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INTRODUCTION 

Semi-Krull domains have been introduced by E. Matlis in [M]. An 
integral domain A is semi-Krull if and only if A = (7 {A p}, where P ranges 
over the set of height one primes of A, this intersection has a finite charac- 
ter, and every nonzero ideal of A, contains a power of PA,, for every 
height one prime ideal of A [M, Proposition 4.53. Krull domains and 
Cohen-Macaulay noetherian domains are semi-Krull. 

We recall that Krull and noetherian domains are Mori domains, that is, 
domains with the ascending chain condition on divisorial ideals. On the 
other hand, we prove that in a semi-Krull domain every height one prime 
is a maximal r-ideal and is divisorial (Theorem 1.7). Hence, like a Mori 
domain, a semi-Krull domain is the intersection, with a finite character, of 
its localizations at the maximal divisorial primes. Moreover it has always 
the ascending chain condition on principal ideals, for short a.c.c.p. 
(Theorem 1.10). This leads us to investigate the relations between the class 
of semi-Krull domains and that one of Mori domains. It turns out that 
neither class is included in the other (Examples 1.9 and 2.4) and that semi- 
Krull Mori domains are those Mori domains in which every maximal 
divisorial ideal is of height one (Theorem 2.1). Using this characterization, 
we are able to produce a new class of examples of semi-Krull domains that 
are neither Krull nor noetherian. A way of constructing semi-Krull 
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domains of this type is given in Example 2.3. Example 2.5 shows that an 
a.c.c.p. domain with every maximal t-ideal divisorial and of height one is 
not necessarily semi-Krull. 

In Section 3 we deal with the complete integral closure of a semi-Krull 
domain. We prove that a completely integrally closed semi-Krull domain is 
Krull (Theorem 3.1). It is well known that a similar result holds for Mori 
domains and, as in the case of Mori domains, it seems not easy to find out 
whether the complete integral closure A* of a semi-Krull domain A is 
Krull. We solve this problem in the seminormal case. Indeed we prove that 
if A is a seminormal semi-Krull domain, then A* is completely integrally 
closed (Corollary 3.7) and A* is Krull if and only if A is also a Mori 
domain (Theorem 3.12). We leave open the question if a seminormal 
semi-Krull domain is necessarily Mori. We observe that, if there is a 
counterexample, it cannot be a conducive domain. 

We also prove that a polynomial ring over a semi-Krull domain is not 
necessarily semi-Krull. Indeed if A is integrally closed and A[x] is 
semi-Krull, then A is Krull (Proposition 3.4). Conversely if A is any 
domain and A[X] is semi-Krull for a given set of indeterminates X, then 
A is semi-Krull (Proposition 3.5). 

In Section 4 we study generalized quotient rings of semi-Krull domains. 
We recall that flat overrings, Nagata transforms, and in general intersec- 
tions of localizations of a domain A are generalized quotient rings of A. In 
[M, Propositions 4.8 and 4.91 it has been shown that flat overrings and 
Nagata transforms of semi-Krull domains are intersections of localizations 
at height one primes and moreover a flat overring of a semi-Krull domain 
is semi-Krull. We prove these statements for any generalized quotient ring 
of a semi-Krull domain (Theorems 4.6 and 4.7). We also investigate when 
a generalized quotient ring of a semi-Krull domain is a quotient ring. A 
necessary and sufficient condition for that is given in Proposition 4.12. In 
Theorem 4.14 we prove that, when a semi-Krull domain A has just finitely 
many strongly divisorial height one primes, any generalized quotient ring 
of A is a quotient ring if and only if the class group of A is a torsion group. 
This generalizes a result well known for Krull domains [F, Proposi- 
tion 6.71. 

Throughout this paper A is always an integral domain and Q(A) its field 
of quotients. If U is a subset of Q(A), we denote by (A : U) the set 
{xEQ(A); XUC A). B y an ideal we mean a nonzero fractional ideal. We 
call an integral ideal an ideal contained in A and a proper ideal an integral 
ideal properly contained in A. 

For any ideal Z, I, is the intersection of all principal ideals containing Z, 
that is, I,= (A:(A:Z)). We say that Z is diuisoriaf if Z=Z,. The set of 
divisorial ideals of A is denoted by D(A). A maximal divisorial ideal is an 
ideal that is maximal among the proper divisorial ideals of A. We denote 
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by D,(A) the set of the maximal divisorial ideals of A. A divisorial ideal 
Z is called u-finite if I= .Z, for some finitely generated ideal J of A and Z is 
called a t-ideal if Z = I,, where I, = u {J, ; .Z c Z and J finitely generated }. 
We have Zc I, c I,, so that a divisorial ideal is a t-ideal. A maximal t-ideal 
of A is an ideal which is maximal among the proper t-ideals of A. The set 
of all maximal t-ideals of A is denoted by t,,,(A). Any integral t-ideal is 
contained in a maximal t-ideal, so that, if A is not a field, the set t,(A) 
is always not empty. Maximal t-ideals, as well as maximal divisorial 
ideals, are prime. We have I= fl {IA,; P E t,(A)} and in particular 
A = n {A,; PE t,(A)). Two t-ideals Z and J are equal if and only if 
ZA,=JA, for any Pet,(A). 

Under the operation ZoJ= (ZJ), the set of t-ideals of A is a semigroup 
with unit A. A t-ideal Z is said to be t-invertible, that is, invertible with 
respect to this operation, if (ZJ), = A for some ideal .Z. The t-inverse of a 
t-invertible t-ideal Z is (A : I). Z is t-invertible if and only if Z and (A :I) are 
divisorial and u-finite and IA, is principal for every P E t,(A). A 
t-invertible prime ideal is a maximal divisorial ideal. A maximal t-ideal P 
of A is either t-invertible or strong, that is, (A : P) = (P: P). We call an ideal 
strongly divisorial if it is strong and divisorial. The group of the t-invertible 
t-ideals of A is denoted by T(A) and the group of the principal ideals of A 
is denoted by P(A). We have P(A)c T(A) and the quotient group 
C(A) = T(A)/P(A) is called the class group of A. For background on 
t-ideals we refer to [J, Gr, and G] and general references on the class 
group are [BvZ, AA, A]. 

