induces the transforming growth factor decoy receptor BAMBI
in human hepatocytes
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a b s t r a c t

Transforming growth factor (TGF) b is the central cytokine in fibrotic liver diseases. We analyzed
whether hepatoprotective adiponectin directly interferes with TGFb1 signaling in primary human
hepatocytes (PHH). Adiponectin induces the TGFb decoy receptor BMP-and activin-membrane-
bound inhibitor (BAMBI) in PHH. Overexpression of BAMBI in hepatoma cells impairs TGFb-medi-
ated phosphorylation of SMAD2 and induction of connective tissue growth factor. BAMBI is lower
in human fatty liver with a higher susceptibility to liver fibrosis and negatively correlates with
BMI of the donors. Hepatic BAMBI is reduced in rodent models of liver inflammation and fibrosis.
In summary, the current data show that hepatoprotective effects of adiponectin include induction
of BAMBI which is reduced in human fatty liver and rodent models of metabolic liver injury.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Non-alcoholic steatohepatitis (NASH) is the most prevalent liver
disease in western countries and about 2–4% of adults are sug-
gested to meet current diagnostic criteria for NASH [1,2]. NASH fea-
tures liver fibrosis and inflammation, and a prospective study has
proven that NASH progresses to liver cirrhosis in about 20% of the
patients [3]. The pathophysiological events causing NASH and pro-
gression of liver fibrosis are incompletely understood, and impor-
tantly no treatment regimes have been established [4–6].

Prevalence of NASH is increased in obesity, insulin resistance
and type 2 diabetes mellitus and is considered to constitute the he-
patic form of the metabolic syndrome [1,7]. Obesity is accompa-
nied by low systemic adiponectin, an adipose tissue produced
protein which ameliorates insulin resistance and hepatic steatosis
partly by stimulating b-oxidation [5,8]. Low adiponectin levels are
closely associated with the degree of hepatic steatosis, necroin-
flammation and fibrosis independent of insulin resistance and
body mass index (BMI) in NASH patients [9,10]. In animal models
of NASH adiponectin lowers inflammation, reactive oxygen species
production and liver fibrosis [5,11].
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Transforming growth factor (TGF) b1 is the central cytokine in
fibrotic liver diseases and induces synthesis of extracellular ma-
trix proteins in hepatic stellate cells. In hepatocytes TGFb1 in-
creases synthesis of connective tissue growth factor (CTGF),
and may promote hepatocyte cell death which further contrib-
utes to liver dysfunction [12–14].

Adiponectin signals through two receptors, AdipoR1 and Adi-
poR2, with both of them being expressed in liver cells [15,16].
Increasing AdipoR2 expression in the liver ameliorates hepatic
injury in the methionine-choline deficient diet (MCD) model
partly by stimulating PPARa [17]. AdipoR1 is involved in AMP
activated kinase (AMPK) mediated suppression of the lipogenic
transcription factor sterol regulatory element-binding protein
(SREBP) 1c in hepatocytes [18]. Adiponectin inhibits hepatic stel-
late cell (HSC) proliferation via activation of AMPK indicating
that AdipoR1 may have a role in antifibrotic effects of this adipo-
kine [19].

TGFb signaling is silenced by the TGFb pseudoreceptor BMP and
activin membrane-bound inhibitor (BAMBI) found to be exclusively
expressed on HSC [20]. Intestinal translocation of endotoxin is en-
hanced in patients with liver diseases, and endotoxin-induced
toll-like receptor 4 (TLR4) signaling downregulates BAMBI. Expres-
sion of a dominant negative form of BAMBI mimics fibrotic effects
of TLR4 in HSC confirming a crucial role of BAMBI in inflammation
mediated progression of liver fibrosis [20].
lsevier B.V. All rights reserved.
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In the current study, we demonstrate that antifibrotic effects of
adiponectin include induction of BAMBI in primary human hepato-
cytes and hepatic stellate cells.

