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INTRODUCTION

Semi-Krull domains have been introduced by E. Matlis in [M]. An
integral domain A is semi-Krull if and only if 4 =) {4,}, where P ranges
over the set of height one primes of A, this intersection has a finite charac-
ter, and every nonzero ideal of 4, contains a power of PA,, for every
height one prime ideal of 4 [M, Proposition 4.5]. Krull domains and
Cohen-Macaulay noetherian domains are semi-Krull.

We recall that Krull and noetherian domains are Mori domains, that is,
domains with the ascending chain condition on divisorial ideals. On the
other hand, we prove that in a semi-Krull domain every height one prime
is a maximal #-ideal and is divisorial (Theorem 1.7). Hence, like a Mori
domain, a semi-Krull domain is the intersection, with a finite character, of
its localizations at the maximal divisorial primes. Moreover it has always
the ascending chain condition on principal ideals, for short a.c.c.p.
(Theorem 1.10). This leads us to investigate the relations between the class
of semi-Krull domains and that one of Mori domains. It turns out that
neither class is included in the other (Examples 1.9 and 2.4) and that semi-
Krull Mori domains are those Mori domains in which every maximal
divisorial ideal is of height one (Theorem 2.1). Using this characterization,
we are able to produce a new class of examples of semi-Krull domains that
are neither Krull nor noetherian. A way of constructing semi-Krull
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domains of this type is given in Example 2.3. Example 2.5 shows that an
a.c.cp. domain with every maximal r-ideal divisorial and of height one is
not necessarily semi-Krull.

In Section 3 we deal with the complete integral closure of a semi-Krull
domain. We prove that a completely integrally closed semi-Krull domain is
Krull (Theorem 3.1). It is well known that a similar result holds for Mori
domains and, as in the case of Mori domains, it seems not easy to find out
whether the complete integral closure 4* of a semi-Krull domain 4 is
Krull. We solve this problem in the seminormal case. Indeed we prove that
if 4 is a seminormal semi-Krull domain, then A* is completely integrally
closed (Corollary 3.7) and A* is Krull if and only if 4 is also a Mori
domain (Theorem 3.12). We leave open the question if a seminormal
semi-Krull domain is necessarily Mori. We observe that, if there is a
counterexample, it cannot be a conducive domain.

We also prove that a polynomial ring over a semi-Krull domain is not
necessarily semi-Krull. Indeed if 4 is integrally closed and A[X] is
semi-Krull, then 4 is Krull (Proposition 3.4). Conversely if 4 is any
domain and A[X] is semi-Krull for a given set of indeterminates X, then
A is semi-Krull (Proposition 3.5).

In Section 4 we study generalized quotient rings of semi-Krull domains.
We recall that flat overrings, Nagata transforms, and in general intersec-
tions of localizations of a domain A are generalized quotient rings of A. In
[M, Propositions 4.8 and 4.97] it has been shown that flat overrings and
Nagata transforms of semi-Krull domains are intersections of localizations
at height one primes and moreover a flat overring of a semi-Krull domain
is semi-Krull. We prove these statements for any generalized quotient ring
of a semi-Kruli domain (Theorems 4.6 and 4.7). We also investigate when
a generalized quotient ring of a semi-Krull domain is a quotient ring. A
necessary and sufficient condition for that is given in Proposition 4.12. In
Theorem 4.14 we prove that, when a semi-Krull domain A has just finitely
many strongly divisorial height one primes, any generalized quotient ring
of A is a quotient ring if and only if the class group of A is a torsion group.
This generalizes a result well known for Krull domains [F, Proposi-
tion 6.77].

Throughout this paper 4 is always an integral domain and Q(A4) its field
of quotients. If U is a subset of Q(4), we denote by (A4:U) the set
{xeQ(A4); xUcx A}. By an ideal we mean a nonzero fractional ideal. We
call an integral ideal an ideal contained in A and a proper ideal an integral
ideal properly contained in A.

For any ideal 7, I, is the intersection of all principal ideals containing 7,
that is, I,=(A:(A:1)). We say that [ is divisorial if I=1,. The set of
divisorial ideals of A4 is denoted by D(A). A maximal divisorial ideal is an
ideal that is maximal among the proper divisorial ideals of 4. We denote
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by D,.(A) the set of the maximal divisorial ideals of 4. A divisorial ideal
[ is called v-finite if I=J, for some finitely generated ideal J of 4 and 7 is
called a r-ideal if 7=1,, where I,=|) {J,;J<1I and J finitely generated }.
We have /= I, I, so that a divisorial ideal is a 7-ideal. A maximal r-ideal
of A is an ideal which is maximal among the proper t-ideals of 4. The set
of all maximal r-ideals of 4 is denoted by ¢,(A4). Any integral t-ideal is
contained in a maximal t-ideal, so that, if 4 is not a field, the set ¢,(A)
is always not empty. Maximal r-ideals, as well as maximal divisorial
ideals, are prime. We have I=[) {IA,; Pet,(A)} and in particular
A= {Ap; Pet,(A)}. Two t-ideals I and J are equal if and only if
IAp,=JA, for any Pet,(A).

Under the operation /-J = (1J), the set of t-ideals of 4 is a semigroup
with unit 4. A t-ideal 7 is said to be t-invertible, that is, invertible with
respect to this operation, if (IJ),= A for some ideal J. The t-inverse of a
t-invertible t-ideal I is (A:I). I is t-invertible if and only if 7 and (A4:1) are
divisorial and wv-finite and 714, is principal for every Pet,(A) A
t-invertible prime ideal is a maximal divisorial ideal. A maximal ¢-ideal P
of A is either s-invertible or strong, that is, (4:P)=(P:P). We call an ideal
strongly divisorial if it is strong and divisorial. The group of the s-invertible
t-ideals of A4 is denoted by T(A4) and the group of the principal ideals of 4
is denoted by P(A4). We have P(A)cT(A) and the quotient group
C(A)=T(A)/P(A) is called the class group of A. For background on
t-ideals we refer to [J, Gr, and G] and general references on the class
group are [BvZ, AA, A].

1. IDEAL THEORETIC RESULTS

LeMMA 1.1. Let € be a family of prime ideals of A and
B=\{Ap; Pc¥}. Then

(a) A= B if and only if every proper divisorial ideal I of A is contained
in some Pe¥.

(b) If the intersection B=(\{Ap; P€¥} has a finite character, then
A= B if and only if every maximal t-ideal of A is contained in some P€%E.

Proof. We recall that if PeSpec(4) and xe Q(A), then x 'AnAcP
if and only if x¢é A,; also x !4 A=A if and only if x€ 4.

