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SUMMARY

G-protein-coupled receptors (GPCRs) transduce
signals from the extracellular environment to intra-
cellular proteins. To gain structural insight into the
regulation of receptor cytoplasmic conformations
by extracellular ligands during signaling, we examine
the structural dynamics of the cytoplasmic domain of
the b2-adrenergic receptor (b2AR) using

19F-fluorine
NMR and double electron-electron resonance spec-
troscopy. These studies show that unliganded and
inverse-agonist-bound b2AR exists predominantly
in two inactive conformations that exchange within
hundreds of microseconds. Although agonists
shift the equilibrium toward a conformation capable
of engaging cytoplasmic G proteins, they do so
incompletely, resulting in increased conformational
heterogeneity and the coexistence of inactive,
intermediate, and active states. Complete transition
to the active conformation requires subsequent
interaction with a G protein or an intracellular G pro-
tein mimetic. These studies demonstrate a loose
allosteric coupling of the agonist-binding site and
G-protein-coupling interface that may generally be
responsible for the complex signaling behavior
observed for many GPCRs.
INTRODUCTION

G-protein-coupled receptor signaling relies on allosteric

coupling between the extracellular facing ligand-binding pocket

and the cytoplasmic domain of the receptor. Ligands may acti-

vate a signaling pathway (agonists), inhibit the basal level of

signaling (inverse agonists), or bind but not perturb signaling

(neutral antagonists), all by changing the conformational

ensemble of a GPCR. Recent X-ray crystal structures of the

b2AR have provided high-resolution insight into two conforma-

tions associated with GPCR function: an inactive, inverse

agonist-bound state and the active state in complex with an
agonist and the G protein Gs (Cherezov et al., 2007; Rasmussen

et al., 2007, 2011a, 2011b; Rosenbaum et al., 2007). These

structures reveal how subtle changes in the ligand-binding

pocket translate into a 14 Å outward displacement of transmem-

brane 6 (TM6) in the cytoplasmic domain of the receptor (Fig-

ure 1A) (Trzaskowski et al., 2012).

Proteins display a range of motions associated with function,

from pico- to nanosecond timescale amino acid side-chain

reorientations to inter-domain motions that may happen on the

millisecond to second timescale (Baldwin and Kay, 2009; Hen-

zler-Wildman and Kern, 2007; Sekhar and Kay, 2013). Although

such protein dynamics are likely important for the signaling

versatility and allosteric regulation of GPCRs, the dynamic prop-

erties of GPCRs remain poorly understood. Crystallography typi-

cally captures the lowest energy states within an ensemble

of conformations. Other methods are therefore required to

characterize transiently populated conformations as well as the

transitions between different conformations. Using NMR spec-

troscopy of 13CH3-ε-methionines, we recently observed signifi-

cant conformational heterogeneity in the transmembrane core

of b2AR while bound to agonist and inverse agonist, as well as

evidence of conformations not observed in crystal structures

(Kofuku et al., 2012; Nygaard et al., 2013). Here, we extend

these studies by assessing b2AR conformational dynamics in

the cytoplasmic, G-protein-coupling domain of the receptor.

We use 19F NMR spectroscopy of fluorine-labeled b2AR

to identify representative states and exchange rates between

these states as a function of ligand efficacy. To provide a

structural framework for this conformational heterogeneity, we

utilize pulsed electron paramagnetic resonance spectroscopy

(double electron-electron resonance, or DEER) of nitroxide

spin-labeled b2AR.
RESULTS

Monitoring b2AR Structure and Dynamics with NMR
and DEER Spectroscopy
For 19F-NMR studies, we site-specifically labeled a minimal

cysteine version of b2AR with a trifluoroacetanilide probe at

Cys265, an endogenous residue located at the cytoplasmic

end of TM6 (Figures 1B and S1A) (Jensen et al., 2001). The
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Figure 1. Spectroscopic Methods for Detecting Conformational Changes of b2AR

(A) Comparison of crystal structures of inactive, carazolol-bound, and active b2AR in complex with agonist BI167107 and Gs. The crystal structures reveal a 14 Å

outward displacement of TM6 upon b2AR activation. Cys265, used for 19F-NMR experiments, is highlighted in spheres.

(B) 19F-NMR studies utilize the fluorine label 2-bromo-4-(trifluoromethyl)acetanilide (19F-BTFA) that reports changes in the chemical environment at the

cytoplasmic end of TM6. See Figure S1 and Table S1 for construct design and validation.

(C) For DEER spectroscopy, b2AR was labeled at the cytoplasmic ends of TM4 (site N148C-IAP) and TM6 (site L266C-IAP) with the nitroxide label

3-(2-iodoacetamido)-2,2,5,5-tetramethylpyrroline-1-oxyl (IA-PROXYL).

(D) Energy landscape of b2AR in the presence of inverse agonists carazolol and ICI-118,551, agonists isoproterenol and BI167107, and agonists with Nb80.
resulting 19F-NMR spectrum displays peaks at different chemi-

cal shifts that reflect the unique environments of the trifluoro-

methyl probe at Cys265 associated with specific conformations

of TM6 and neighboring TM3, TM5, and TM7. Each peak defines

a given conformation or state. In one-dimensional NMR, the area

associated with a peak is in direct proportion to the population

of that conformer. The line width reflects subtle conformational

heterogeneity or exchange dynamics between states, which

can be distinguished by additional Carr-Purcell-Meiboom-Gill

(CPMG) relaxation dispersion measurements (Meiboom and
1102 Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc.
Gill, 1958). Thus, NMR spectra reveal conformational heteroge-

neity in and around TM6, either as peak broadening or as multi-

ple peaks with different chemical shifts. To aid in the visualization

of 19F-NMR spectra, we subtract a peak originating from another

labeled site on the b2AR that does not change upon addition of

ligands. The original spectrum originating from Cys265 and the

subtracted constant peak are shown in Figures S1B and S1C.