2. Materials and methods

2.1. Culture media and reagents

Dulbecco’s modified eagle medium (DMEM) was from PAA
(Karlsruhe, Germany), RNeasy Mini Kit was from Qiagen (Hilden,
Germany) and oligonucleotides were synthesized by Metabion
(Planegg-Martinsried, Germany). LightCycler FastStart DNA Master
SYBR Green I was purchased from Roche (Mannheim, Germany). Pal-
mitic acid, oleic acid, metformin and fenofibrate were ordered from
Sigma (Deisenhofen, Germany). The AMPK inhibitor compound C
and the InSolution™ NF-jB Activation Inhibitor were from Calbio-
chem (Darmstadt, Germany). GAPDH antibody was from New
England Biolabs GmbH (Frankfurt, Germany). BAMBI antibodies
were from Abnova (Heidelberg, Germany) and Abcam (Cambridge,
UK). Recombinant full-length human adiponectin, and recombinant
human TGFb1 were from R&D Systems (Wiesbaden-Nordenstadt,
Germany). The monoclonal CTGF antibody was from Abnova
(Heidelberg, Germany). SMAD2/3, SMAD3, phospho-SMAD2
(Ser465/467) and phospho-SMAD3 (Ser423/425) antibodies were
from New England Biolabs GmbH (Frankfurt, Germany).

2.2. Primary liver cells

Human liver tissues for cell isolation were obtained from liver
resections of patients undergoing partial hepatectomy for meta-
static liver tumors of colorectal cancer. Experimental procedures
were performed according to the guidelines of the charitable state
controlled foundation HTCR (Human Tissue and Cell Research),
with the informed patient’s consent approved by the local ethical
committee of the University of Regensburg [21]. Primary human
hepatocytes were isolated and cultivated in serum-free medium
(DMEM supplemented with 4.5 g/l glucose, 0.4 ng/ml hydrocorti-
sone, 0.415 mU/ml insulin, 2 mM glutamine, and 100 U/ml penicil-
lin/streptomycin) for 3 days as previously described [22]. Isolation
and culture of hepatic stellate cells (HSC) were performed as de-
scribed [23,24]. HSCs were cultivated up to 13 days.

2.3. Human liver tissues

Liver tissues for immunoblot analysis were obtained of seven
patients (4 females, 3 males) without and seven patients (2 fe-
males, 5 males) with biopsy proven steatosis. Anamnesis excluded
alcohol intake, drugs and viral infections as cause for fatty liver dis-
ease. Surgery was done because of hepatic metastases of extrahe-
patic tumours and only healthy tissue was used. Here, neither
inflammation nor fibrosis was detected in the livers by the pathol-
ogist. Age (58 ± 13 and 62 ± 15 years) and BMI (26.8 ± 3.7 and
29.3 ± 3.2 kg/m2) were similar between controls and patients with
hepatic steatosis. BMI of one control was not known. Hepatocellu-
lar carcinoma tissue and adjacent healthy tissue were obtained of
eight patients. Experimental procedures were performed according
to the guidelines of the charitable state controlled foundation
HTCR (Human Tissue and Cell Research), with the informed pa-
tient’s consent approved by the local ethical committee of the Uni-
versity of Regensburg [21].

2.4. Animal models

Male C57 Bl/6 mice were purchased from Charles River
Laboratories (Sulzfeld, Germany) at 6 weeks of age and housed in
a 22 �C controlled room under a 12 h light-dark cycle with free ac-
cess to food and water. After acclimatization mice were divided
into three groups (4 mice per group) and fed either a standard diet
(3% w/w fat), the so called Paigen-diet (1.25% (w/w) cholesterol,
0.5% (w/w) cholic acid, and 15% (w/w) fat) or MCD diet for
14 weeks. All chows were prepared by Ssniff (Soest, Germany).