(a) Let I be a proper divisorial ideal of 4. Then Icx~'4n A for
some xe Q(ANA. Thus, if A=B, then x¢ A, for some Pe%, that is,
Icx 'AnAcP for some Pe%. Conversely, let xe () {4,; Pe%}. Since
J=x"'4n A is a divisorial ideal of A, if J# A, then by assumption J < P
for some Pe%. Thus x¢ A, for some Pe ¥, contradicting the hypothesis.
It follows that J= A4 and so xe€ 4.
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(b) Let A=B and Qe1,(A4). Suppose that Q is not contained in
any Pe%. Let x be a nonzero element of Q and let Py, .., P, be all the
primes in % containing x. By assumption Q¢ ) {P;;i=1,.,n}. Let
yeQ\U {P;;i=1,..,n} and consider the ideal I=(x,y),=(x,y),. I#A
because /= Q and so /< P, for some i=1,..,n by (a). A contradiction.
Conversely, since 4=\ {4,; Pet,(A4)} [Gr, Proposition 4], then Bc A4
and so B=4. |

We denote by X '(4) the set of the height one primes of 4. A height one
prime is a t-ideal by [J, Corollaire 3, p. 31].

PrROPOSITION 1.2, If A is a semi-Krull domain, then X'(A) =1, (A).

Proof. By Lemma 1.1(b). Indeed we recall that A=) {A4,; Pe X'(A4)}
and that every prime ideal of height one is a s-ideal. |

We note that every proper ideal of a domain A is contained in the union
of the maximal r-ideals of A. Thus if 1,,(4) = {P;;i=1, .., n} is a finite set,
then every maximal ideal of A is a +-maximal ideal and A4 is semiquasilocal.
Moreover, if I is a t-invertible r-ideal of A4, then IA4, is principal for
i=1,..,n [G, Proposition 1.1]. Hence I is invertible [ BvZ, Corollary 2.9]
and then it is principal, that is, C(A4)= (0).

This, together with Proposition 1.2, allows us to generalize a result well
known for Krull domains.

PROPOSITION 1.3.  Let A be a semi-Krull domain. If X'(A) is a finite set,
then A is a semiquasilocal domain of dimension one and C(A) = (0).

We recall that in a semi-Krull domain, by the finiteness character, every
nonzero ideal is contained in just finitely many prime ideals of height one.

If P is a prime ideal of 4, we denote by P’ the symbolic rth power of
P, thatis, P/ =P A, A.

LEMMA 1.4. Let A be a semi-Krull domain and I any proper t-ideal of A.
Let P, .., P, be the prime ideals of height one containing I. Then I has the
unique primary decomposition 1=\ {IAp " A; i=1, .., n} and it contains a
power of its radical Py --- NP,

Proof. By Proposition 1.2, Py, ..., P, are the only maximal ¢-ideals con-
taining /, so I= {I4p,,nA;i=1, ., n} [Gr, Proposition 4]. Each com-
ponent is primary because /4 is a primary ideal of A4, for i=1, .., n and
the decomposition is unique because P, is minimal over [ for i=1, ., n.
Since A4 is semi-Krull, we have I4, > P4, for some r; 21, i=1, ., n
Then Io () {P!; i=1,.,n}>() {P7;i=1,..,n} and finally I contains
(Py -~ n P, for s=max(r, .. r,) [

481:145:2-4
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Remark 1.5. We observe that, keeping the notations of Lemma 1.4
above, if P; is t-invertible for some i=1,..,n then A, is a DVR [G,
Remark 1.2] and so Id, nA=PidpnA=P" for some r,21. In par-
ticular we see that if every maximal t-ideal P, containing [ is ¢-invertible,
then the unique primary decomposition of 7 is I=P{"'~ --. n P, thus
I=(P}.--Pr), and so [ is t-invertible. To prove the second equality, let
J=P...P" Since J, is t-invertible, we have J,As=(JA4;), for every
multiplicative part S of 4 [BvZ, Lemma 1.5]. Thus J, 4, =P/ A4, and
J,Apg=A,, when Qet,(4) and Q#P;, i=1,..,n It follows that
J,Ap=1A4, for every Pet,(4) and so J,=1 by [AA, Proposition 1.4].
A similar result has been proved for Mori domains in [BG2, Proposi-
tion 1.7].

LEmMMmA 1.6. Let A be a semi-Krull domain. Then every proper divisorial
ideal of A is contained in a divisorial maximal t-ideal.

Let I be a proper divisorial ideal of 4. By Lemma 1.4 and Proposi-
tion 1.2, [ is contained in a finite number P,, .., P, of maximal t-ideals of
A and I contains (P, --- P,)’ for some s = 1. If none of the P/s is divisorial,
then (A4:P,)=A for every i=1,..,n [G, Proposition14] and so
(A:(P,---P,))=A. Thus A>(A4:I). This is a contradiction because 7 is
divisorial. |

THEOREM 1.7. If A is a semi-Krull domain, then X'(A)=1,(A)=D,,(A).

Proof. By Proposition 1.2, we have X'(A4)=1t,,(A4). By Lemma 1.6 every
proper divisorial integral ideal of 4 is contained in a divisorial maximal
t-ideal. Thus, by Lemma 1.1(a), A=\ {4p; Pet,,(A)nD(4)} and this
intersection has a finite character because ¢,,(4) N D(A)ct,(A)=X"(A4).
By Lemma 1.1(b), it follows that every maximal t-ideal of A4 is divisorial
and so ¢,,(4)=D,(A4). |

We recall that in one-dimensional quasilocal domain, the maximal ideal
is always a r-ideal but it need not be divisorial.

COROLLARY 1.8. If A is a semi-Krull domain, then every height one
prime ideal has the form (a)., b for suitable a, be A.

Proof. By Theorem 1.7 every height one prime ideal P of 4 is maximal
divisorial. Hence P=xA N A4 for some xe Q(A). If x=a/b, a, be A, then
P=(a), b |}

In spite of Theorem 1.7, it is not true that in a semi-Krull domain any
t-ideal is divisorial, that is, with the notation of [HsZ1], a semi-Krull
domain is not necessarily a TV-domain.
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ExaMpLE 1.9. A quasilocal one-dimensional semi-Krull domain which
is not a TV-domain.

Let K be a field and let X={X,;n>0} and Y={Y,:n>1} be two sets
of independent indeterminates over K. For any nonzero polynomial f in
K[X,Y]=K[{X,;n=0}, {Y,;n=1}] let vo(f) be the least degree of a
homogeneous component of /. Extend v to a valuation of the field K(X, Y),
which will be also denoted by v. Let V' be the valuation ring of v and let
P be its maximal ideal. Let B=K[X, {X,,Y,; m=1, n=1, m#n}]. Set
A=B+ P° thus A is a ring contained in V. Let M be the ideal of A4
generated by XU {X,,Y,;m= 1, n=1, m#n}u P

A is a quasilocal domain and M is its maximal ideal. We have A =K+ M,
so M is a maximal ideal of 4. Let re M. We have 1/(1 —t)— (1 +1+¢*) =
/(1—1t)eP?and (1+1+1*)e A, so 1/(1 —t)e A. Hence A is a quasilocal
domain and M is its maximal ideal.

A is one-dimensional and semi-Krull. Let f be a nonzero element of A.
Thus v(f)=0. Set m=v(f)+3. For any element g in M™, we have
v(g/f)=3, so g/fe PPc A. 1t follows that M™ c Af, so A is one-dimen-
sional and semi-Krull.

A is not a TV-domain. For every nx=1, let I,= (X, .., X,)+ P2 Set
I={) {I,; n=1}, thus I'= (X}, X,, ...) + P2. We claim that [ is a t-ideal of
A which is not divisorial. For the proof we need first some preliminary
remarks.