To provide a structural framework for the conformational

heterogeneity observed in 19F-NMR spectra, we utilized

DEER spectroscopy, which can measure distance distributions



between two domains on a protein. For DEER spectroscopy,

b2AR was site-specifically labeled with nitroxide probes at

L266C in TM6 and N148C in TM4 (Figures 1C, S1A, S1D, and

S1E), and the DEER data were analyzed to provide inter-nitro-

xide distance distributions using established methods (Fig-

ure S2). Finally, we performed two additional 19F-NMR relaxation

experiments designed to examine the kinetics of conformational

changes: CPMG relaxation dispersion experiments for fast

microsecond to millisecond transitions and ‘‘hole burning’’ satu-

ration-transfer experiments for slow transitions occurring on the

10–500 ms timescale (Forsen and Hoffman, 1963). Studies were

performed with protein purified by ligand affinity chromatog-

raphy to ensure that all spectroscopic data reflect functional

states of the b2AR (Kobilka, 1995).

We acquired spectra for b2AR bound to saturating concentra-

tions of four ligands: (1) carazolol, an ultra-high-affinity (32 pM)

partial inverse agonist (Rasmussen et al., 2007); (2) ICI-

118,551, a high-affinity (550 pM) full inverse agonist (Baker,

2005); (3) isoproterenol, a low-affinity (229 nM) full agonist that

is an analog of the endogenous hormone adrenaline; and (4)

BI167107, an ultra-high-affinity full agonist (84 pM) (Rasmussen

et al., 2011a). Additionally, we acquired spectra for b2AR bound

to either agonist in the presence of the G protein mimetic Nb80.

In total, NMR and DEER spectroscopy provide evidence for at

least four distinct b2AR states, which we label as S1, S2, S3,

and S4 for the purpose of discussion (Figure 1D, top). While it

is possible that the states identified byNMR andDEER spectros-

copy are distinct and non-overlapping, the high level of agree-

ment observed for equilibrium populations and their response

to ligands strongly suggest that both techniques resolve similar

conformations of the b2AR. After assigning these states to spe-

cific structural conformations of the b2AR, we illustrate insights

into receptor function with energy landscape diagrams that

change in the presence of inverse agonists, agonists, and

Nb80 (Figure 1D). Although the energy diagram illustrations likely

oversimplify the complexity of b2AR dynamics, they show the

key role that structural dynamics plays in GPCR function.

Furthermore, the results suggest a marked difference in the

conformational landscape of b2AR as compared to the light-

sensing GPCR rhodopsin. These differences in energetics may

explain dissimilarities in signaling behavior between rhodopsin,

which evolved for rapid and highly efficient detection of a photon,

and hormone-activated GPCRs like the b2AR, which evolved to

have more complex signaling and regulatory behavior.

Dynamics of Inactive States
To provide a structural reference for NMR and DEER studies, we

will first present results of experiments done under conditions

used to obtain inactive and active state crystal structures. Cara-

zolol is an ultra-high-affinity partial inverse agonist that reduces

basal Gs coupling activity (Rasmussen et al., 2007). DEER spec-

troscopy revealed a broad distance distribution between TM6

and TM4 (Figure 2A). Modeling of the nitroxide spin labels in

the carazolol-bound X-ray crystal structure of b2AR (PDB ID:

4GBR) (Zou et al., 2012) and simulation of the expected distance

distribution (see Experimental Procedures) showed substantial

overlap with one of the populations observed in the DEER-

derived distance distribution (Figures 2A and 2B). While the
conformation of TM6 is similar in all inactive state crystal struc-

tures of the b2AR, structural heterogeneity of TM6 in the inactive

state has previously been observed in crystal structures of the

b1AR (Moukhametzianov et al., 2011), where one of two TM6

conformations resulted from different states of a highly

conserved interaction between the DRY motif within TM3 and

E2856.30, termed the ionic lock. Although crystal structures of

antagonist-bound b2AR consistently show a broken ionic lock,

molecular dynamics simulations indicate that the receptor tran-

sitions frequently between the two conformations (Dror et al.,

2009). In order to assess the theoretical DEER distance distribu-

tion for b2AR in the ionic lock, we modeled the nitroxide labels

onto the X-ray crystal structure of b1AR with an intact ionic

lock (PDB: 2YCW, chain A) at the same positions used for

DEER studies of the b2AR (Figures 2A and 2C) and simulated

the inter-nitroxide distance distribution. This simulated distribu-

tion for b1AR with an intact ionic lock overlaps one of the confor-

mations experimentally observed for b2AR. This ensemble with

shorter distances may thus represent a population of the b2AR

with an intact ionic lock. We describe the inactive conformation

with the ionic lock intact as S1 and the conformation with the

ionic lock broken as S2. We observe a smaller population having

shorter distances between nitroxide probes (28–33Å). These

may reflect additional, less-populated conformational states

and/or different rotamers of probes on the S1 conformation.