1. IDEAL THEORETIC RESULTS 

LEMMA 1.1. Let % be a family of prime ideals of A and 
B= n {A,; PEW}. Then 

(a) A = B if and only if every proper divisorial ideal Z of A is contained 
in some PE%. 

(b) Zf the intersection B = n {A,; PE %‘} has a jkite character, then 
A = B if and only if every maximal t-ideal of A is contained in some P E W. 

Proof: We recall that if P E Spec(A) and x E Q(A), then x ~ ‘A n A c P 
if and only if x $ A .;alsoxP’AnA=Aifandonlyifx~A. 

(a) Let Z be a proper divisorial ideal of A. Then Zc x-‘A n A for 
some x E Q(A)\A. Thus, if A = B, then x +! A, for some PE %‘, that is, 
Zcx-‘AnAcPforsome PE%?. Conversely, let XE~ {A,;PE%?}. Since 
J = x ~ ‘A n A is a divisorial ideal of A, if .Z # A, then by assumption .Z c P 
for some PE V. Thus x .$ A, for some PE %?, contradicting the hypothesis. 
It follows that J = A and so x E A. 
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(b) Let A = B and Q E t,(A). Suppose that Q is not contained in 
any P E %‘. Let x be a nonzero element of Q and let P, , . . . . P, be all the 
primes in 5?? containing X. By assumption Q $ U (P,; i= 1, . . . . n}. Let 
y E Q\U {Pi; i= 1, . . . . rr) and consider the ideal Z=(x,y),=(x,y),. Z#A 
because Zc Q and so Zc P, for some i= 1, . . . . n by (a). A contradiction. 
Conversely, since A = n {Ap; PE t,(A)} [Gr, Proposition 41, then BcA 
and so B=A. # 

We denote by X’(A) the set of the height one primes of A. A height one 
prime is a t-ideal by [J, Corollaire 3, p. 311. 

PROPOSITION 1.2. If A is a semi-Krull domain, then X’(A) = t,(A). 

Proof. By Lemma 1.1(b). Indeed we recall that A= n (A,; PEX’(A)} 
and that every prime ideal of height one is a Z-ideal. 1 

We note that every proper ideal of a domain A is contained in the union 
of the maximal t-ideals of A. Thus if t,(A) = {Pi; i = 1, . . . . rz} is a finite set, 
then every maximal ideal of A is a t-maximal ideal and A is semiquasilocal. 
Moreover, if Z is a c-invertible t-ideal of A, then IA, is principal for 
i= 1, . . . . n [G, Proposition 1.11. Hence Z is invertible [BvZ, Corollary 2.91 
and then it is principal, that is, C(A) = (0). 

This, together with Proposition 1.2, allows us to generalize a result well 
known for Krull domains. 

PROPOSITION 1.3. Let A be a semi-Krull domain. Zf X’(A) is a finite set, 
then A is a semiquasilocal domain of dimension one and C(A) = (0). 

We recall that in a semi-Krull domain, by the finiteness character, every 
nonzero ideal is contained in just finitely many prime ideals of height one. 

If P is a prime ideal of A, we denote by Per) the symbolic rth power of 
P, that is, Per’= P’Arn A. 

LEMMA 1.4. Let A be a semi-Krull domain and Z any proper t-ideal of A. 
Let P,, . . . . P, be the prime ideals of height one containing I. Then Z has the 
unique primary decomposition Z = n {IA r, n A; i = 1, . . . . n } and it contains a 
power of its radical P, n . . n P,. 

Proof By Proposition 1.2, P,, . . . . P, are the only maximal t-ideals con- 
taining Z, so I= n {IA, n A; i= 1, . . . . n> [Gr, Proposition 41. Each com- 
ponent is primary because IA., is a primary ideal of A,, for i = 1, . . . . n and 
the decomposition is unique because Pi is minimal over Z for i = 1, . . . . n. 
Since A is semi-Krull, we have IA, 2 P:Ar, for some ri 2 1, i = 1, . . . . n. 
Then IX n {P!“‘; i= 1, . . . . II} 3 17 { Pp; i= I, . . . . n) and finally Z contains 
(P, n . . n P,)” for s 3 max(r,, . . . . r,). 1 

4x1 I45 2-4 
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Remark 1.5. We observe that, keeping the notations of Lemma 1.4 
above, if Pi is z-invertible for some i= 1, . . . . n, then A,, is a DVR [G, 
Remark 1.21 and so IA, n A = P:Ar, n A = P!“’ for some ri 2 1. In par- 
ticular we see that if every maximal t-ideal P, containing Z is t-invertible, 
then the unique primary decomposition of I is I= Pr’) n ... n PF), thus 
I= (Pi’ . . . Pz), and so I is t-invertible. To prove the second equality, let 
J= P’;’ . . . PI;. Since J, is t-invertible, we have J, A, = (JA,), for every 
multiplicative part S of A [BvZ, Lemma 1.51. Thus J,Ar,= Pj’Ar, and 
J,A,=A,, when Q E t,(A) and Q #Pi, i= 1, . . . . n. It follows that 
J,A, = IA, for every P E t,(A) and so J, = I by [AA, Proposition 1.41. 
A similar result has been proved for Mori domains in [BG2, Proposi- 
tion 1.71. 

LEMMA 1.6. Let A be a semi-Krull domain. Then every proper divisorial 
ideal of A is contained in a divisorial maximal t-ideal. 

Let Z be a proper divisorial ideal of A. By Lemma 1.4 and Proposi- 
tion 1.2, Z is contained in a finite number P,, . . . . P, of maximal t-ideals of 
A and Z contains (P, . . . P,)” for some s 3 1. If none of the Pi’s is divisorial, 
then (A:P;)= A for every i= 1, . . . . n [G, Proposition 1.41 and so 
(A : (PI . .. P,)“) = A. Thus A 3 (A :I). This is a contradiction because Z is 
divisorial. 1 

THEOREM 1.7. If A is a semi-K&l domain, then X’(A) = t,(A) = D,(A). 