Let D be the ring of homogeneous rational functions in K(X, Y), thus D
is a Z-graded ring. Let f be a nonzero rational function in K(X, Y) with
v(f)=d. Then for any integer n>d, we have feD,+ --- + D, + P "+
Indeed write /= g/h, where g and % are polynomials in K[X, Y]. Let
h=h,+h, .+ - and g=g, 0+ &uiar1+ --- the decompositions
into homogeneous components of 4 and g, respectively, such that A, #0
and g, ., ,#0. We have g, , 4/h,€D,and, if f,=g, ., ./h,., f—f,e PP
Iterating this argument, we obtain that feD,+ --- +D,+ P**+'.
Moreover, for any two integers n>d, the sum D,+ --- + D, + P"*'is a
direct sum of additive subgroups of K(X,Y), so the representation
f=fu+ - +f,+u where f,e D, for d<i<n and ue P"*', is unique.

Now for a given n=0, let f be a nonzero rational function in K(X, Y)
with o(f)<1 such that fX,ed. Write f=f,+f,. 1+ - +fo+fi+u
where f,e D, for d<i<1 and ue P> Hence fX,=f,X,+ fu 1 X, + - +
fiX,+uX,. Note that B is a graded subring of D and that 4= B,® B, ®
B,® P> Since fX, € A, from the uniqueness of the representation for fX,,,
we get that d> —1 and f,X,e B, , for i=~—1,0,1. Clearly these are
necessary and sufficient conditions on a rational nonzero function
feK(X,Y) with v(f)<1 in order to belong to (4:X,). Moreover
P?><(A:X,). We obtain in particular that, for any integers m>0and n> 1,
X, Y,edifand only if m=1 and m #n.
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Let n>1 and let f be a nonzero element in (4:(X,, .., X,)). Thus
o(f)=—1. Set f=f_|+fo+fi+u, where f,eB, for i=—1,0,1 and
ue P Since n>2, the elements f X, and f , X, are in By,=K, so
fo1e(/X))Kn(1/X,)K=(0) and f_,=0. Also f,X, and f,X, are in
B, =spang({Xo, X|, ..}). Thus fye(1/X,)B, n(1/X,)B, = K. Finally, for
all 1 <i<n,

Ji1X;€ By=span ({X, X

js

i20,j20u{X,Y;iz1,j=1i#j}

Thus f,e(1/X,)B,n (1/X,)B, and so /| is a K-linear form in the indeter-
minates XUY. Since X,Y;eA if and only if i#/, we obtain that
fiespang (XU {Y,;m>n}).

We conclude that (4:(X, .., X,))=K®spang (XU {Y,;m>n})® P>

By similar arguments we obtain that 4:(4:(X,, .., X,,))=(X,, .., X,)+
P’=1, Thus I,=(X,,..X,), is a wvfinite divisorial ideal. Since
I=\) {I,;n>=1} is an ascending union of v-finite divisorial ideals, we see
that [ is a z-ideal.

On the other hand,

(A:D)= {(A:1,);n>=2}
=) {K®spang (XU {Y,;m>n})®P5n>2}
=K®spang(X)® P’=A4+ P~

Hence X,eA:(A:I), but X,¢1, so [ is not a divisorial ideal. We
conclude that A4 is not a TV-domain.

THEOREM 1.10. Let A be a semi-Krull domain, then A satisfies the
ascending chain condition on principal ideals.

Proof. Since an intersection with a finite character of domains satisfying
a.c.c.p. satisfies a.c.c.p., it is enough to prove the theorem for the case that
A is quasilocal and one-dimensional. Let P be the maximal ideal of A.
Let a,,a,,.. be nonzero elements in P such that da, & Aa, & ---.
Thus for any m=>1, (a,/a,,)eP. Let k=1 such that P*c Aa,.
Hence (a,/a,, )= (a,/a,)a,/a;)---(ay/ay, )€ P* = Aa,. It follows that
1/a, . € 4, a contradiction. ||

By the previous theorem we get in particular that a semi-Krull domain
A is Archimedean, that is, () {x"4; n 21} =(0) for every nonzero nonunit
x € A. This can be obtained also as a consequence of the fact that a semi-
Krull domain is an intersection with a finite character of one-dimensional
(and so Archimedean) domain or by [ABD, Proposition 3.7] observing
that the Principal Ideal Theorem holds in 4.
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ProposITION 1.11. If A is a semi-Krull domain, then (\ {I";n>1}=(0)
for every proper t-ideal I of A.

Proof. Let Pe X'(A). A, is one-dimensional, so it is Archimedean and
we have () {x"4p;n=1}=(0) for every nonzero xe P. Since A is semi-
Krull, then the ideal x4, contains a power of PA,. It follows that
N{P'Ap;n=1}=(0) and so () {P"; n=1}=(0). Since any rideal I
is contained in some height one prime (Proposition 1.2), we also get

N{Imnz=13=(0). 1

2. A Crass oF EXAMPLES

We have proved in Section 1 that a semi-Krull domain is a domain with
the ascending chain condition on principal ideals such that X'(4)=
t,(A)=D,(A4). The converse is not true, as Example 2.5 below shows.
However, we now prove that, when the ascending chain condition holds in
the set of all divisorial ideals of A4, that is, 4 is a Mori domain, and
X'(A4)=D,(A), then A is semi-Krull. We recall that in a Mori domain
every t-ideal is divisorial [BG2, Proposition 1.1], thus Example 1.9 shows
that conversely a semi-Krull domain is not necessarily Mori.

THEOREM 2.1. Let A be a Mori domain. Then A is semi-Krull if and only
if X'(4)=D,(A).

Proof. By Theorem 1.7, in a semi-Krull domain X'(4)=D,(A4).
Conversely, if 4 is a Mori domain and X'(4)=D,(4), then
A= {Ap; PeX'(4)} and this intersection has a finite character [BGI1,
Proposition 2.2, b]. Moreover, 4, is a Mori domain for each Pe X!(A)
[Q, Sect. 3, Corollaire 1]. Since in a Mori domain every integral divisorial
ideal contains a power of its radical [Ra, I, Théoréme 5], if / is a nonzero
integral ideal of 4, and x#0 is an element of I, then 1> (x) > (PA,)" for
some n 1. Hence A4 is a semi-Krull domain. ||

Remark 2.2. 1In any domain, a prime ideal P is divisorial if and only if
P is an associated prime to a principal ideal [ Y, Proposition 10]. Thus in
a Mori domain 4 the condition X'(4)= D, (A4) means that each associated
prime to a principal ideal is of height one (recall that in a Mori domain
each height one prime is divisorial). In particular, if 4 is a noetherian
domain, the condition X'(4)=D,,(4) is equivalent to the condition that
each proper principal ideal is unmixed of height one. Thus by Theorem 2.1
the examples of noetherian semi-Krull domains given in [M, p.397] are
the only ones possible.
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Using Theorem 2.1, it is not difficult to give examples of non-noetherian
semi-Krull domains. Indeed we can consider any non-noetherian Mori
domain of dimension one, such as 4=Q + XR[[X]] (cf. [B1]). This
example can be generalized to the non-quasilocal case in the following way.