In agreement with the structural heterogeneity observed in

DEER experiments, 19F-NMR spectra show a broad line shape.

Due to the slow dissociation rate of carazolol (t1/2 of dissocia-

tion = 30.4 hr) (Rosenbaum et al., 2007) compared to the time-

scale of the NMR experiment, ligand association and dissocia-

tion kinetics do not contribute to the observed structural

heterogeneity and dynamics. In accord with molecular dynamics

simulations, we observed the presence of high microsecond

receptor exchange dynamics (exchange rate [kex] = 6,200 ±

830 s�1) for carazolol-bound b2AR in CPMG relaxation disper-

sion experiments (Figure 3A, inset). As a result of the exchange

rate between the two ionic lock states, their unique chemical

shifts are not observed in the spectra but are represented as

a weighted average centered at �60.85 ppm due to classic

exchange broadening and coalescence. However, knowing the

exchange rate and assuming two states as suggested by the

DEER distance distributions, it is possible to simulate the NMR

lineshapes and chemical shifts for each of these states as they

would appear in the absence of exchange (see Supplemental

Experimental Methods). The resulting simulated exchange-free

spectra identify two states that likely correspond to the ionic

lock states S1 and S2 (Figures 3A and S3B). We assign the

peak at �60.50 ppm to S1 (ionic lock intact) since more buried

fluorine reporters are typically observed to be more downfield.

Moreover, the linewidth of S2 (�61.30 ppm) in the absence of

exchange is predicted to be broader based on the global line-

shape simulations, hinting at greater heterogeneity in the ionic

lock disrupted inactive state. For carazolol-bound b2AR, both

states are populated nearly equally, which is consistent with

the results observed by DEER spectroscopy for the S1 and S2

states. Using these equilibrium populations for S1 and S2 with

the exchange kinetics from the CPMG experiments, the calcu-

lated lifetime of the S1 and S2 states is 325 ± 44 ms (Figure 3C).
Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc. 1103
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Figure 2. DEER Distances of Inactive and Fully Active b2AR

(A) Distance distribution for carazolol-bound b2AR. The dotted lines show simulated nitroxide spin label distance distributions for a state with a broken ionic lock

using carazolol-bound b2AR (PDB ID: 4GBR) and a state with an ionic lock intact using b1AR (PDB ID: 2YCW), as shown in (B) and (C).

(B) IA-PROXYL rotamers modeled onto b2AR bound to carazolol (PDB ID: 4GBR) using MTSSLWizard. The distance between these possible rotamers is then

determined in a pairwise manner to yield the predicted distance distribution shown in A.

(C) Similar analysis as in (B) was performed on the structure of b1AR bound to carazolol but with an intact ionic lock. The red outline indicates rotamers modeled in

(B). The mean distance for a state with an intact ionic lock is predicted to be shorter than for b2AR with a broken ionic lock.

(D) Distance distribution for b2AR bound to BI167107 and Nb80. The dashed green line serves as amarker for the S4 state. The gray line represents the simulated

distance distribution for b2AR bound to BI167107 and Nb80 using the previously determined crystal structure (PDB ID: 3P0G), as shown in (E).

(E) IA-PROXYL rotamer modeling of activated b2AR bound to BI167107 and Nb80.

See Figure S2 for raw DEER data.
Together, these results show that the inverse agonist carazolol

does not fully stabilize TM6 in a single inactive conformation. In

Figure 1D, we represent the two states observed for carazolol-

bound b2AR as two energy wells of similar depth separated by

a shallow energy barrier that allows the fast exchange between

the two inactive conformations.

Dynamics of Fully Active State
Activation of the b2AR results in TM6movement that creates a re-

ceptor-binding site for intracellular effector and regulatory pro-

teins. This change was observed in crystal structures of b2AR

bound to BI167107 and either Gs or Nb80 (Rasmussen et al.,

2011a;Rasmussenet al., 2011b).WeutilizedNb80asaG-protein

surrogate in NMR and DEER experiments for two reasons (Fig-

ure 2D and Figure 3B). First, generating homogeneously pre-
1104 Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc.
pared b2AR bound to Nb80 is significantly simpler as compared

to Gs, as Nb80 binding does not depend on biochemically

labile nucleotides. Second, Nb80 is significantly smaller than Gs

(14 kDa versus 85 kDa), and this smaller size allowed us to

generate 19F-NMRspectra of fully activated receptorwith greater

resolution due to longer transverse relaxation times. The 19F-

NMR spectrum of the b2AR-BI167107-Nb80 complex shows a

large change from the unliganded state, with the appearance of

a new peak (Figure 3B). The upfield chemical shift of �61.59

ppm observed for b2AR bound to Nb80 is consistent with greater

solvent exposure of the cytoplasmic side of TM6 upon receptor

activation. Additionally, the decreased peak linewidth is consis-

tent with a single receptor conformation while bound to Nb80.

Additionally, CPMG experiments revealed no evidence of milli-

second timescale exchange dynamics (Figure 3B, inset).
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Figure 3. 19F-NMR Spectra of Inactive and

Fully Active b2AR

(A) 19F-NMR spectrum of carazolol-bound b2AR.

The inset shows the presence of fast timescale

dynamics, as assessed by CPMG relaxation

dispersion profiles at twomagnetic fields (500MHz

and 600 MHz). The simulated S1 and S2 peaks in

the absence of exchange are shown in dotted lines,

and the simulated combined lineshape arising

from exchange of S1 and S2 is shown in gray.