Proof By Proposition 1.2, we have X’(A) = t,“(A). By Lemma 1.6 every 
proper divisorial integral ideal of A is contained in a divisorial maximal 
t-ideal. Thus, by Lemma 1.1(a), A=r) {A,; PEt,(A)nD(A)) and this 
intersection has a finite character because t,(A) n D(A) c t,(A) = X’(A). 
By Lemma 1 .l (b), it follows that every maximal t-ideal of A is divisorial 
and so t,(A)=D,(A). 1 

We recall that in one-dimensional quasilocal domain, the maximal ideal 
is always a t-ideal but it need not be divisorial. 

COROLLARY 1.8. Zf A is a semi-K41 domain, then every height one 
prime ideal has the form (a):a b for suitable a, b E A. 

Proof By Theorem 1.7 every height one prime ideal P of A is maximal 
divisorial. Hence P = xA n A for some XE Q(A). If x = a/b, a, b E A, then 
P= (a):A 6. i 

In spite of Theorem 1.7, it is not true that in a semi-Krull domain any 
t-ideal is divisorial, that is, with the notation of [HsZl], a semi-Krull 
domain is not necessarily a TV-domain. 
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EXAMPLE 1.9. A quasilocal one-dimensional semi-Krull domain which 
is not a TV-domain. 

LetKbeafieldandletX={X,;n~0}andY={Y,:n>,1}betwosets 
of independent indeterminates over K. For any nonzero polynomial f in 
KCX,Yl=KC{X,; n 3 0}, { Y,,; n b 1 }] let u(f) be the least degree of a 
homogeneous component off: Extend u to a valuation of the field K(X, Y), 
which will be also denoted by u. Let V be the valuation ring of u and let 
P be its maximal ideal. Let B=K[X, {X,Y,; m>,l, n21, m#n}]. Set 
A = B+ P3, thus A is a ring contained in V. Let M be the ideal of A 
generatedbyX~{X,,,Y,;m>l,n>l,m#n}uP~. 

A is a quasilocal domain and M is its maximal ideal. We have A = K + M, 
so M is a maximal ideal of A. Let t E M. We have l/( 1 - t) - (1 + t + t*) = 
t3/( 1 - t) E P3 and (1 + t f t2) E A, so l/( 1 - t) E A. Hence A is a quasilocal 
domain and M is its maximal ideal. 

A is one-dimensional and semi-Krull. Let f be a nonzero element of A. 
Thus u(f) 3 0. Set m = u(f) + 3. For any element g in M”, we have 
u(g/f) 3 3, so g/f E P3 c A. It follows that M” c Af, so A is one-dimen- 
sional and semi-Krull. 

A is not a W-domain. For every n 2 1, let I, = (X,, . . . . X,,) + P*. Set 
Z=U {I,; n>l), thus I= (X,, X,, . ..) + P’. We claim that I is a t-ideal of 
A which is not divisorial. For the proof we need first some preliminary 
remarks. 

Let D be the ring of homogeneous rational functions in K(X, Y), thus D 
is a Z-graded ring. Let f be a nonzero rational function in K(X, Y) with 
u(f)=d. Then for any integer n>d, we have fEDd+ ... +D,+P”+‘. 
Indeed write f = g/h, where g and h are polynomials in K[X, Y]. Let 

h=h,+h,+, + ... and g=g,+d+gm+d+,+ ‘.. the decompositions 
into homogeneous components of h and g, respectively, such that h, # 0 
and gm+d #O. We haveg,+,/h,EDdand, iffd=gm+dlhm,f-fdEPd+‘. 
Iterating this argument, we obtain that f E D,+ ... + D,+ P”+‘. 
Moreover, for any two integers n 3 d, the sum D, + ... + D, + P”+ ’ is a 

direct sum of additive subgroups of K(X, Y), so the representation 
f=fd+ ... +f,+u, wheref,EDifor d<ifn and UEP”+‘, is unique. 

Now for a given n 2 0, let f be a nonzero rational function in K(X, Y) 
with u(f)61 such that fXnEA. Write f=fd+fd+,+ ... +fo+fi+u, 
where fiEDi for d6idl and MEP*. HencefX,=f,X,+f,+,X,+ . . . + 
fi X, + uX,,. Note that B is a graded subring of D and that A = B,@ B, @ 
B2 0 P3. Since fX, E A, from the uniqueness of the representation for fX,, 
we get that d 2 - 1 and fix, E Bi+ 1 for i = - 1, 0, 1. Clearly these are 
necessary and sufficient conditions on a rational nonzero function 
f~ K(X, Y) with u(f) d 1 in order to belong to (A: X,). Moreover 
P2 c (A: X,). We obtain in particular that, for any integers m 3 0 and n > 1, 
X,,, Y,, E A if and only if m 2 1 and m #n. 
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Let n > 1 and let f be a nonzero element in (A :(X1, . . . . X,)). Thus 
v(f)>-1. Set f=f-,+f,+fi+tl, where f,~Z3, for i=-l,O,l and 
u E P2. Since n 3 2, the elements f-,X, and f-,X, are in B, = K, so 
f-,E(~/X~)K~(I/X,)K=(O) and f-i =O. Also fox, and fox, are in 
B, =span,((X,, Xi, . ..}). Thus &E(~/X,)B, n(l/X2)Bi =K. Finally, for 
all 1 <i<n, 

Thus fi E (l/X,) B, n (l/X,)B, and so f, is a K-linear form in the indeter- 
minates X u Y. Since X, Yj~ A if and only if i#j, we obtain that 
f,Espan,(Xu{Y,;m>n)). 

We conclude that (A :(X, , . . . . X,,)) = KO span,(X u ( Y,; m > n}) 0 P2. 
By similar arguments we obtain that A : (A :(X, , . . . . X,)) = (X,, . . . . X,) + 

P2 = I,, . Thus Z, = (X,, . . . . X,,), is a u-finite divisorial ideal. Since 
I= U {I,,; n > 1) is an ascending union of v-finite divisorial ideals, we see 
that Z is a t-ideal. 

On the other hand, 

@:1)=(-j ((A:Z,);n>2} 

=n {KOspan.(Xu{Y,;m>n})@P2;n>2} 

=K@span.(X)@P2=A+P2. 

Hence X0 E A : (A :I), but X0 $ Z, so Z is not a divisorial ideal. We 
conclude that A is not a TV-domain. 