ExampLE 23. Let C=(){Cp; PeX'(C)} be a non-local Dedekind
domain. Consider a finite subset = {P,, .., P} of X'(C) and let 4, be a
Mori pullback of C,, for each i=1, ..., n (cf. [BG1, Sect. 4]). We claim that
A=Cn{A4;; i=1,.,n} is a non-quasilocal semi-Krull Mori domain of
dimension one.

Suppose first that = {P,}-A=Cn A, is a Mori domain as an inter-
section of two Mori domains. Moreover A is the pull-back of the diagram

(C/P)) Nk,

J

C—— C/P,

where k, is the residue field of 4, and the intersection is made in the
residue field of Cp . Since dim C=1, then C/P, is a field and so also
kin(C/Py) is a field. It follows that dim 4=1 and, by Theorem 2.1,
A is semi-Krull. By [Fn, Theorem 1.4, (c)] the canonical map
Spec(C) — Spec(A4) induces a one-to-one correspondence between the
primes of C that do not contain P, and the primes of 4 that do not contain
P,. Thus A is not quasilocal. Moreover, by [Pr, Corollary 8], 45 =A4,.
Thus, if 4, is not noetherian, that is, if the extension k; = C, /P, Cp, is not
finite, then A is not noetherian.
Iterating these arguments, we can easily prove our claim.

A Mori domain is not necessarily semi-Krull and, besides Example 1.9,
there are simpler examples of semi-Krull non-Mori domains, as shown
below.

ExampLES 2.4. (a) Any Mori domain with a maximal divisorial ideal
of height greater than one is not semi-Krull by Theorem 2.1. For example,
we can consider A=k+ Xk[X, Y], where k is a field [BG1, Exam-
ples (4.6, b)].

(b) Let A=k+ XD+ X*K[[X]], where k < K are two distinct fields
and D is a domain, but not a field, such that k= D < K. A4 is a quasilocal
one-dimensional domain with maximal ideal M=XD+ X2K[[X]].
Moreover A is not a Mori domain [ BDFn, Example 17]. To prove that A4
is a semi-Krull domain, it is enough to show that, for any nonzero integral
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ideal I of 4, X"K[[X]] <1 for some n>1. Let hel be an element of order
s. It is easy to show that there exists an element ge K[[X]] of order 2
such that hg = X**2 Hence X**2K[[X]]1=hegK[[X]]1chX*K[[X]]<=],
where the last inclusion holds because X?K[[X]] < 4.

ExaMPLE 2.5. An example of a one-dimensional quasilocal domain
(A, P) satisfying a.c.c.p. such that P is divisorial, but A4 is not semi-Krull.

Let F be a field and let T be the ring of (generalized) polynomials
FIR*}=F[{X"; reR, r>0}]. For any nonzero polynomial f in 7, let
v(f) be the minimal s such that X* occurs in f. We may uniquely extend
v: T— R to a valuation of Q(T), which will be also denoted by v. Let Q=
{feQ(T); v(f)>1}. Let (y,), be an infinite sequence of real numbers
in the interval (0, 1) such that lim,_, . (y,)=0and 1, y,, y,, ... are linearly
independent over Q. Let " be the additive subsemigroup of R generated by
{y;n=1} and let R=F[I']=F[X"; n=1]. Set A=R+ Q. A is a ring.
Consider the ideal P of 4 generated by {X"™; nz1}u Q. Thus A=F+ P
and P is a maximal ideal of 4. Moreover (4, P) is quasilocal. Indeed, if
te P, for >0, we have (1/(1 —8))—(1+t+ --- +t"y=¢""'/(1 —t) and
(" (l—=1)=m+1)v(t)>1. Hence t""'/(1-t)eA. It follows that
1/(1—t)e A and so (A, P) is quasilocal.

To show that (A4, P) has the desired properties, we will use the following
facts.

(a) For any nonzero ge 4, X"#) ¢ A.

This is clear if v(g) > 1. Assume that v(g) < 1. We can write g = f + ¢, with
feR and ge Q. We have u(f)<1<uv(q), thus v(g)=0v(f). By definition,
o(f) is the minimal s such that X* occurs in f, hence v(f)el and
Xv(g) =X"VeA.

(b) For any real number r, X"€ 4 if and only if re " or r> 1.

If reI' or r> 1, clearly X" € A. Conversely assume that X" € 4 and r< 1.
Write X"= f+¢q, with fe R and ge Q. Let f=fy+ f, such that s<1 for
any X* occurring in f, and s> 1 for any X* occurring in f,. Thus f, € Q and
X'=f+¢q, where ¢'=f,+qeQ. If ¢ #0, then 1 Zo(X" — f)=v(¢')> 1,
a contradiction. Thus ¢'=0 and X" = f, e R. It follows that re I

(¢} If v(f)=0, then fis invertible in A.

If v(f)=0, then f'¢ P and so f is invertible.

A is one-dimensional. Let f and g be any nonzero elements in P. Thus
v(g)>0 and for n» 0 we have v(g")=nv(g)>v(f)+ 1. Hence, for n> 0,
v(g"/f)>1 and so g"/fe Q c A. It follows that Perad(Af) for any fe P
and thus P is of height one.
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P is divisorial. By hypothesis the elements 1, y,,7y,,.. are linearly
independent over Q. Then 1 ¢ 7 and so X¢ A by (b). On the other hand
X=X?/X?1is in the quotient field of 4. We have XP c P. Thus P = (1/X) A.
Since P is maximal, we have P=(1/X)A " A and so P is divisorial.

A satisfies a.c.cp. Let Af, & Af, & --- be an infinite strictly ascending
chain of nonzero principal ideals in 4. Thus, for all n>1, £, /f,,, € 4 and
is not invertible. Hence v(f,,/f,,)>0 by (c) and so v(f,)>v(f,. ) Set
g,=f1/fs and g,=f>/f;. We have that g,, g, are in 4 and Ag, < Ag,.
Hence v(g,)>uv(g,) and g,/g.=/f,/f>€ A. Thus, by (a), X", xv2)
Xv(gl)*v(gz) are in A4.

Since the sequence {v(f,)}.»; is bounded and decreasing, we have
lim, _ . (¢(f,)—v(f,_))=0. Thus, for n>0, v(f,) —v(f,_ ) <1 and also
v(f,) —o(f,_2)<1l. We may assume that this holds for all n>1. Hence
v(g,) <1 and, since X"#” ¢ 4, by (b) we have v(g,)e I". Similarly we have
that v(g,) and v(g,)—v(g,)=v(g,/g,) are in I". This is a contradiction
because any element in /™ can be uniquely represented as a linear combina-
tion of the elements {y,;n>1} over Q and the coefficients are non-
negative.

A is not semi-Krull. Assume the contrary. Then for some positive integer
m, we have P" < AX". Since lim, ., . (y,)=0, we can choose n such
that my, <y,. Thus v((X")"/X")=my,—y,<0 and so (X")"¢AX",
a contradiction.