The simulated lineshapes are further illustrated in

Figure S3. The estimated errors in R2,eff for CPMG

studies are smaller than the graphics used for

illustration. Standard errors in kex are dependent

on errors in R2,eff, which were estimated by the

spectral noise and variation in spectra between

experiments from identically prepared samples.

See Supplemental Experimental Methods for more

details.

(B) 19F-NMR spectrum of b2AR bound to BI167107

and Nb80. The dashed green line serves as a

marker for the S4 state. Inset shows the absence

of CPMG relaxation dispersion for b2AR bound to

BI167107 and Nb80.

(C) Lifetimes of the S1 and S2 states for b2AR were

calculated using the measured exchange rates

and the populations estimated by lineshape

simulation. As the kex could not be experimentally

determined for b2AR bound to BI167107, there is

potential for error in the simulated populations and

lifetimes. The data are therefore illustrated in

dotted lines. Error bars represent errors propa-

gated from CPMG fits and determination of S1

and S2 populations. Generally, inverse agonists

decrease the lifetime of both the S1 and S2 states,

while agonists decrease the lifetime of the S1 state

while preserving the lifetime of the S2 state.

See Figure S3 for raw NMR data.
Using DEER spectroscopy, we confirmed that the change in

the 19F-NMR spectrum occurs due to receptor activation (Fig-

ure 2D). The distance distribution shows a single conformation

centered around 50 Å, consistent with the outward displacement

of TM6 observed in the crystal structure of the b2AR-BI167107-

Nb80 complex. Simulation of the inter-nitroxide distance

distribution for spin labels modeled in the b2AR-BI167107-

Nb80 crystal structure (PDB ID: 3P0G) yielded good agreement

with the observed DEER distance distribution (Figures 2D and

2E). Binding of a high-affinity agonist and an intracellular G-pro-

tein mimetic, therefore, fully stabilizes b2AR in the conformation

observed by X-ray crystallography. The absence of exchange

dynamics in 19F-NMR CPMG experiments (Figure 3B, inset)

suggests that this activated conformation in the presence of

BI167107 and Nb80 is a relatively stable, low-energy conforma-

tion. In Figure 1D, we depict the corresponding free-energy land-

scape, resulting from binding of agonist and Nb80, as being

dominated by a single energy well, with a large energy barrier

toward alternative conformations of the b2AR. We refer to the

fully active conformation with both agonist and Nb80 bound as

S4. As the structure of Nb80-bound b2AR is highly similar to

that of the b2AR-Gs complex, the S4 state likely also represents

the G-protein-coupled state of the receptor.
Structural Insights into Basal Activity
Most GPCRs, including the b2AR, exhibit some degree of basal

activity, suggesting that they are able to activate G proteins in

the absence of agonist. The structural basis for basal activity is

not known but may be due to the dynamic and flexible nature of

theb2ARsuch that a small fractionof receptor existing in anactive

state is capable of coupling to Gs. Inverse agonists like carazolol

and ICI-118,551 would be expected to destabilize active states,

either by reducing their equilibrium population or by decreasing

the lifetime of states on the pathway to activation. Surprisingly,

there is little difference in the steady-state DEER and NMR data

between unliganded receptor and b2AR bound to carazolol or

ICI-118,551 (Figures 4A, 4B, S4A, and S4B). The relative popula-

tions of S1 and S2 as determined by lineshape simulations are

similar for unliganded and inverse agonist-bound receptor (Fig-

ure 4C). Notably, we do not reliably observe a peak correspond-

ing to the active state in either DEER or NMR experiments of

unliganded b2AR, likely because such a transiently populated

conformation is outside the current detection limit of these exper-

iments. However, CPMG experiments show that the rate of inter-

conversion between the S1 and S2 states is reduced by approx-

imately half for unliganded receptor as compared with either

carazolol-bound or ICI-118,551-bound receptor (Figures 4B,
Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc. 1105
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Figure 4. Spectroscopic Insights into Basal Activity of Unliganded b2AR

(A) DEER-derived distance distributions for unliganded b2ARwith the carazolol-bound distribution superimposed. See Figure S3 for DEER data with ICI-118,551.

(B) 19F-NMR spectra of unliganded b2AR with CPMG relaxation dispersions shown in the inset. The simulated lineshape for unliganded b2AR is shown in gray.

(C) 19F-NMR simulated S1 and S2 states for unliganded b2AR compared to carazolol-bound b2AR.
inset, and S4B). The more rapid exchange between S1 and S2

in carazolol and ICI-118,551-bound receptor is illustrated in the

energy landscape as a lower energy barrier between these two

states (Figure 1D). This lower interconversion rate for unliganded

receptor also results in an increased lifetimeof both theS1andS2

states, with a calculated value of 700 ± 137 ms (Figure 3C).

Agonists Alone Do Not Fully Stabilize an Active State
Although it is well established that agonists increase GPCR

signaling by inducing a change in receptor conformation and

ultimately leading to G-protein coupling, the mechanism associ-

ated with this allosteric process remains poorly understood.

Crystal structures of b2AR in a fully active conformation have

relied on the presence of a protein bound to the intracellular

surface to stabilize the active state. As a result, the degree of

conformational changes induced by agonists alone remains

poorly defined. In the absence of a stabilizing interaction with

Nb80 or Gs, the b2AR bound to a covalent agonist crystallized

in an inactive conformation (Rosenbaum et al., 2011). Addition-

ally, molecular dynamics simulations of active, agonist-bound

b2AR in the absence of Nb80 or Gs demonstrate a rapid transition

of the receptor to the inactive state (Rosenbaum et al., 2011).