THEOREM 1.10. Let A be a semi-KruN domain, then A satisfies the 
ascending chain condition on principal ideals. 

Proof: Since an intersection with a finite character of domains satisfying 
a.c.c.p. satisfies a.c.c.p., it is enough to prove the theorem for the case that 
A is quasilocal and one-dimensional. Let P be the maximal ideal of A. 
Let a,, a,, . . . be nonzero elements in P such that Aa, s Aa, 5 ... 
Thus for any m 2 1, (am/a,+, )EP. Let k>l such that PkCAa,. 
Hence (a,/a,+,)=(a,/az)(a2/a3)...(ak/ak+1)EPkCAa,. It follows that 
l/a k + , E A, a contradiction. 1 

By the previous theorem we get in particular that a semi-Krull domain 
A is Archimedean, that is, n {x”A; n 2 1 } = (0) for every nonzero nonunit 
x E A. This can be obtained also as a consequence of the fact that a semi- 
Krull domain is an intersection with a finite character of one-dimensional 
(and so Archimedean) domain or by [ABD, Proposition 3.71 observing 
that the Principal Ideal Theorem holds in A. 
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PROPOSITION 1.11. Zf A is a semi-KruN domain, then n {I”; n b 1 } = (0) 
for every proper t-ideal I of A. 

Proof. Let P E X’(A). A, is one-dimensional, so it is Archimedean and 
we have n {x”A.; n > 1 } = (0) for every nonzero x E P. Since A is semi- 
Krull, then the ideal xA, contains a power of PA,. It follows that 
n { P”Ap; n 3 1 1 = (0) and so n {P”; n 3 1 } = (0). Since any t-ideal I 
is contained in some height one prime (Proposition 1.2), we also get 
n {1~;~31)=(0). 1 

2. A CLASS OF EXAMPLES 

We have proved in Section 1 that a semi-Krull domain is a domain with 
the ascending chain condition on principal ideals such that X’(A) = 
t,,,(A) =D,(A). The converse is not true, as Example 2.5 below shows. 
However, we now prove that, when the ascending chain condition holds in 
the set of all divisorial ideals of A, that is, A is a Mori domain, and 
X’(A) = D,(A), then A is semi-Krull. We recall that in a Mori domain 
every t-ideal is divisorial [BG2, Proposition 1.11, thus Example 1.9 shows 
that conversely a semi-Krull domain is not necessarily Mori. 

THEOREM 2.1. Let A be a Mori domain. Then A is semi-Krull if and only 
ifX’(A) = D,(A). 

ProoJ By Theorem 1.7, in a semi-Krull domain X’(A) = D,(A). 
Conversely, if A is a Mori domain and X’(A)= D,(A), then 
A= n (A,; PEX’(A)) and this intersection has a finite character [BGl, 
Proposition 2.2, b]. Moreover, A, is a Mori domain for each PE X’(A) 
[Q, Sect. 3, Corollaire 11. Since in a Mori domain every integral divisorial 
ideal contains a power of its radical [Ra, I, Theoreme 51, if Z is a nonzero 
integral ideal of A, and x # 0 is an element of Z, then IX (x) 3 (PA,)” for 
some n 3 1. Hence A is a semi-Krull domain. 1 

Remark 2.2. In any domain, a prime ideal P is divisorial if and only if 
P is an associated prime to a principal ideal [Y, Proposition lo]. Thus in 
a Mori domain A the condition X’(A) = D,(A) means that each associated 
prime to a principal ideal is of height one (recall that in a Mori domain 
each height one prime is divisorial). In particular, if A is a noetherian 
domain, the condition X’(A) = D,(A) is equivalent to the condition that 
each proper principal ideal is unmixed of height one. Thus by Theorem 2.1 
the examples of noetherian semi-Krull domains given in [M, p. 3971 are 
the only ones possible. 
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Using Theorem 2.1, it is not difficult to give examples of non-noetherian 
semi-Krull domains. Indeed we can consider any non-noetherian Mori 
domain of dimension one, such as A = Q +XR[ [X]] (cf. [Bl]). This 
example can be generalized to the non-quasilocal case in the following way. 

EXAMPLE 2.3. Let C= n {C,; PE X’(C)} be a non-local Dedekind 
domain. Consider a finite subset !Z = {P,, . . . . P,} of X’(C) and let Ai be a 
Mori pullback of C, for each i = 1, . . . . n (cf. [BGl, Sect. 43). We claim that 
A = Cn {A,; i= 1, . . . . n} is a non-quasilocal semi-Krull Mori domain of 
dimension one. 

Suppose first that $5” = (P, } . A = C n A, is a Mori domain as an inter- 
section of two Mori domains. Moreover A is the pull-back of the diagram 

(CIP,)nk, 

c- C/P, 

where k, is the residue field of A, and the intersection is made in the 
residue field of C,,. Since dim C = 1, then C/P, is a field and so also 
k, n (C/P,) is a field. It follows that dim A = 1 and, by Theorem 2.1, 
A is semi-Krull. By [Fn, Theorem 1.4, (c)] the canonical map 
Spec( C) -+ Spec(A) induces a one-to-one correspondence between the 
primes of C that do not contain P, and the primes of A that do not contain 
P,. Thus A is not quasilocal. Moreover, by [Pr, Corollary 81, A,, = A,. 
Thus, if A, is not noetherian, that is, if the extension k, c C,,/P, C,, is not 
finite, then A is not noetherian. 

Iterating these arguments, we can easily prove our claim. 

A Mori domain is not necessarily semi-Krull and, besides Example 1.9, 
there are simpler examples of semi-Krull non-Mori domains, as shown 
below. 

EXAMPLES 2.4. (a) Any Mori domain with a maximal divisorial ideal 
of height greater than one is not semi-Krull by Theorem 2.1. For example, 
we can consider A = k+ Xk[X, Y], where k is a field [BGI, Exam- 
ples (4.6, b)]. 