The Paigen-diet induced hepatic steatosis and inflammation
[25,26]. Final body weight of the animals was 18.3 ± 0.5 g in the
control group and 23.3 ± 1.8 g in the Paigen-diet group
(p = 0.029). Adiponectin was 2.4 ± 0.4 lg/ml in serum of control
mice and 2.1 ± 0.1 lg/ml in serum of animals fed a Paigen diet.
MCD diet causes hepatic steatosis (triglycerides were significantly
induced, data not shown), inflammation (significant induction of
TNF mRNA, data not shown) and fibrosis (confirmed by Sirius red
staining and a-smooth muscle actin immunoblot, data not shown)
as has already been described [27]. Adiponectin was increased to
3.8 ± 0.5 lg/ml (p = 0.029 compared to control mice) and body
weight was reduced to 13.8 ± 0.6 g (p = 0.029 compared to control
mice).

All animal procedures were approved by the local committee on
animal research and complied with the German Law on Animal
Protection as well as the UFAW ‘Handbook on the care and man-
agement of laboratory animals’ 1999.

2.5. Monitoring of gene expression by real-time RT-PCR

Real-time RT-PCR was performed as recently described [28,29].
The primers for BAMBI were BAMBI uni: 50-CGC CAC TCC AGC TAC
ATC TT-30 and BAMBI rev: 50-CAG ATG TCT GTC GTG CTT GC-30, For
b-actin: b-actin uni 50-CTA CGT CGC CCT GGA CTT CGA GC-30, and
b-actin rev: 50-GAT GGA GCC GCC GAT CCA CAC GG-30 were used.

2.6. Preparation of BAMBI expression vector

BAMBI cDNA was amplified from total RNA isolated of PHH using
the oligonucleotides uni: 50-ATG GAT CGC CAC TCC AGC TA-30 and
rev: 50-TAC GAA TTC CAG CTT CCC GTG-30 and cloned in the plasmid
pcDNA3.1/V5-His TOPO TA (Invitrogen, Darmstadt, Germany). The
insert was sequenced (Geneart, Regensburg, Germany) and plasmid
DNA was transfected in HepG2 and Huh7 cells using FuGENE HD
transfection reagent (Roche, Mannheim, Germany).

2.7. SDS–PAGE and immunoblotting

Proteins (10–20 lg) were separated by SDS–polyacrylamide gel
electrophoresis and transferred to PVDF membranes (Bio-Rad,
Munich, Germany). Incubations with antibodies were performed
in 1.5% BSA in PBS, 0.1% Tween. Detection of the immune com-
plexes was carried out with the ECL Western blot detection system
(Amersham Pharmacia, Deisenhofen, Germany).

2.8. Immunohistochemistry (IHC)

Immunohistochemical studies for the expression of BAMBI uti-
lized the EnVision+ Kit (DAKO, Glostrup, Denmark) based on a HRP
labelled polymer which is conjugated with a secondary antibody.
Three lm sections were cut from formalin-fixed and paraffin-
embedded tissues. After deparaffinization for 15 min in Histol, tis-
sue sections were rehydrated in descending ethanol series following
antigen retrieval (microwave oven for 20 min at 800 W in sodium
citrate buffer). Endogenous peroxidase activity was eliminated by
subsequent incubation with 0.3% hydrogen peroxide for 10 min.
After washing in TBS/0.5% Tween 20 slides were incubated for 1 h
in a protein-blocking solution (DAKO). Incubation with the mono-
clonal BAMBI antibody (1:100-fold diluted, Abnova) was performed
overnight at 4 �C in a humid chamber. After thorough washing with
TBS/0.5% Tween 20, tissue sections were incubated with anti-mouse
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HRP labelled polymer for 30 min. Staining was completed by incuba-
tion with DAB substrate chromogen (DAKO) according to the manu-
facturer’s instructions.

2.9. Statistical analysis

Data are presented as box plots indicating median, lower and
upper quartiles and range of the values. Statistical differences were
analyzed by two-tailed Mann–Whitney U Test or paired Student’s
t-test, and a value of p < 0.05 was regarded as statistically signifi-
cant. The Pearson’s correlation was calculated using the PASW sta-
tistics 17.0 program.