These results, together with previous NMR studies (Nygaard

et al., 2013), suggest that the active conformation is not the

lowest energy state for agonist-bound receptor. Here, we

explore the effect of agonists on the structure of the cytoplasmic

domain of the b2AR in the absence of constraints imposed by a

crystal lattice.

To determine the effect of agonists on b2AR structure and

dynamics, we examined two full agonists: isoproterenol

(760 nM), a catecholamine related to adrenaline, and BI167107

(84 pM). In the case of isoproterenol, association and dissocia-

tion kinetics are rapid (seconds to minutes) and may contribute

to receptor dynamics; however, the dissociation kinetics of

BI167107 are very slow (t1/2 = 30 hr) (Rasmussen et al., 2011a),

and this agonist will remain bound for the duration of the spectro-

scopic studies.
1106 Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc.
We first assessed the ability of the lower-affinity full agonist

isoproterenol to induce conformational changes in the b2AR.

Surprisingly, DEER experiments revealed that, even in the pres-

ence of a saturating concentration (2.53molar excess, 0.5 mM)

of a full agonist, most of the receptor remained in an inactive

conformation, with �20% in a conformation similar to the fully

active b2AR bound to BI167107 and Nb80 (Figure 5A). Isoproter-

enol also appears to increase the fraction of receptor populating

a conformation consistent with a broken ionic lock when

compared with unliganded and inverse agonist-bound receptor.

To determine whether the inactive state peaks represent non-

functional receptor, we added Nb80 and observed that most of

the protein transitions to an active state (Figure 5A). NMR studies

revealed a more complex set of conformations associated with

agonists, perhaps due to the sensitivity of the 19F-NMR probe

to local conformation. We observe a new upfield peak in

the 19F-NMR spectrum (Figure 5B) in the presence of saturating

concentrations of isoproterenol. This new peak, labeled S3, has

a chemical shift of �61.47 ppm, which is similar, but not iden-

tical, to the S4 state (�61.59 ppm) observed for b2AR bound to

BI167107 and Nb80 (Figure 3B). Addition of Nb80 to isoproter-

enol-bound b2AR results in a predominant peak between S3

and S4 at �61.51 ppm (Figure 5B). Although Nb80 was added

in 2.53 molar excess, the fast dissociation/association kinetics

of isoproterenol may hinder complete stabilization of the S4

state. The resulting conformational heterogeneity is consistent

with the increased peak linewidth observed for b2AR bound to

isoproterenol and Nb80 as compared to BI167107 and Nb80

(144 Hz and 114 Hz, respectively) as well as the small fraction

of inactive receptor observed in the DEER distance distribution.

Given the sensitivity of the 19F-NMR probe, we posit that the S3

peak represents an on-pathway intermediate toward the fully

activated S4 conformation, which is adopted upon complete

stabilization of the active state. In the experimental conditions

presented here, this occurs only upon binding of a slowly disso-

ciating agonist and Nb80. The fact that we cannot distinguish

S3 from S4 by DEER spectroscopy may be due to limitations
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Figure 5. Agonists Induce Conformational Heterogeneity in the Cytoplasmic Domain of b2AR

(A) Distance distributions for b2AR in the presence of isoproterenol alone and with Nb80. The dashed black trace represents the distribution from unliganded

b2AR. DEER experiments do not provide sufficient resolution to distinguish S3 from S4.

(B) NMR spectrum of isoproterenol-bound b2AR shows the presence of a new upfield peak corresponding to S3 (�61.47 ppm) as well as a peak originating from

fast exchange of S1 and S2 states. Addition of Nb80 causes a transition to a peak between the S3 and S4 states (�61.51 ppm). The S4 state has a chemical shift

of �61.59 ppm. See Figure S5 for isoproterenol lineshape analysis.

(C) Deconvolution of b2AR+isoproterenol without Nb80 to highlight the S3 state. CPMG dispersion of the S1+S2 peak is shown in the inset.

(D) Simulation of S1 and S2 states for b2AR bound to isoproterenol and comparison with unliganded b2AR show an increase in the S2 state for isoproterenol-

bound receptor.

(E) DEER distance distribution for b2AR bound to BI167107.

(F) 19F-NMR spectrum of b2AR bound to BI167107, with a new peak at S3 (�61.47 ppm).

(G) Deconvolution of b2AR+BI167107 spectrum into S1+S2 and S3 peaks. Arrows indicate positions of the spectrum irradiated in saturation transfer experiments

with the resulting decay in signal shown in (H). See Figure S5 for saturation transfer NMR spectra.

(A–G) Dashed green lines indicate the conformational signals observed for b2AR bound to BI167107 and Nb80.
in sensitivity of this method at distances in the range of 50 Å. It is

also possible that different conformations result in similar TM6-

TM4 distances.

Based on the area under the S3 peak for isoproterenol bound

b2AR, this state represents approximately 15% of the total re-

ceptor population and is consistent with the fraction of receptor

in the active-like state observed in DEER studies. Additionally,

we performed lineshape simulations of the major peak arising

from S1 and S2 states using estimates of receptor exchange

kinetics derived from CPMG experiments (Figures 5C, 5D, and

S5A). Such analysis shows that isoproterenol increases the frac-

tion of b2AR in the S2 state with a broken ionic lock, which is

consistent with the proportions observed in DEER studies.