(b) Let A = k + XD + X2K[ [Xl], where k c K are two distinct fields 
and D is a domain, but not a field, such that kc D c K. A is a quasilocal 
one-dimensional domain with maximal ideal M = XD + X*K[ [Xl]. 
Moreover A is not a Mori domain [BDFn, Example 171. To prove that A 
is a semi-Krull domain, it is enough to show that, for any nonzero integral 
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ideal I of A, XnK[ [X] ] c I for some n 2 1. Let h E 2 be an element of order 
S. It is easy to show that there exists an element gE K[[X]] of order 2 
such that hg = x” + 2. Hence x”+ * KC [Xl I= km CXII c hX2KC [Xl I= 4 
where the last inclusion holds because X2K[ [IX]] c A. 

EXAMPLE 2.5. An example of a one-dimensional quasilocal domain 
(A, P) satisfying a.c.c.p. such that P is divisorial, but A is not semi-Krull. 

Let F be a field and let T be the ring of (generalized) polynomials 
F[rW+] = F[{X’; r E iw, r > O}]. For any nonzero polynomial f in T, let 
o(j) be the minimal s such that X” occurs in J We may uniquely extend 
c’: T -+ [w to a valuation of Q(T), which will be also denoted by u. Let Q = 
UC Q(T); u(f) > 1). Let (YAP l be an infinite sequence of real numbers 
in the interval (0, 1) such that lim, _ 5 (yn) = 0 and 1, y,, y2, . . . are linearly 
independent over Q. Let r be the additive subsemigroup of I&! generated by 
{y,,; n 3 1) and let R = F[L’] = F[X”“; n > 11. Set A = R+ Q. A is a ring. 
Consider the ideal P of A generated by { XYn; n 2 1 > u Q. Thus A = F+ P 
and P is a maximal ideal of A. Moreover (A, P) is quasilocal. Indeed, if 
IEP, for n&O, we have (l/(1-t))-(l+t+ . ..+t”)=t”+‘/(l-f) and 
u( t”+ ‘/( 1 - t)) = (n + 1) u(t) > 1. Hence t’*+ ‘/( 1 - t) E A. It follows that 
l/( 1 - t) E A and so (A, P) is quasilocal. 

To show that (A, P) has the desired properties, we will use the following 
facts. 

(a) For any nonzero g E A, X”(n) E A. 
This is clear if u(g) > 1. Assume that u(g) 6 1. We can write g =f + q, with 
f~ R and qE Q. We have v(,f) < 1 < u(q), thus u(g) = u(f). By definition, 
u(,f) is the minimal s such that x” occurs in ,A hence us r and 
xdn) = X”‘” E A. 

(b) For any real number r, X’ E A if and only if r E r or r > 1, 

If r E r or r > 1, clearly X’ E A. Conversely assume that X’ E A and r < 1. 
Write r=f+q, withfER and qEQ. Letf=fo+fi such that sdl for 
any X” occurring info and s > 1 for any X” occurring inf,. Thusf, E Q and 
Y=f+q’, where q’=f, +qEQ. If q’#O, then 1 >u(Y-fo)=u(q’)> 1, 
a contradiction. Thus q’ = 0 and X’ = f0 E R. It follows that r E f’. 

(c) If u(f) = 0, then ,f is invertible in A. 

If u(f) = 0, then f’$ P and so f is invertible. 

A is one-dimensional. Let f and g be any nonzero elements in P. Thus 
z.(g)>0 and for n&O we have u(g”)=nu(g)>u(f)+ 1. Hence, for n+O, 
u( g”/f) > 1 and so g”/f E Q c A. It follows that P E rad(@) for any f~ P 
and thus P is of height one. 
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P is divisorial. By hypothesis the elements 1, yi, y2, . . . are linearly 
independent over Q. Then 1 $ I- and so X$ A by (b). On the other hand 
X= X3/X2 is in the quotient field of A. We have XP c P. Thus P c (l/X)A. 
Since P is maximal, we have P = (l/X),4 n A and so P is divisorial. 

A satisfies a.c.c.p. Let Af, 5 Af2 5 ... be an infinite strictly ascending 
chain of nonzero principal ideals in A. Thus, for all n 3 1, f,/f, + I E A and 
is not invertible. Hence v(fn/fn + ,) > 0 by (c) and so v(f,) > v(f, + ,). Set 
g,=f,/f3 and g2=f2/f;. We have that g,,g, are in A and Ag, 5 Ag,. 
Hence v( g,) > v(g2) and g,/g, = f, /f2 E A. Thus, by (a), XuCnl), XvCn2), 
J’t~(gl)b-l’(KZ) are in A. 

Since the sequence { v( f,) >,, 2 1 is bounded and decreasing, we have 
lim, + a3 (v(f,) - v(f,l+ ,)) = 0. Thus, for n $0, v(fn) - v(f,- ,) < 1 and also 
v(fn) - v(fnp2) < 1. We may assume that this holds for all n B 1. Hence 
u( g, ) < 1 and, since XvCn’) E A, by (b) we have v(gi)EJ: Similarly we have 
that v(g,) and u(g,) - v(gZ) = v(g,/g2) are in ZY This is a contradiction 
because any element in f can be uniquely represented as a linear combina- 
tion of the elements {y,,; n > 1 } over Q and the coefficients are non- 
negative. 

A z’s not semi-Krull. Assume the contrary. Then for some positive integer 
m, we have P” c AX”. Since lim,, ic (y,,) = 0, we can choose n such 
that mY,,<Y,. Thus v((XYn)“/XyL) = my, - y1 < 0 and so (J?‘)” $ AXY’, 
a contradiction. 

3. ON THE COMPLETE INTEGRAL CLOSURE OF A SEMI-KRULL DOMAIN 

We denote by A* the complete integral closure of A, that is, 
A* = lJ {(I: I); I a fractional ideal of A }. A is completely integrally closed 
if A = A*. The next proposition shows that a completely integrally closed 
semi-Krull domain is Krull. 

We recall that A is a pseudo v-multiplication domain, in short a PVMD, 
if the set of divisorial u-finite ideals of A is a group. 

THEOREM 3.1. Let A be a semi-K& domain. Then the following are 
equivalent: 

(i) A is completely integrally closed; 

(ii) A is a PVMD; 

(iii) A is Krull. 