3. Results

3.1. BAMBI is expressed in primary human hepatocytes (PHH) and
hepatic stellate cells (HSC)

BAMBI has been mainly analyzed for its role in HSC because
mRNA expression was not detected in hepatocytes and Kupffer
cells in a recent study [20]. Purified Kupffer cells (KC) express
the macrophage specific receptor CD163 but BAMBI protein was
neither found in KC nor primary human monocytes (Fig. 1A). BAM-
BI protein was detected in liver lysate and purified PHH as a 38 kDa
protein by the use of two different anti BAMBI antibodies (Fig. 1A
and B and data not shown). In HSC, BAMBI was about 3 kDa smaller
than in hepatocytes suggesting different posttranslational modifi-
cations (Fig. 1B). BAMBI protein was about 12-fold higher ex-
pressed in PHH compared to HSC (Fig. 1C). Real-time RT-PCR
analysis revealed higher BAMBI mRNA expression in HSC com-
pared to PHH (p = 0.036, data not shown). BAMBI cDNA amplified
from reverse transcribed RNA of PHH accorded to the published se-
quence (NM_012342) further confirming BAMBI expression in
hepatocytes (data not shown). Immunohistochemistry using
healthy liver tissue confirmed high expression of BAMBI in hepato-
cytes. BAMBI was also detected in endothelial cells of blood vessels
and was found to be weakly expressed in cholangiocytes but was
not detected in Kupffer cells (Fig. 1D–F).

3.2. Adiponectin induces BAMBI in PHH and HSC

Adiponectin mediated upregulation of BAMBI mRNA in PHH
was demonstrated by real-time RT-PCR (Fig. 2A). Furthermore,
Fig. 1. BAMBI protein is expressed in hepatocytes and hepatic stellate cells. (A) BAMBI a
(pMono), PHH and total liver lysate. (B) BAMBI in PHH and HSC of two different donors.
partly shown in B. (D) BAMBI protein was analysed by immunohistochemistry in healthy
BAMBI is weakly expressed by cholangiocytes (arrow). (F) BAMBI is expressed by endot
adiponectin significantly induced BAMBI protein in PHH (Fig. 2B
and C) and HSC (Fig. 2D and E). TGFb1 may impair adiponectin
activity, and it was analysed whether adiponectin still induces
BAMBI in the presence of TGFb1. BAMBI was similarly induced
by adiponectin in control and TGFb1 incubated PHH, and was not
regulated by TGFb1 (Fig. 2F). Furthermore, adiponectin preincuba-
tion prevented TGFb1-mediated upregulation of its target protein
connective tissue growth factor (CTGF). Interestingly adiponectin
also lowered CTGF in PHHs not incubated with TGFb1 (Fig. 2F
and G).

3.3. NF-jB Activation Inhibitor partly blocks induction of BAMBI by
adiponectin and metformin induces BAMBI in PHHs

The main downstream effectors of adiponectin are PPARa and
AMPK [16]. Stimulation of PHH with the PPARa agonist fenofibrate
(0.5 and 1 mM for 24 h) did not affect BAMBI protein (data not
shown). Metformin at a concentration of 0.5 and 1 mM activated
AMPK (data not shown) and induced BAMBI in PHH (Fig. 2H). How-
ever, blockage of AMPK by its antagonist compound C only tended
to reduce induction of BAMBI by adiponectin but this effect was
not significant when analysed in PHHs of three different donors
(Fig. 2H and data not shown). Activation of NF-jB by adiponectin
has also been demonstrated and InSolution™ NF-jB Activation
Inhibitor reduced adiponectin mediated upregulation of BAMBI
by about 50% (p = 0.03 when three independent experiments were
analysed) (Fig. 2I).