Notably, due to the difference in population observed for S1

andS2 for isoproterenol-bound receptor, the calculated lifetimes

differ for each state (Figure 3C). The S1 lifetime is 394 ± 55 ms,

which is similar to that observed for carazolol-bound receptor.

On the other hand, the lifetime of the S2 state is 756 ± 105 ms,

similar to that for unliganded receptor. These observed differ-

ences in lifetimes of the S1 and S2 states between agonist, in-

verse agonist, and unliganded receptor are shown in Figure 3C.
To determine whether the failure of isoproterenol to fully stabi-

lize the active state is due to dissociation/association kinetics,

we examined the response to the ultra-high-affinity agonist

BI167107. In both 19F-NMR and DEER experiments, we observe

substantially more of the S3 conformation of b2AR (Figures 5E

and 5F). However, even bound to this high-affinity agonist,

�40%–60% of the receptor is in conformations comprised of

the inactive S1 and S2 states. As noted above, due to the very

slow dissociation kinetics, it is unlikely that this observed confor-

mational heterogeneity results from b2AR molecules not bound

to BI167107. The reduced signal representing S1 and S2 does

not allow accurate measurement of relaxation dispersion by

CPMG experiments. However, we observed slow exchange

between active (S3) and inactive (S1 and S2) conformations in
19F-NMR saturation transfer experiments. Saturation of the
19F-NMR peak originating from the inactive state S1 led to a

decrease in signal of the peak originating from the active inter-

mediate S3, suggesting that inactive and active conformations

exchange on a slow timescale (Figures 5G and 5H). Through

control experiments, which allowed us to identify the extent of

off-resonant saturation (Figures 5H and S5C), the exchange
Cell 161, 1101–1111, May 21, 2015 ª2015 Elsevier Inc. 1107



resulting from saturating the inactive ensemble is consistent with

the lifetime of the S3 state to be 660 ms. The kinetics of these

transitions is faster than our previous fluorescence studies

examining the activation of purified b2AR by isoproterenol (Swa-

minath et al., 2004). In those experiments, the change in fluores-

cence associated with receptor activation occurs in two phases,

with t1/2 values of 2.5 s and 150 s. While these experiments high-

lighted the slow transition associated with receptor activation,

the studies were done under non-steady-state conditions in

which ligand binding and unbinding as well as receptor confor-

mational changes contribute to the change in fluorescence. In

the NMR kinetics experiment presented in Figure 5H, the recep-

tor is at equilibrium between inactive and active states, and the

agonist BI167107 has such exceptionally slow binding/unbind-

ing kinetics that they do not contribute to the observed rate

of transitions between inactive and active states. As such, the

saturation transfer experiment here directly shows a high-energy

barrier between the inactive and S3 states that may be respon-

sible for the slower transition to the active state observed for

the b2AR and other GPCRs as compared to rhodopsin (Lohse

et al., 2014).

DISCUSSION

Taken together, the spectroscopic results for b2AR bound to

BI167107 and isoproterenol suggest that agonists do not fully

stabilize the active conformation of the receptor at the cyto-

plasmic domain. Furthermore, in each case, agonist-bound

b2AR is highly dynamic and interconverts between inactive, in-

termediate, and active conformations with varying timescales.

In Figure 1D, we illustrate the effects of BI167107 and isoproter-

enol on b2AR. BI167107 induces a greater decrease in energy of

the active-like state S3. Isoproterenol, on the other hand, in-

duces a small decrease in the energy of both the S2 and S3

states. Based upon their unique 19F NMR chemical shifts, we

distinguish the active intermediate state S3 stabilized by isopro-

terenol or BI167107 alone as being distinct from S4, the fully

active state stabilized only in the presence of a slowly dissoci-

ating agonist and the G-protein mimetic Nb80. It should be

noted that we do not observe a difference between S3 and S4

in DEER studies. This may reflect the limits of spatial resolution

of DEER spectroscopy or the fact that S3 and S4 have the

same maximum distance but differ in the conformation of other

TM segments that are near C265, such as TM5 and TM7. Never-

theless, the distinction between S3 and S4 is supported by

NMR experiments examining the dynamics of transmembrane
13CH3-ε-methionines that revealed the inability of BI167107 to

stabilize the transmembrane core of b2AR in an active confor-

mation in the absence of Nb80 (Nygaard et al., 2013). Taken

together, these spectroscopic results suggest that the confor-

mation of the ligand-binding pocket and the cytoplasmic domain

of b2AR are not tightly allosterically coupled. This ‘‘loose allo-

steric’’ regulation has previously been proposed based on long

timescale molecular dynamics simulations in which agonist-

bound b2AR in an active conformation rapidly transitions to the

inactive state but without a high degree of correlation in confor-

mation between the cytoplasmic domain and the ligand binding

pocket (Dror et al., 2011).
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The regulation of b2AR by agonists and inverse agonists

demonstrated here stands in contrast to what has been

observed for the light-sensitive transducer rhodopsin, the

GPCR that has beenmost extensively characterized by biophys-

ical methods (Figure 6). Similar to the experiments presented

here for the b2AR, conformational changes in rhodopsin have

previously been studied in a detergent environment. While the

dynamic properties of both rhodopsin and b2AR are predicted

to be influenced by the lipid environment of a cellular membrane,

both receptors are functional in dodecyl-maltoside. Using this

detergent in the DEER experiments presented here allows us

to compare the intrinsic dynamics of the b2AR with previously

published studies on rhodopsin. In the presence of the cova-

lently attached inverse agonist 11-cis-retinal, EPR and NMR ex-

periments show that TM6 of rhodopsin primarily adopts a single

inactive conformation that is partly stabilized by the intracellular

ionic lock (Klein-Seetharaman et al., 1999; Knierim et al., 2007;

Smith, 2010). In contrast, carazolol-bound b2AR ismore dynamic

in the inactive state, with rapid transitions between conforma-

tions likely representing different states of the b2AR ionic lock.