ProoJ (iii) =- (ii) is well known. (ii) * (i). If A is a semi-Krull PVMD, 
then AP is a one-dimensional valuation domain for every PE X’(A), by 
[Gr, Theorem 51 and Proposition 1.2. Thus A, is completely integrally 
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closed for every P E X’(A) and A is completely integrally closed as an inter- 
section of completely integrally closed domains. (i) * (iii). Since, by 
Theorem 1.7, t,(A) = D,(A), we can apply [G, Corollary 2.81. a 

A local version of Theorem 3.1 is the following: 

PROPOSITION 3.2. Let A he a semi-Krull domain. Then the following are 
equivalent: 

(i) A is completely integrally closed; 

(ii) A p is completely integrally closed for every P E X1 (A); 

(iii) A, is a DVR for every PEX’(A); 

(iv) P is t-invertible for every P E X’(A). 

Proof (i)= (iii) by (i)*(iii) in Theorem 3.1. (ii)*(i) because an 
intersection of completely integrally closed domains is completely integrally 
closed. (ii) 9 (iii) o (iv) follows from [G, Corollary 2. lo] because 
t,(A) = D,(A) by Theorem 1.7. 1 

Remark 3.3. We recall that a maximal t-ideal P of any domain A can 
be either strong or t-invertible [G, Theorem 1.31. Thus, by Theorem 1.7, 
we have that the height one primes of a semi-Krull domain are either 
t-invertible or strongly divisorial. Hence a semi-Krull domain A is Krull if 
and only if no (height one) prime ideal of A is strongly divisorial. A similar 
result holds for Mori domains (cf. [BGl, p. 1043). 

Using Theorem 3.1, we can show that, if A is a semi-Krull domain, then 
the polynomial ring A[X] is not necessarily semi-Krull. 

PROPOSITION 3.4. Let A be an integrally closed semi-Krull domain. Then 
the following are equivalent: 

(i) A[X] is a semi-K&l domain; 

(ii) A [X] is a Krull domain; 

(iii) A is a Krull domain. 

Proof: (i) * (iii). By Proposition 1.2, if A [X] is semi-Krull then 
X’(A[X]) = t,(A[X]). Thus in this case every prime ideal of height one of 
A[X] of type fK[X] n A[X], with K= Q(A) and f an irreducible element 
of K[X], is a maximal t-ideal. Since A is integrally closed, then A is a 
PVMD by [HsZ2, Proposition 3.21. Therefore A is Krull by Theorem 3.1. 
(iii) = (ii) = (i) are well known. 1 

Thus for example, if A is an integrally closed Mori domain of dimension 
one which is not Krull [Bl], then A is semi-Krull but A[X] is not 
semi-Krull. 
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On the other hand, we prove in Proposition 3.5 below that if A is any 
domain and A[X] is semi-Krull for a given set of indeterminates X, then 
A is semi-Krull. A similar property holds for Mori domains since 
A = A[X] n Q(A) and a finite intersection of Mori domains is Mori [Ra, 
I, Thtoreme 21. This simple proof fails for semi-Krull domains since an 
intersection of two semi-Krull domains is not necessarily semi-Krull, as we 
will show in Section 4. 

PROPOSITION 3.5. If A is any domain and A[X] is semi-Krull for a given 
set of indeterminates X, then A is semi-Krull. 

ProoJ: First note that, for any nonzero element aE A, rad(aA) = 
rad(aA[X])n A and so aA contains a power of its radical. It follows that 
every proper ideal Zc A, contains a power of PA,, for every P E x’(A). 
Setting K = Q(A), we have A = A[X] n K = n {A[X].nK; P E 
X’(A[X])} = n {AIXlp n K; PEX’(A[X]) and Pn A # (0)). Now, 
A[X],nK= APnA for all primes P in A[X]. Indeed we have 
A PnA cA[X].nK. Conversely, let cEAIXIPnK. Thus CS(X)EA[X] for 
some polynomial s(X) E A[X]\P. Let s(X) = sI M, + .. . + s,M, where M, 
are distinct monomials in the indeterminates X and s, E A for 1 <id k. 
Since es(X) E A[X], we have that CS;E A for all i. On the other hand there 
is an i, such that sj,$ P. Thus csiog A and .sio~ A\P, hence c E A,, A. We 
conclude that A = fl {A,,,; PEX’(A[X]) and Pn A # (0)) with a finite 
character. Clearly, if PEX’(A[X]) and Pn A # (0), then Pn AEX’(A). 
Taking into account that every height one prime ideal is a t-ideal, by 
Lemma 1.1(b), we get that X’(A)={PnA; PcX’(A[X]) and PnA#(O)}. 
Thus A is semi-Krull. 1 

We don’t know if the complete integral closure of a semi-Krull domain 
is completely integrally closed. However, this is true if A is seminormal. We 
recall that a domain A is said to be seminormal when, for any x E Q(A), 
if x2 and x3 are in A, then x is in A. This is equivalent to say that, for 
any XEQ(A), if X”EA for n&O, then XEA (cf., e.g., [Ru] or [S]). An 
integrally closed domain is clearly seminormal. 

THEOREM 3.6. Let A be an intersection with a finite character of quasi- 
local seminormal one-dimensional domains. Then A * is completely integrally 
closed. 

Proof: The complete integral closure of a quasilocal seminormal one- 
dimensional domain is completely integrally closed by [R3, Theorem 1.83. 
Now it is enough to observe that an intersection of completely integrally 
closed domains is completely integrally closed and if A = n {A, ; 2 E A } is 
an intersection with a finite character, then A* = n {(A,)*; SEA} [HOP, 
Lemma 2.23. 1 
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COROLLARY 3.1. Zf A is a seminormal semi-K&l domain, then A* is 
completely integrally closed. 

Proof. Since any localization of a seminormal domain is seminormal 
[S, Corollary 4.61, we can use Theorem 3.6 representing A as the inter- 
section of its localizations at the height one primes. [ 

We don’t know if the complete integral closure of a semi-Krull domain 
is also semi-Krull. However, we show in Theorem 3.12 below that if A is 
a seminormal semi-Krull domain, then A* is semi-Krull if and only if A is 
also a Mori domain. 

We recall that the pseudoradical of a domain A is the intersection of all 
nonzero prime ideals of A. 

LEMMA 3.8. Let A be a seminormal domain with a nonzero pseudoradical 
J. Then JA * = J. 