3. ON THE COMPLETE INTEGRAL CLOSURE OF A SEMI-KRULL DOMAIN

We denote by A* the complete integral closure of A4, that is,
A* =) {(1:I); I a fractional ideal of 4}. A4 is completely integrally closed
if A= A* The next proposition shows that a completely integrally closed
semi-Krull domain is Krull

We recall that A4 is a pseudo v-multiplication domain, in short a PYMD,
if the set of divisorial »-finite ideals of A4 is a group.

THEOREM 3.1. Let A be a semi-Krull domain. Then the following are
equivalent:
(1) A is completely lz'ntegrally closed,
(1) Aisa PVMD,
(iii) A is Krull.
Proof. (iii) = (ii) is well known. (ii) = (i). If 4 is a semi-Krull PYMD,

then A, is a one-dimensional valuation domain for every Pe X'(A4), by
[Gr, Theorem 5] and Proposition 1.2. Thus A4, is completely integrally
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closed for every Pe X'(A) and 4 is completely integrally closed as an inter-
section of completely integrally closed domains. (i)=>(iii). Since, by
Theorem 1.7, t,,(4)= D, (A), we can apply [G, Corollary 2.8]. |}

A local version of Theorem 3.1 is the following:

PrOPOSITION 3.2. Let A be a semi-Krull domain. Then the following are
equivalent:

(1) A is completely integrally closed,

(il) Ap is completely integrally closed for every Pe X'(A);
(ili) Apis a DVR for every Pe X'(A);
(iv) P is t-invertible for every Pe X'(A).

Proof. (i)=>(iii) by (i)=(iii) in Theorem 3.1. (ii)=>(i) because an
intersection of completely integrally closed domains is completely integrally
closed. (ii)< (ili) < (iv) follows from [G, Corollary2.10]7 because
t,.(A)=D,(A) by Theorem 1.7. |

Remark 3.3. We recall that a maximal t-ideal P of any domain 4 can
be either strong or t-invertible [G, Theorem 1.3]. Thus, by Theorem 1.7,
we have that the height one primes of a semi-Krull domain are either
t-invertible or strongly divisorial. Hence a semi-Krull domain A is Krull if
and only if no (height one) prime ideal of A is strongly divisorial. A similar
result holds for Mori domains (cf. [BG1, p. 104]).

Using Theorem 3.1, we can show that, if A4 is a semi-Krull domain, then
the polynomial ring A[ X] is not necessarily semi-Krull.

PROPOSITION 3.4. Let A be an integrally closed semi-Krull domain. Then
the following are equivalent:

(1) A[X] is a semi-Krull domain,
(i) A[X] is a Krull domain;
(iit) A is a Krull domain.

Proof. (1)=>(iii). By Proposition 1.2, if A[X] is semi-Krull then
X'(A[X])=1,(A[X]). Thus in this case every prime ideal of height one of
A[X] of type /K[ X] n A[X], with K= Q(A4) and f an irreducible element
of K[X7], is a maximal ¢-ideal. Since A is integrally closed, then A4 is a

PVMD by [HsZ2, Proposition 3.2]. Therefore 4 is Krull by Theorem 3.1.
(iii) = (ii) = (i) are well known. |

Thus for example, if 4 is an integrally closed Mori domain of dimension
one which is not Krull [Bl], then 4 is semi-Krull but A[X] is not
semi-Krull.
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On the other hand, we prove in Proposition 3.5 below that if 4 is any
domain and A[X] is semi-Krull for a given set of indeterminates X, then
A is semi-Krull. A similar property holds for Mori domains since
A=A[X]nQ(A) and a finite intersection of Mori domains is Mori [Ra,
I, Théoréme 2]. This simple proof fails for semi-Krull domains since an
intersection of two semi-Krull domains is not necessarily semi-Krull, as we
will show in Section 4.

PROPOSITION 3.5. If A is any domain and A[X] is semi-Krull for a given
set of indeterminates X, then A is semi-Krull.

Proof. First note that, for any nonzero element ae 4, rad(ad)=
rad(a4[X])n A and so aAd contains a power of its radical. It follows that
every proper ideal /< A, contains a power of PA,, for every P e X!(A4).
Setting K = Q(A4), we have 4 = A[X]n K = N{A[X],nK, P€
XY AX]) =N {A[X],nK; PeX'(A[X]) and PnA+#(0)}. Now,
A[X]pnK=A4,_., for all primes P in A[X]. Indeed we have
Ap~ 1< A[X]pn K Conversely, let ce A[X],n K. Thus ¢s(X)e A[X] for
some polynomial s(X)e A[X]\P. Let s(X)=s,M,+ -+ +5, M, where M,
are distinct monomials in the indeterminates X and s,e 4 for 1 <i<k.
Since ¢s(X)e A[X], we have that cs;e A for all i. On the other hand there
is an iy such that s, ¢ P. Thus cs;, € 4 and s, € A\P, hence ce A, ,. We
conclude that A= {4, 4; PeX"(A[X]) and P~ 4 #(0)} with a finite
character. Clearly, if Pe X'(A[X]) and P~ 4 #(0), then Pn Ae X'(A).
Taking into account that every height one prime ideal is a r-ideal, by
Lemma 1.1(b), we get that X'(4)={PnA; PeX'(A[X]) and PnA4+#(0)}.
Thus 4 is semi-Krull.

We don’t know if the complete integral closure of a semi-Krull domain
is completely integrally closed. However, this is true if 4 is seminormal. We
recall that a domain A is said to be seminormal when, for any x e Q(A4),
if x> and x> are in 4, then x is in 4. This is equivalent to say that, for
any xe Q(A), if x"e A for n>0, then xe A4 (cf, eg, [Ru] or [S]). An
integrally closed domain is clearly seminormal.

THEOREM 3.6. Let A be an intersection with a finite character of quasi-
local seminormal one-dimensional domains. Then A* is completely integrally
closed.

Proof. The complete integral closure of a quasilocal seminormal one-
dimensional domain is completely integrally closed by [R3, Theorem 1.8].
Now it is enough to observe that an intersection of completely integrally
closed domains is completely integrally closed and if A=\ {A4,; e A} is
an intersection with a finite character, then 4* =\ {(4,)*; Ae A} [HOP,
Lemma 2.2]. |
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COROLLARY 3.7. If A is a seminormal semi-Krull domain, then A* is
completely integrally closed.

Proof. Since any localization of a seminormal domain is seminormal
[S, Corollary 4.6], we can use Theorem 3.6 representing A4 as the inter-
section of its localizations at the height one primes. |

We don’t know if the complete integral closure of a semi-Krull domain
is also semi-Krull. However, we show in Theorem 3.12 below that if 4 is
a seminormal semi-Krull domain, then 4* is semi-Krull if and only if A4 is
also a Mori domain.

We recall that the pseudoradical of a domain A is the intersection of all
nonzero prime ideals of 4.

LemMMA 3.8. Let A be a seminormal domain with a nonzero pseudoradical
J. Then JA* =J.