3.4. BAMBI impairs TGFb1 mediated induction of CTGF

Despite expression of BAMBI mRNA BAMBI protein was
hardly detectable in hepatoma cell lines HepG2, Hep3B and
Huh7 (Fig. 3A and B). To prove that BAMBI antagonizes TGFb1
activity in hepatoma cells which are commonly used as a model
to study hepatocyte function [30,31] BAMBI protein was tran-
siently overexpressed in HepG2 cells, and cells were subse-
quently treated with increasing amounts of TGFb1 for 48 h.
CTGF is a well described TGFb1 induced protein [32] and was
analyzed in control- and BAMBI-transfected HepG2 cells.
Whereas CTGF was markedly induced by 1, 3 and 5 ng/ml TGFb1
in control transfected cells this upregulation was significantly
impaired in BAMBI-expressing HepG2 cells (Fig. 3C and D).
When BAMBI was overexpressed in HepG2 or Huh7 cells which
nd CD163 protein in primary human Kupffer cells (KC), primary human monocytes
(C) Quantification of the immunoblots including data of 4 independent experiments
liver tissue and is strongly expressed in hepatocytes but not Kupffer cells (arrow). (E)
helial cells (arrow).



Fig. 2. Adiponectin upregulates BAMBI in primary human hepatocytes (PHH) and hepatic stellate cells (HSC). (A) BAMBI mRNA in PHH treated with PBS as solvent control
(Con) or 10 lg/ml adiponectin (Apm). Data of 4 independent experiments were calculated. (B) PHH of two donors were incubated with PBS as solvent control or 10 lg/ml
adiponectin (Apm) for 24 h, and BAMBI and GAPDH were determined by immunoblot. (C) Quantification of the immunoblots of 4 independent experiments partly shown in B
(arbitray units, au). (D) Primary human hepatic stellate cells of 3 donors were incubated with PBS as solvent control or 10 lg/ml adiponectin (Apm) for 24 h and BAMBI and
GAPDH were determined by immunoblot. (E) Quantification of the immunoblot shown in D (arbitray units, au). (F) BAMBI and CTGF in PHH incubated with PBS as solvent
control or adiponectin for 24 h and in PHHs treated with TGFb1 (4 ng/ml) for 24 h with or without preincubation with adiponectin for 1 h. (G) Quantification of CTGF protein
of 3 independent experiments partly shown in (F). (H) BAMBI in PHH incubated with metformin (Metf) or solvent as control for 24 h and in cell lysates of PHH treated with
adiponectin, solvent as control, compound C or compound C and adiponectin for 24 h. (I) BAMBI in cell lysates of PHH treated with adiponectin, solvent as control, 0.5 lM
InSolution™ NF-jB Activation Inhibitor or 0.5 lM InSolution™ NF-jB Activation Inhibitor and adiponectin for 24 h.
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were stimulated with 1 ng/ml TGFb1 for 30 min phosphorylation
of SMAD2 was significantly reduced suggesting that BAMBI im-
pairs early steps in TGFb1 signal transduction pathways
(Fig. 3E and F and data not shown). Phosphorylation of SMAD3,
however, was similar in control- and BAMBI transfected cells
(Fig. 3E and data not shown).

Low BAMBI protein in hepatocellular carcinoma cell lines led us
to analyse BAMBI in hepatocellular carcinoma and adjacent
non-tumorous tissue of eight patients and BAMBI protein was sig-
nificantly higher in the latter (Fig. 3G and data not shown). Adipo-
nectin did not induce BAMBI in HepG2 cells (data not shown).

3.5. BAMBI in human fatty liver

Liver tissue was obtained of patients with and without biopsy
proven hepatic steatosis with no histological signs of inflammation
or fibrosis. Immunoblot analysis revealed that BAMBI protein was
significantly reduced in steatotic liver (Fig. 4A and B). Incubation of
PHHs with either 0.3 mM palmitic acid or oleic acid did not reduce
BAMBI protein excluding hepatic lipid accumulation as reason for
low BAMBI in fatty liver (data not shown). Liver BAMBI protein
negatively correlated with BMI of the patients (r = �0.702,
Fig. 4C) indicating that factors associated with obesity like low
adiponectin may contribute to reduced hepatic BAMBI protein.
3.6. BAMBI in rodent models of liver injury

Systemic and liver inflammation which partly depend on TLR4
in concert with steatosis have been described in mice kept on a
Paigen diet, and BAMBI was markedly reduced in the liver of mice
kept on this chow (Fig. 4D and E). The methionine-choline deficient
diet fed mouse is used as a NASH model and BAMBI was also sig-
nificantly lower in the liver of these animals (Fig. 4F and G).