Proof: Let x be a nonzero element of JA*. There are nonzero elements 
aandbinJsuchthatx=a/b.Representxasasumx=x,p,+...+x,p, 
with xi in A * and p, in J, for i = 1, . . . . r. Since JC rad(Aa), for a sufficiently 
large m, py E Aa for all i, 1 d id r. So xm E A*a for m 9 0. Fix such an 
integer m 3 2. Let sI = a+ ’ and j? = b”. Thus a/p E A*. So there is a non- 
zero element p in J such that p(cc/fi)” E A for all n > 1. Since a E J= rad(Ap), 
a”/pE A for some k. Hence p(a/j3)” a”/p = a(‘+ “n+k/bm” E A for all n 3 1. 
Since (m -- 1) n + k < mn for n 2 k, then am”/b”” = (am/b”)” E A and since A 
is seminormal, we get am/h” E A. But this holds for all m $0 and A is 
seminormal, so x= a/bE A. Moreover, in the previous notation, 
(m- l)n+k<mn for n>k, so x”“‘/a= (a’“~““+k/b”“)(a’“~~k’/a)~ A. 
Thus x E rad(Aa) = J. We conclude that JA* = J. @ 

In the conditions of the previous lemma, we have A* = (J: J). Hence, if 
A is noetherian, semilocal, and seminormal, A* = A’ is the integral closure 
of A and the conductor (A :A’) is not zero. It follows that A’ is a finite 
A-module. 

We observe that if a semi-Krull domain has a nonzero pseudoradical, 
then by the finiteness character it has just finitely many height one primes. 
Thus it is semiquasilocal of height one (Proposition 1.3). 

LEMMA 3.9. Let A and B be domains with a common nonzero integral 
ideal I. If A is seminormal and I is radical in A, then I is radical in B. 

Proof. Let x be an element in the radical of I in B. Thus x” is in Z for 
n $0. Since A and B have the same quotient field and A is seminormal, we 
conclude that x is in A. Thus x is in I and so I is radical in B. 1 
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PROPOSITION 3.10. Let A be a quasilocal seminormal one-dimensional 
domain. Then the following are equivalent: 

(i) A* is Krull; 
(ii) A * is Mori; 

(iii) A is Mori. 

Proof: (i)o (ii) because A* is completely integrally closed by [R3, 
Theorem 1.81. (iii) * (i). By Lemma 3.8 the conductor (A: A*) contains the 
maximal ideal of A. Thus it is not zero. Since A is Mori, then A* is Krull 
by [B2, Corollary IS]. (ii) * (iii). Let P be the maximal ideal of A and p 
a nonzero element in P. P = rad Ap is contained in the radical of A*p. On 
the other hand A*p is contained in PA* = P (Corollary 3.8) and P is a 
radical ideal in A* by Lemma 3.9. Hence P is the radical of A*p. But the 
radical of A*p is a finite intersection of prime ideals, so it is a Mori ideal 
[Rl, Theorem 6.21. Hence P is a Mori ideal and since it is maximal in A, 
then A is a Mori domain by [R2, Theorem 4.143. 4 

LEMMA 3.11. Let K he a field and A, c B, c K domains with quotient 
field K, for ,? E A. If the intersection A = fi {A, ; ;1 E A } has a finite 
character, then also the intersection B = n {B,; i E A} has a finite character. 

Proof: Let x E B, x = a/b with a, b nonzero elements of A. We have that 
a is not invertible in just finitely many A j.‘s. Since aB c xB, if x is not inver- 
tible in B,, then a is not invertible in A;.. Thus x is invertible only in 
finitely many B,‘S. 1 

THEOREM 3.12. If A is a seminormal semi-K&l domain, then the 
following are equivalent: 

(i) A* is semi-K&l; 
(ii) A* is Krull; 
(iii) A* is Mori; 
(iv) A is Mori. 

Proof (ii) o (iii) because A * is completely integrally closed by 
Corollary 3.7. (i) o (iii) by Corollary 3.7 and Theorem 3.1. (iii) * (ii). We 
have A = n {A,; PEX’(A)} with a finite character. Thus A* = n { (Ar)*; 
PE X’(A)} with a finite character by [HOP, Lemma 2.21 and 
Lemma 3.11. Since AP is seminormal [S, Corollary 4.61 and Mori [Q, 
Sect. 1, Corollaire 11, then (A,)* is Krull by Proposition 3.10 and finally 
A* is Krull as an intersection with a finite character of Krull domains. 
(i) * (iii). Let PEX’(A) and S= A\P. Since A,c A,*, then (Ar)* c (A,*)*. 
But A,* is Krull, hence (A,*)* = A J. On the other hand, A* c (Ar)* and 
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so AS c (Ap)*. It follows that (Ap)* =A: is Krull. Since A, is semi- 
normal, by Proposition 3.10, A, is Mori and finally A is Mori as an inter- 
section with a finite character of Mori domains [Ra, I, Theoreme 23. 1 

The complete integral closure of a Mori domain is not always Mori nor 
completely integrally closed [R3]. However, from Theorem 3.12 we get 
that, if A is a seminormal semi-Krull Mori domain, then A* is Krull. 

We do not know if the complete integral closure of a seminormal Mori 
domain is a Krull domain and we do not know either if a seminormal (or 
even an integrally closed) semi-Krull domain is always Mori. 

Remark 3.13. Notice that the Example 2.4(b) of a semi-Krull non-Mori 
domain is not seminormal. Indeed the seminormalization of A is 
k + XK[ [X]] [BDFn, Corollary 31. 

More generally a semi-Krull domain is a.c.c.p. (Theorem 1.10) and any 
conducive a.c.c.p. seminormal domain is a quasilocal Mori domain. We 
recall that A is a conducive domain if and only if it tits a Cartesian square 
of the type 

A-D 

I I 
(*) 

V- B f 

where (V, M) is a nontrivial valuation overring of A, B = V/Q, with Q an 
M-primary ideal of V, f: I’ + B is the canonical projection, and D is a sub- 
ring of B. By [BDFn, Corollary 131, the seminormalization of an a.c.c.p. 
domain is an a.c.c.p. (conducive) pseudovaluation domain. Hence, if A is 
an a.c.c.p. domain, A is such that, in the Cartesian square (*), V is a 
discrete valuation domain, Q = M, B = V/M, and D is a field. Thus A is a 
quasilocal Mori domain by [Bl, Corollary 3.51. 