Proof. Let x be a nonzero element of JA*. There are nonzero elements
a and b in J such that x =a/b. Represent x asa sum x=x,p, + --- + x,p,
with x;in A* and p,;in J, for i=1, .., r. Since J = rad(Aa), for a sufficiently
large m, p7 e Aa for all i, 1<i<r. So x™e A*a for m> 0. Fix such an
integer m>2. Let x=a" "' and f=hb" Thus a/f e A*. So there is a non-
zero element p in J such that p(a/f)" € A for all n= 1. Since a € J=rad(Ap),
a*/pe A for some k. Hence p(a/B)" a*/p=a"™~""+¥/b™ e A for all n> 1.
Since (m— 1) n+k <mn for n 2k, then a™/b"™" = (a™/b™)" € A and since A
is seminormal, we get a”/b” e A. But this holds for all m>0 and A is
seminormal, so x=a/be A. Moreover, in the previous notation,
(m—1)n+k<mn for n>k, so x™ja=(a" ""**/b"™)a" “/a)e A.
Thus xerad(Aa)=J. We conclude that JA*=J. |

In the conditions of the previous lemma, we have 4* = (J:J). Hence, if
A is noetherian, semilocal, and seminormal, 4* = 4’ is the integral closure
of 4 and the conductor (A4:4") is not zero. It follows that 4’ is a finite
A-module.

We observe that if a semi-Krull domain has a nonzero pseudoradical,
then by the finiteness character it has just finitely many height one primes.
Thus it is semiquasilocal of height one (Proposition 1.3).

LEMMA 39. Let A and B be domains with a common nonzero integral
ideal I. If A is seminormal and I is radical in A, then I is radical in B.

Proof. Let x be an element in the radical of / in B. Thus x" is in [ for
n3> 0. Since A4 and B have the same quotient field and A4 is seminormal, we
conclude that x is in 4. Thus x is in / and so [ is radical in B. ||
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ProPOSITION 3.10. Let A be a quasilocal seminormal one-dimensional
domain. Then the following are equivalent:

(1) A* is Krull,
(i) A* is Mori;
(iii) A is Mori.

Proof. (i)<>(ii) because 4* is completely integrally closed by [R3,
Theorem 1.87]. (iii) = (i). By Lemma 3.8 the conductor (4:A4*) contains the
maximal ideal of 4. Thus it is not zero. Since 4 is Mori, then A* is Krull
by [B2, Corollary 18]. (ii) = (iii). Let P be the maximal ideal of 4 and p
a nonzero element in P. P=rad Ap is contained in the radical of 4*p. On
the other hand 4*p is contained in PA* =P (Corollary 3.8) and P is a
radical ideal in 4* by Lemma 3.9. Hence P is the radical of 4*p. But the
radical of A*p is a finite intersection of prime ideals, so it is a Mori ideal

[R1, Theorem 6.27]. Hence P is a Mori ideal and since it is maximal in A,
then A4 is a Mori domain by [R2, Theorem 4.14]. |}

LemMmA 3.11. Let K be a field and A; < B, c K domains with quotient
field K, for ieA. If the intersection A=(\{A;; LeA} has a finite
character, then also the intersection B=\ {B,; A€ A} has a finite character.

Proof. Let xe B, x=a/b with a, b nonzero elements of 4. We have that
a is not invertible in just finitely many A;’s. Since aB < xB, if x is not inver-
tible in B;, then a is not invertible in A4;. Thus x is invertible only in
finitely many B,’s. |

THEOREM 3.12. If A is a seminormal semi-Krull domain, then the
Sfollowing are equivalent:

(1) A* is semi-Krull,
(i1) A* is Krull;
(i) A* is Mori;
(iv) A is Mori.

Proof. (1) <> (i) because A* is completely integrally closed by
Corollary 3.7. (i)« (iii) by Corollary 3.7 and Theorem 3.1. (iii) = (ii). We
have 4=\ {Ap; Pe X'(A4)} with a finite character. Thus A* =\ {(4,)*;
PeX'(4)} with a finite character by [HOP, Lemma2.2] and
Lemma 3.11. Since A, is seminormal [S, Corollary 4.6] and Mori [Q,
Sect. 1, Corollaire 1], then (A4,)* is Krull by Proposition 3.10 and finally
A* is Krull as an intersection with a finite character of Krull domains.
(i) = (iii). Let Pe X'(A4) and S= A\P. Since A, c A¥, then (A,)* = (4¥)*.
But 4% is Krull, hence (4%)* = A¥. On the other hand, A* = (4,)* and
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so0 A¥c (Ap)* Tt follows that (4,)*=A4% is Krull. Since A, is semi-
normal, by Proposition 3.10, 4, is Mori and finally 4 is Mori as an inter-
section with a finite character of Mori domains [Ra, I, Théoréme 2]. ||

The complete integral closure of a Mori domain is not always Mori nor
completely integrally closed [R3]. However, from Theorem 3.12 we get
that, if 4 is a seminormal semi-Krull Mori domain, then 4* is Krull

We do not know if the complete integral closure of a seminormal Mori
domain is a Krull domain and we do not know either if a seminormal (or
even an integrally closed) semi-Krull domain is always Mori.

Remark 3.13. Notice that the Example 2.4(b) of a semi-Krull non-Mori
domain is not seminormal. Indeed the seminormalization of A4 is
k+ XK[[X]] [BDFn, Corollary 3].

More generally a semi-Krull domain is a.c.c.p. (Theorem 1.10) and any
conducive a.c.c.p. seminormal domain is a quasilocal Mori domain. We
recall that A4 is a conducive domain if and only if it fits a cartesian square

of the type
| ] g

where (V, M) is a nontrivial valuation overring of 4, B=V/Q, with Q an
M-primary ideal of V, f: V — B is the canonical projection, and D is a sub-
ring of B. By [BDFn, Corollary 13], the seminormalization of an a.c.c.p.
domain is an a.c.c.p. (conducive) pseudovaluation domain. Hence, if A4 is
an a.c.c.p. domain, A is such that, in the cartesian square (*), V is a
discrete valuation domain, Q =M, B=V/M, and D is a field. Thus 4 is a
quasilocal Mori domain by [B1, Corollary 3.5].

We also observe that the domain A4 constructed in Example 1.9 is not
seminormal. Indeed, for example, (Y?2)? and (Y7)® are in 4, but Y} is not
in A. In fact the seminormalization of 4 is K+ P.

4. GENERALIZED QUOTIENT RINGS OF SEMI-KRULL DOMAINS

An intersection of two semi-Krull domains with the same quotient field
need not be necessarily semi-Krull. To see this, consider the Example
24(a), A=k+ Xk[X, Y]. A is not a semi-Krull domain. However, A4 is
the intersection of two semi-Krull domains. In fact 4 =4, 4,, where
A, =k[X, Y] is a Krull domain and 4, =k + Xk(Y)[X] 4, is a one-dimen-
sional Mori domain [B1], thus a semi-Krull domain by Theorem 2.1.
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Note that, since 4, is Krull, 4, is an intersection of DVRs with a finite
character and then A4 is an intersection of one-dimensional quasilocal semi-
Krull domains with a finite character. The next proposition gives a
sufficient condition for an intersection of this type to be semi-Krull.