4. Discussion

In the current study, BAMBI protein is found highly expressed in
PHH. This has been confirmed by the use of two different BAMBI
antibodies for immunoblot analysis, immunohistochemistry and
amplification of BAMBI cDNA from hepatocyte RNA by different
primer pairs. Although HSC express BAMBI mRNA at higher con-
centrations than PHHs BAMBI protein is hardly detectable by
immunoblot analysis in these cells. This indicates that BAMBI pro-
tein levels may be regulated by posttranscriptional/posttransla-
tional mechanisms. BAMBI mRNA is also highly expressed in
hepatoma cells whereas protein levels are low in these cell lines
and in HCC tissues. Therefore, at least in liver cells BAMBI mRNA
does not necessarily predict protein levels. In endothelial cells,
BAMBI protein concentrations are predominantly controlled by



Fig. 3. BAMBI impairs TGFb1 activity in hepatoma cells (A) BAMBI mRNA in primary human hepatocytes (PHH), HepG2 and Hep3B cells. (B) BAMBI protein in PHH, HepG2,
Hep3B and Huh7 cells. (C) HepG2 cells expressing BAMBI fused to a V5 tag and control transfected cells were incubated with TGFb1 (1, 3 and 5 ng/ml) for 48 h and CTGF was
analyzed in the cell lysates. (D) Quantification of the immunoblots of 3 independent experiments with a representative result shown in C (arbitray units, au). (E) Huh7 cells
expressing BAMBI fused to a V5 tag and control transfected cells were incubated with TGFb1 (1 ng/ml) for 30 min and P-SMAD2, SMAD2/3, P-SMAD3 and SMAD3 were
analyzed in the cell lysates. (F) Quantification of the P-SMAD2/SMAD2 ratio from the immunoblot data of 3 independent experiments shown in (E). (G) BAMBI protein in
hepatocellular carcinoma and adjacent healthy tissues (NT) of 4 patients.
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lysosomal and auto lysosomal degradation [33] and similar regula-
tory pathways may exist in liver cells and contribute to contradic-
tory findings for mRNA and protein levels.

BAMBI protein is also detected in endothelial cells of blood ves-
sels as has been already shown [33] and cholangiocytes. Kupffer
cells do not produce BAMBI protein in accordance with published
mRNA expression data [20].

Predicted molecular weight of BAMBI is 26 kDa and the BAMBI
protein detected in hepatocytes has a molecular weight of 38 kDa,
in HSC BAMBI is a 35 kDa protein indicating posttranslational mod-
ification of BAMBI that differs in PHH and HSC. BAMBI protein in
human and rodent liver resembles the 38 kDa protein although
species-specific differences of BAMBI protein have been described
in the kidney where the mouse protein has a molecular weight of
about 27 kDa and the human protein of about 29 kDa. The 35 kDa
BAMBI isoform expressed by human HSC is not detected by immu-
noblot analysis in whole liver lysate of mice and humans. This find-
ing is in line with low abundance of BAMBI protein in HSC which,
furthermore, only make up 5% of total liver cells.

BAMBI protein is significantly reduced in human fatty liver, and
here negatively correlates with BMI of the patients suggesting a
regulatory role of adipokines or cytokines which are correlated
with BMI. BMI has been identified as an independent risk factor
for fibrosis in NASH and low liver BAMBI may be one factor
explaining this association [34]. Systemic adiponectin is inversely
related to BMI [35], and BAMBI is induced by physiological
amounts of adiponectin in hepatocytes suggesting that reduced he-
patic BAMBI in human fatty liver is in part a consequence of low
systemic adiponectin.

BAMBI is even more prominently suppressed in rodent NASH
and rodent liver fibrosis. Systemic adiponectin is significantly re-
duced in NASH whereas systemic levels of endotoxin are increased
[5,36]. Lipopolysaccharide (LPS) downregulates BAMBI mRNA in
HSC [20] but whether it lowers BAMBI protein in these cells or
PHHs has not been studied so far. Nevertheless, low BAMBI in
NASH liver may contribute to enhanced TGFb signaling and subse-
quently to progressive fibrosis.