Like b2AR, rhodopsin activation is also associated with an out-

ward displacement of TM6 (Altenbach et al., 2008; Choe et al.,

2011; Standfuss et al., 2011). Crystallographic and spectro-

scopic studies have illuminated how light-induced activation of

rhodopsin results in multiple conformations of the receptor,

including some states that exist for a very short period of time

(Okada et al., 2001). Isomerization of 11-cis-retinal to the agonist

all-trans-retinal results in conformational heterogeneity around

the retinal-binding pocket, with a rapid equilibrium reached

between Meta I and Meta II states. Elegant spectroscopic and

crystallographic studies have utilized pH, ionic strength, temper-

ature, and reconstitution into defined lipid environments to stabi-

lize and characterize these different conformations (Delange

et al., 1997; Gibson and Brown, 1993; Parkes and Liebman,

1984). In experiments performed in detergent at neutral pH,

however, light-activated rhodopsin completely populates the

Meta IIb conformation, which is characterized by an outward

displacement of TM6 (Figure 6B) (Altenbach et al., 2008; Arnis

and Hofmann, 1993; Knierim et al., 2007). The allosteric coupling

between the ligand-binding pocket and TM6 conformation, how-

ever, is significantly less rigid for the b2AR in the experiments

presented here. Agonist-bound b2AR is considerably more

dynamic, and a significant fraction of agonist-bound receptor

adopts an inactive (S2) or active-like intermediate (S3) conforma-

tion (Figure 6A). Transition to the active conformation observed

in the structure of b2AR coupled to Gs therefore requires the

heterotrimeric G protein in addition to the agonist. This is likely

to involve a multistep process in which Gs initially engages S3

or a similar state and arrives at the fully active conformation

through one or more yet uncharacterized conformational

intermediates.

The structural basis of basal activity and inverse agonism

is not known. The spectroscopy studies presented here do not

reliably detect a population in the active state for the unliganded

receptor. However, given the relatively small population of active

intermediate S3 observed in the presence of the full agonist

isoproterenol, it is possible that a small amount of S3 that is

outside the detection limit of these spectroscopic experiments
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Figure 6. Differences in the Dynamic Character of Rhodopsin and b2AR

(A) The b2AR is conformationally dynamic in the inactive state, and agonists induce further dynamics to varying degree. The active state is only stabilized in the

presence of either G protein or a G-protein mimetic. Inverse agonists increase the rate of exchange between ionic lock intact (S1) and broken (S2) states, thereby

reducing the lifetime of both states.

(B) Dark rhodopsin is minimally dynamic due to the highly efficacious inverse agonist 11-cis-retinal. Illumination by light induces a conformational change to

Metarhodopsin II and an accompanying outward displacement of TM6. This active state is then recognized by the G protein transducin (Gt).
could result in substantial activation of Gs. In addition to the pop-

ulation of active conformations, receptor activation and ligand

efficacy may also be governed by the lifetime of inactive states.

While the populations of S1 and S2 are not different for unli-

ganded and carazolol-bound receptor (Figure 1D), we do

observe a difference in the exchange rate between these states

by CPMG experiments. The more rapid exchange observed in

the presence of carazolol and ICI-118,551 is associated with a

shorter lifetime of both S1 and S2 (Figures 1D and 3C). In partic-

ular, we speculate that the lifetime of S2 (ionic lock broken) is

relevant to activation. Conversion between the inactive S2 and

active-like S3 states involves a significant energy barrier and a

large rearrangement of receptor topology. As such, this conver-

sion process is likely highly sensitive to the lifetime of the ionic

lock broken (S2) state. Inverse agonists may reduce the lifetime

of S2 below the characteristic timescale required for the conver-

sion from S2 to S3, thereby curtailing receptor activation. There-

fore, inverse agonist suppression of basal activity may result

from both a decrease in receptor population of intermediate

active states and a decreased lifetime of states on the path to

activation.
In conclusion, we demonstrate here a loose allosteric regu-

lation of the cytoplasmic, G-protein-coupling domain of the

b2AR. For many GPCRs, similar loose allostery may be respon-

sible for the ability of agonist-bound receptors to regulate multi-

ple intracellular signaling pathways through direct interactions

with different signaling and regulatory proteins. While the spec-

troscopy studies presented here only examine one dimension

of activation, namely the outward movement of TM6, they high-

light the complexity of receptor conformation. More generally,

the studies presented here highlight the key role that protein

dynamics likely plays in the signaling properties of GPCRs.