PROPOSITION 4.1.  Let {(A;, P,); Ae A} be a family of one-dimensional
quasilocal domains and let A=) {A;; €A} have a finite character. Set
P, =P;n A and suppose that P, & P, whenever i# u. Then X(A)={P;
Le A} and A is a semi-Krull domain if and only if A, is a semi-Krull domain
for any Ae A.

Proof. 1f P, ¢ P, for every pair A, u with 25 u, then A; = A for each
i€ A [Pr, Corollary 8] and so 4=\ {A4p,; A€ A} with a finite character.
Moreover, X'(4)={P}; Ae A}. Indeed A, =Ap; is one-dimensional and
so P, is an height one prime of 4. On the other hand, by Lemma 1.1(b),
any height one prime of A, being a t-ideal [J, Corollaire 3, p.31], is
contained in P for some Ae A. Thus, A is semi-Krull if and only if
every integral ideal of A ,; contains a power of P, A, thatis Ap; =4, is
semi-Krull for any Ae 4. |

With the notation of Proposition 4.1, we have that the hypothesis that
P, ¢ P, when P} # P, for 1+# y, is always satisfied if 4 is semi-Krull and
A is a finite set.

PROPOSITION 4.2. Let {(A;, P;); i=1,..,n} be a finite family of
one-dimensional quasilocal domains and let A=\ {A4;; i=1,.,n}. Set
P;=P,n A and suppose that P;#(0) for i=1, ..,n and P;# P] whenever
i#j. Then A is a semi-Krull domain if and only if A, is a semi-Krull domain
Jor i=1,..n and P ¢ P; for i#j. In this case A is semiquasilocal of
dimension one with maximal ideals P, ..., P,,.

Proof. Since Ap,c A, fori=1,..,n,then A=\ {Ap;; i=1,.,n} and
moreover X'(4)<= {P};i=1, ...n} [K, Theorem 110]. Hence, if 4 is semi-
Krull, 4 is semiquasilocal of dimension one (Proposition 1.3) and so
P/ ¢ P) for i#j Thus Ap,=A, for i=1,..,n by [Pr, Corollary 8] and
then A, is semi-Krull. The converse follows from Proposition 4.1. ||

PROPOSITION 4.3. Let A be a domain, ¥ = X*(A),and B=\ {Ap; Pe X}
with a finite character. Then B is a semi-Krull domain if and only if A is
a semi-Krull domain for every Pe%. In this case X'(B)={PApn B,
Pex}.

Proof. If PApnBc QAgyn B for some P, Qe X, then P=PA,nAc
QA,n A=Q. Thus P=Q and we conclude by Proposition4.1. ||
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COROLLARY 4.4. Let A be a semi-Krull domain, ¥ < X'(A4), and
B=(\{A,; PeZ). Then B is a semi-Krull domain and X'(B)=
(PA,n B, PeX).

Proof. A, is clearly a semi-Krull domain for every PeZ and the
intersection () {A,; PeZ} has a finite character. Thus we conclude by
Proposition 4.3.

Remarks 4.5. Let A be a semi-Krull domain.

(a) By Corollary 4.4, we get that if Z, ' < X'(A4), then B= () {A4,;
PeZ} and C=(\{A4,; PeX'} are equal if and only if ¥=2". In
particular, the decomposition 4= {A4,; Pe X'(4)} is irredundant, that
is, {Ap; PeX'(A), P£Q} ¢ A, for every Qe X '(4).

(b) As noted in Remark 3.3, we have X'(4)=2ZU% where
Z={PeX'(A); Pis t-invertible} and # =X"(AN\Z ={QeX'(4); Q is
strongly divisorial}. If Pe %, then A, is a DVR and so B={) {4,; Pe %'}
is a Krull domain. On the other hand C=\ {4,; Qe %} is a semi-Krull
domain with no t-invertible height one prime. Indeed if Q'€ X'(C) and
Q'=0QA,nC, with QeX'(4), then C, =4, is not a DVR. Also
A=Bn C. Thus for semi-Krull domains we have a “canonical decomposi-
tion” similar to the one given in [BG1, Theorem 3.3] for Mori domains.

In what follows 2 denotes a multiplicative system of ideals of 4 and A,
the generalized quotient ring of A4 with respect to 2, that is,
Ay=U {(4:J); JeX}. If I'is an ideal of 4 and 2= {I", n>1}, then
Ay= {(4:I"); n=1} is the Nagata transform of 4 with respect to I If
A is any domain, then every flat overring of 4 is an intersection of localiza-
tions of 4 [Rc, Corollary to Theorem 2] and any intersection of localiza-
tions of A4 is a generalized quotient ring of 4 [HOP, Proposition 4.3].

As for Krull domains, if 4 is a semi-Krull domain and & < X'(4), we
say that B=() {4p; PeZ'} is a subintersection of A. A subintersection of
a semi-Krull domain A4 is a generalized quotient ring of 4. Now we prove
the converse, that is, a generalized quotient ring of a semi-Krull domain 4
is a subintersection of 4. Thus by Corollary 4.4 we obtain that generalized
quotient rings of semi-Krull domains are semi-Krull.

THEOREM 4.6. Let A be a semi-Krull domain and As a generalized
quotient ring of A. Let ¥ be the set of height one prime ideals P of A such
that PpJ for any JeX. Then As=(\{Ap; PeX} (if ¥ =, we define
N{Ap; PeZ}=K).

Proof. Set B=\{Ap; PeZ} and take xe B. If xe 4, then xe A4;.
Otherwise, consider the ideal /=x"'4 " 4. I is contained in just finitely
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many ideals @,,.., Q,eX'(4) and contains a power of its radical
{Lemma 1.4). Since x€ 4,, then I ¢ P for any PeZ. Hence Q, contains
some ideal J,in X, for i=1,.,n If J=J,---J,, then Je X and I contains
a power J* of J. Therefore J*< x '4, that is, xe(A4:J°) and so xe A4;.
Conversely, let xe Ay and Je X be such that xJ < A. Then J ¢ P for any
PeX. Let yp,eJ\P for any Pe%. Then xype A and xe A, for any
PeZ. |}

THEOREM 4.7. If A is a semi-Krull domain, then any generalized quotient
ring Ay of A is a semi-Krull domain. Moreover, if & is the set of height one
prime ideals P of A such that P$J for any JeX, then X'(Ay)=
{PApnAs; PeX}.

Proof. By Theorem4.6, Ay=(){A,; PeZ}. Thus we can use
Corollary 4.4. |

CoRrROLLARY 4.8. If A is a semi-Krull domain and I is any ideal of A, then
the Nagata transform of A with respect to I is a semi-Krull domain.

COROLLARY 4.9. [M, Proposition 4.8]. If A is a semi-Krull domain, then
any flat overring of A is a semi-Krull domain.

A generalized quotient ring of a semi-Krull domain A4 is not always flat.
Indeed, by Theorem 4.6 and [M, Proposition 4.8], As=() {A,; PeX} is
flat if and only if QA= Ay for every prime ideal Q € X'(4)\%. However,
if A4 is one-dimensional, then every generalized quotient ring of A4 is flat
over A by [M, Proposition 5.7]. An example of a noetherian Krull domain
A with a generalized quotient ring which is not flat is given in [F, p. 32].