TGFb is well known to upregulate CTGF [13,37] and overexpres-
sion of BAMBI in hepatoma cells impairs CTGF induction. Adipo-
nectin also induces BAMBI in the presence of TGFb and blocks
CTGF upregulation. Interestingly, adiponectin modestly reduces
CTGF in PHHs independent of TGFb and further studies have to re-
veal the pathways involved herein. HSC are the main producers of
extracellular matrix in the fibrotic liver [12] and adiponectin has



Fig. 4. BAMBI in human fatty liver and rodent models of liver injury. (A) BAMBI and GAPDH were analyzed in liver tissues of 7 patients without (C_1 to C_7) and 7 patients
with histological defined hepatic steatosis (FL_1 to FL_7). (B) Quantification of the BAMBI immunoblot shown in B (arbitray units, au). (C) Correlation of BMI and liver BAMBI
protein. (D) BAMBI in the liver of mice fed a Paigen diet or control chow. (E) Quantification of the immunoblots partly shown in (E) (arbitray units, au). (F) BAMBI in the liver of
mice fed a MCD diet or control chow. (G) Quantification of the immunoblots partly shown in G (arbitray units, au).
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been shown to attenuate TGFb mediated CTGF expression [38].
Adiponectin upregulates BAMBI in HSC and this may partly con-
tribute to the lower synthesis of CTGF described.

BAMBI has been shown to interfere with complex formation of
TGFb type I and II receptors, and furthermore, inhibits binding of
SMAD3 to the TGFb type I receptor thereby blocking SMAD3 phos-
phorylation [39,40]. In HeLa and HEK293T overexpressing BAMBI
TGFb-mediated phosphorylation of SMAD2 and -3 is impaired
[40]. In the hepatoma cell lines studied herein BAMBI only lowers
phosphorylation of SMAD2 whereas activation of SMAD3 is not af-
fected. SMAD2 and SMAD3 have distinct functions in TGFb signal-
ing and selective activation of single SMADs has been described
[41]. Transcriptional activation of the CTGF promoter is mediated
via activated SMAD2 but not SMAD3 [32] suggesting that BAMBI
associated inhibition of SMAD2 phosphorylation most likely con-
tributes to impaired induction of CTGF. However, the precise
mechanisms leading to lower SMAD2 activation by BAMBI has to
be evaluated in further studies.

Downstream effectors of adiponectin are AMPK and PPARa [16].
Fenofibrate which is a PPARa agonist has no effect on BAMBI pro-
tein in PHHs. AMPK is a downstream effector of adiponectin and
metformin but inhibition of this kinase by compound C does not
efficiently block adiponectin-mediated upregulation of BAMBI.
Therefore, further studies using more specific approaches like
shRNA mediated suppression of AMPK subunits or dominant neg-
ative acting AMPK isoforms are needed to clarify the role of this ki-
nase in the upregulation of BAMBI. Furthermore, additional kinases
like p38 MAPK which is activated by adiponectin and metformin
[24,42] may be involved. Adiponectin activates NF-jB [24,43,44]
and inhibition of NF-jB partly blocks adiponectin-mediated upreg-
ulation of BAMBI suggesting that this pathway is involved. LPS acti-
vates NF-jB and suppresses BAMBI in hepatic stellate cells
whereas BAMBI mRNA is not altered by LPS in murine mesangial
cells and human umbilical vein endothelial cells [20,33]. These
data suggest cell type specific regulation of BAMBI by LPS.

Nevertheless, metformin induces BAMBI in PHHs providing a
possible mechanism for its already described antifibrotic effects
[45]. In mouse cardiac fibroblasts metformin inhibits TGFb1-
SMAD3 signaling whereas SMAD2 phosphorylation is not affected
[45] suggesting that BAMBI may even have distinct functions in
different cell types.

In summary, the current study shows that adiponectin inter-
feres with TGFb1 signaling in hepatocytes by upregulation of BAM-
BI which impairs activation of SMAD2 at least in hepatoma cells.
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