Further characterization of such dynamics will be required to

better understand signal transduction and to leverage GPCR

structural biology for drug design.
EXPERIMENTAL PROCEDURES

b2AR Expression, Purification, and Sample Preparation

Site-specific labeling of full-length human b2AR utilized a minimal cysteine

version of the receptor with mutations C77V, C327S, C378A, and C406A

and with normal ligand binding properties, as assessed by the affinities of
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the antagonist 3H-dihydroalprenolol, the inverse agonist ICI-118,551, and the

agonist isoproterenol (Figure S1A and Table S1). Sites of interest weremutated

to cysteine on top of this minimal cysteine b2AR variant (termed b2AR-D4) and

were expressed inSf9 insect cells using baculoviruses encoding receptor con-

structs. More details of the construct design are provided in the Supplemental

Experimental Procedures. After infection and expression of b2AR, cells were

lysed and b2AR was extracted using the detergent dodecylmaltoside. Anti-

FLAG antibody chromatographywas used to purify receptor followed by label-

ing with either 19F-BTFA at the endogenous residue C265 for 19F-NMR exper-

iments or IA-PROXYL at residues L266C and N148C for DEER experiments.

Labeled b2ARwas further purified by alprenolol-sepharose ligand affinity chro-

matography to isolate only functional receptor molecules and was concen-

trated to 200–300 mM. To assess the conformation of unliganded receptor,

we incorporated a wash with the low-affinity antagonist atenolol to generate

homogenously ligand-depleted samples. For 19F-NMR experiments, the

detergent was gradually exchanged to lauryl maltose neopentyl glycol

(MNG-3, Anatrace). Prior to collecting spectroscopic data, the receptor was

incubated for at least 1 hr with a 2.53 molar excess of ligands or Nb80.

Nb80 was purified as previously described (Rasmussen et al., 2011a).

19F-NMR Spectroscopy

NMR spectra were acquired at 25�C on a 600 MHz Varian Inova spectrometer

and a 500 MHz Varian Unity spectrometer equipped with a cryogenic probe

capable of 19F NMR (600 MHz) or a room temperature 19F probe (500 MHz).

Free induction decay (FID) signals were acquired with a p/2 pulse length of

18 ms, a repetition time of 1.5 s, and an acquisition time of 0.25 s. The FID,

which consisted of 4,500 complex points, was linear predicted to 16,000

points, backward linear predicated three points, and apodized with 20 Hz

Lorentzian filter. All spectral processing was performed using Mnova 9.0.0

(Mestrelab Research), and illustrated spectra are normalized to the integral un-

der the peak arising from Cys265. CPMG relaxation dispersion spectra were

fit to a two-state exchange model with Chemex (Shi and Kay, 2014). Errors

in R2,eff were estimated by the spectral noise and variation in spectra between

experiments from identically prepared samples. The fitting program, ChemEx,

uses this estimate of R2,eff error when calculating the reduced X2 values, and

the errors in kex are extracted from the covariance associated with this param-

eter. Saturation transfer experiments done for b2ARbound to BI167107 utilized

continuous-wave irradiation of the S1 and S2 states 420 Hz downfield of the

S3 state. The saturation pulse duration ranged from 25 to 1,000 ms. To control

for direct saturation of the S3 peak, a similar experiment was performed with

irradiation 420 Hz upfield of the S3 state. The lifetime of S3, t3, was fit using

measured estimates of T1 for the peaks of interest and accounting for direct

off-resonance saturation effects as described elsewhere (Spoerner et al.,

2010). Lineshape simulations of NMR peaks were performed using a global

fit of all spectra and the exchange rate (kex) determined from CPMG experi-

ments using the program WinDNMR (Reich, 1995). Further details about the

specific parameters used for fitting can be found in the Supplemental Experi-

mental Methods.

DEER Spectroscopy and Nitroxide Label Simulation

For DEER spectroscopy, glycerol was added to a final concentration of 20%

(v/v) immediately prior to data collection. Samples were flash frozen in liquid

nitrogen, and dipolar evolution data were acquired at Q-band on a Bruker

ELEXSYS 580 at 80 K. DEER data were analyzed using the program LongDis-

tances, which was written in LabVIEW by C.A. and is available for download at

http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/. The dipolar

evolution for each sample was fit using a model-free analysis similar to the

widely used Tikhonov regularization. The background subtracted dipolar

data, their fits, and the resulting distance distributions are shown in Figure S2.

All data were plotted using GraphPad Prism 6 after normalizing the area under

the distance probability distribution. To simulate DEER distance distributions

for existing crystal structures, the IA-PROXYL spin label was built onto existing

crystal structures using the program MTSSLWizard (Hagelueken et al., 2012),

and the programwas used to generate an ensemble of rotamers that avoid ste-

ric clashes with the static protein structure. This was followed by a computa-

tion of the distance distribution between labeled sites. Distances between the

resulting spin label rotamers were plotted in GraphPad Prism 6 and were
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normalized to have the same area under the curve as the experimentally

derived spectra.

As changes in distance can originate from changes in the spin label rotamer,

we collected CW-EPR spectra of IA-PROXYL-labeled b2AR-D5-L266C and

b2AR-D5-N148C to determine whether the most extreme changes in the

DEER data were correlated to changes in nitroxide spin label conformation

(Figure S1D). We observed minimal or no changes upon addition of carazolol,

BI167107, and BI167107+Nb80, indicating that the observed changes in

distance are primarily due to rigid body motions between TM6 and TM4.

DEER spectra for singly labeled b2AR-D5-L266C and b2AR-D5-N148C

demonstrated the absence of any preferred distance above background

(Figure S1E), indicating that the observed distance distributions for the

doubly labeled b2AR-D5-L266C-N148C construct correspond only to the

distance between L266C and N148C.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2015.04.043.
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