With the usual notation, we say that a domain 4 is a QQR-domain if
every overring of 4 is an intersection of quotient rings of A4, that 4 is a
GQR-domain if every overring of A4 is a generalized quotient ring of 4, and
finally that 4 is a QR-domain if every overring of A4 is a quotient ring of A4.

PROPOSITION 4.10. Let A be a semi-Krull domain and consider the
following conditions:
(i) A is a GQR-domain;
(1) A is a QQR-domain;
(ii1) Each overring of A is an intersection of localizations of A,
(iv)  Each overring of A is a subintersection of A;
(v) Each overring of A is flat over A;
(vi) A is a Prufer domain,
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(vil) A is a Dedekind domain;
(viit)  Each overring of A is a Dedekind domain;

(ix) Each overring of A satisfies a.c.c.p.

Then (1)< (il)<> (iii)<>(iv) and (v)<> (Vi) <> (vil) <> (viil) = (ix).
Moreover, if A is integrally closed, then all the conditions are equivalent.

Proof. (iv)=> (iii) = (ii) = (i) are trivial and (i)= (iv) by Theorem 4.6.
{(v)<>(vi) by [Rc, Theorem4]. (vi)=>(vii). A4 is a Krull domain by
(i1) = (11} in Theorem 3.1 and it is well known that a Prufer Krull domain
is Dedekind. (vii)<> (viii) is well known (cf. [D, p. 1987). (vii) = (vi) and
(viii) = (ix) are trivial. When A is integrally closed, (ii} <> (vi) follows from
[D, p. 197 and Corollary 1] and (ix) = (vi) by [BD, Lemma 3.27. |

We observe that if (P) is any property such that Dedekind =
(P)=-a.c.c.p., like the property of being semi-Krull, Krull, or Mori, then,
in the integrally closed case, any condition in Proposition 4.10 is equivalent
to the following: each overring of A satisfies (P).

PropoSITION 4.11. If A is a semi-Krull domain, then A is a Q R-domain
if and only if A is a Dedekind domain with torsion class group.

Proof. A QR-domain is always Prufer [D, pp. 197-1987. Hence, if 4 is
semi-Krull, then 4 is Dedekind by (vi)= (vii) in Proposition 4.10. But a
Dedekind domain is a QR-domain if and only if it has torsion class group
[D, p.200]. 1

We recall that a QR-domain which is not noetherian need not have tor-
sion class group [H]. On the other hand, if 4 is a Krull domain, then
every subintersection of 4 is a ring of quotients if and only if the divisorial
class group of A is a torsion group [F, Proposition 6.7]. We generalize this
statement to semi-Krull domains with a finite number of strongly divisorial
height one primes (Theorem 4.14 below).

PropPoSITION 4.12. If A is a semi-Krull domain, then Agz=(){Ap;
PeZ'}, X = X'(A), is a quotient ring of A if and only if Q ¢ \J {P; Pe X'}
for every prime ideal Qe X" ANZ. In this case Ay=Ag, where
S=A\U {P, Pex}.

Proof. By Theorem 4.6, As=( {Ay; Q€X' (4) and Q nS= & }. Thus
Asc Ay and, by Remark 4.5, A=Ay if and only if Q nS# &, that is,
Q¢ {P; PeZ}, for any Qe X' (A)\Z. To finish, it is easy to prove that
if Ay=A; for some multiplicative part T< A, then T<S and so
As=A;=A5. |

481/145/2-5
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The following lemma generalizes [ MuS, Lemma 4.3].

LemMMmA 4.13.  Let A be any domain and Q, ..., @, € t,,(A). Then for every
t-invertible t-ideal I of A there exists x € Q(A) such that xI< A and xI ¢ Q,
fori=1, ., n

Proof. Since I is t-invertible, then /A4, is principal for every Pet,,(A).
Let S=A\{ {Q;}. The domain B=As=(){dy;i=1,..,n} is semi-
quasilocal with maximal ideals Q;=Q;4, N B, i=1, .., n The ideal IB is
a t-invertible r-ideal of B [BvZ, Lemma 2.6] and IB,,=IA,, is principal
for every i=1, ..., n. Thus IB is principal [ BvZ, Corollary 2.9]. Let IB=aB,
ae Q(A). Since I is v-finite in A, there is s&€ S such that sI<aAd. Then
a 'slc A and moreover a 'sl ¢ Q, because a 'sldy=s5Ay=A,,

i=1,.,n Thus x=a's. ||

THEOREM 4.14. Let A be a semi-Krull domain with a finite number of
strongly divisorial height one primes. Then the following are equivalent:

(i) Every subintersection of A is a ring of quotients;

(i) Q#U{P; PeX'(A)and P#Q} for every Qe X' (A);
(iil) Q is the radical of a principal integral ideal for every Qe X'(A);
(iv) C(A) is a torsion group.

Proof. (i) < (ii) by Proposition 4.12. (ii) <> (iii) because any ideal mini-
mal over a principal ideal is a s-ideal [J, Corollaire 3, p. 31], thus it is a
height one prime by Proposition 1.2. (iii) = (iv). It is enough to prove that
for any integral t-invertible t-ideal I of A, there exist k > 1 such that (1%),
is principal [BvZ, Proposition 3.1]. By Lemma 4.13 we can assume that /
is not contained in any strongly divisorial height one prime of 4. Then, by
Remark 1.5, I= P A ... A PO = (P} ... P, for some z-invertible height
one primes P, .., P, and r, = 1. Suppose that P,=rad(x;4) for i=1, .., n.
Then x,A=P%A,"4=P* for some e,>1. It follows that (I*), is
principal for some k> 1. (iv)=> (iii). Let Qe X'(A4). There exists xe Q
such that x is not contained in any strongly divisorial height one prime
of A different from Q. If Q is the only r-maximal ideal containing x,
then rad(x4)=¢Q, and there is nothing to prove. Otherwise,
xA=(xAgNA)n P --- " P{", where P, is a t-invertible height one
prime and r;>1fori=1,.,n SetI=xA,nAand J=P{'n ... " P =
(P---Pm),. We claim that x4 =(1J),. Indeed rad(x4)=rad(InJ)=
rad(lJ) and, since IJc(lJ),cxA, rad(xA)=rad((lJ),). We have
JA,=IA,=xA, and IJAp=JAp =xAp, for i=1,..,n It follows that
xAp=(1J), Ap for every Pe X'(A4) and thus x4 = (1J), by [AA, Proposi-
tion 1.4]. Since J is t-invertible, by hypothesis (J*),= y4 for some ye 4
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and k>1. Thus x*4=(I*),y and so (I*), is principal. Since
rad(I*)=rad(/)= Q and (I*), < Q, then rad(I*), = Q and we are done. |}

The equivalences (i) <> (ii) <> (iii) proved in Theorem 4.14 above hold for
any semi-Krull domain. In the case of one-dimensional noetherian
domains, (iii) <> (iv) has been proved in [PSh, Remark 27. Note that if 4
is one-dimensional, then every r-invertible r-ideal of A4 is invertible and so
C(A) is the Picard group of A [BvZ, Corollary 2.10].
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