We also observe that the domain A constructed in Example 1.9 is not 
seminormal. Indeed, for example, ( Yf)’ and ( YT)’ are in A, but YT is not 
in A. In fact the seminormalization of A is K + P. 

4. GENERALIZED QUOTIENT RINGS OF SEMI-KRULL DOMAINS 

An intersection of two semi-Krull domains with the same quotient field 
need not be necessarily semi-Krull. To see this, consider the Example 
2.4(a), A = k + Xk[X, Y]. A is not a semi-Krull domain. However, A is 
the intersection of two semi-Krull domains. In fact A = Al n A,, where 
A, = k[X, Y] is a Krull domain and A, = k + Xk( Y)[X],,, is a one-dimen- 
sional Mori domain [Bl], thus a semi-Krull domain by Theorem 2.1. 
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Note that, since A, is Krull, A i is an intersection of DVRs with a finite 
character and then A is an intersection of one-dimensional quasilocal semi- 
Krull domains with a finite character. The next proposition gives a 
sufficient condition for an intersection of this type to be semi-Krull. 

PROPOSITION 4.1. Let {(A j., Pj.); 1 E A} he a family of one-dimensional 
quasilocal domains and let A = n {A;, ; 2 E A} have a finite character. Set 
P>, = P, n A and suppose that P>. $ P& whenever I # u. Then X’(A) = {P; ; 
,I E A ) and A is a semi-Krull domain tf and only tf A j, is a semi-&d1 domain 
for any 3, E A. 

Proof: If P>. $ PL for every pair I, p with A# ~1, then Ai = A ri. for each 
A E A [Pr, Corollary S] and so A = n {A Fn; 1 E A} with a finite character. 
Moreover, X1 (A) = {P; ; i, E A }. Indeed Al = A.., is one-dimensional and 
so P). is an height one prime of A. On the other hand, by Lemma 1.1(b), 
any height one prime of A, being a t-ideal [J, Corollaire 3, p. 311, is 
contained in P; for some 1 E A. Thus, A is semi-Krull if and only if 
every integral ideal of A.,, contains a power of P;Ar,,, that is A.,, = Al is 
semi-Krull for any A E A. 1 

With the notation of Proposition 4.1, we have that the hypothesis that 
PL $ PL, when P>. # PL for A # p, is always satisfied if A is semi-Krull and 
A is a finite set. 

PROPOSITION 4.2. Let {(A;, Pi); i = 1, ..,, n} be a finite family of 
one-dimensional quasilocal domains and let A = n {A,; i = 1, . . . . n}. Set 
Pl = Pin A and suppose that Pi # (0) for i= 1, . . . . n and P( # P,’ whenever 
i # j. Then A is a semi-K&l domain tf and only tf A i is a semi-K&l domain 
for i = 1, . . . . n and P,! $ P,! for i # j. In this case A is semiquasilocal of 
dimension one with maximal ideals Pi, . . . . Ph. 

Proof Since Aric A, for i= 1, . . . . n, then A = 0 {Arzi; i= 1, . . . . n} and 
moreover X’(A) c {Pi; i= 1, . . . . n} [K, Theorem 1101. Hence, if A is semi- 
Krull, A is semiquasilocal of dimension one (Proposition 1.3) and so 
Pi $ P,! for i # j. Thus Apsi = Ai for i= 1, . . . . n by [Pr, Corollary 81 and 
then Ai is semi-Krull. The converse follows from Proposition 4.1. 1 

PROPOSITION 4.3. LetAbeadomain,XcX’(A),andB=n {A,;PEX^) 
with a finite character. Then B is a semi-Krull domain tf and only tf A, is 
a semi-Krull domain for every PE X. In this case X’(B) = {PAr n B, 
PEX}. 

Proof: If PArnBcQAonBfor some P, QEX, then P=PA,nAc 
QAo n A = Q. Thus P = Q and we conclude by Proposition 4.1. [ 
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COROLLARY 4.4. Let A be a semi-Krull domain, X c X’(A), and 
B= f-J {A,; PEX}. Then B is a semi-Krull domain and X’(B) = 
{PA,n B, PEX}. 

Proof. A, is clearly a semi-Krull domain for every PET and the 
intersection n {A p; P E X} has a finite character. Thus we conclude by 
Proposition 4.3. 1 

Remarks 4.5. Let A be a semi-Krull domain. 

(a) By Corollary 4.4, we get that if X, X’ c X’(A), then B= n {A,; 
PEX} and C=n {Ap; PET’} are equal if and only if X=X’. In 
particular, the decomposition A = n {A,; P E X’(A)} is irredundant, that 
1% \ ‘A,; PEX’(A), P#Q}$A, for every QEX’(A). 

(b) As noted in Remark 3.3, we have X’(A)= X u Y where 
X= (PEX’(A); P is t-invertible} and 9/y= X’(A)\X= {QEX’(A); Q is 
strongly divisorial). If PE X, then A, is a DVR and so B = n {A,; P E X} 
is a Krull domain. On the other hand C = fi {A,; Q E g} is a semi-Krull 
domain with no t-invertible height one prime. Indeed if Q’ E X’(C) and 
Q’= QA, n C, with Q E X’(A), then Co, = A, is not a DVR. Also 
A = B n C. Thus for semi-Krull domains we have a “canonical decomposi- 
tion” similar to the one given in [BGl, Theorem 3.31 for Mori domains. 

In what follows Z denotes a multiplicative system of ideals of A and A, 
the generalized quotient ring of A with respect to Z, that is, 
A,=U {(A:J); JEC}. If I is an ideal of A and Z= {I”, n> l}, then 
A, = U {(A :I”); n 3 1) is the Nagata transform of A with respect to I. If 
A is any domain, then every flat overring of A is an intersection of localiza- 
tions of A [Rc, Corollary to Theorem 23 and any intersection of localiza- 
tions of A is a generalized quotient ring of A [HOP, Proposition 4.31. 

As for Krull domains, if A is a semi-Krull domain and X c X’(A), we 
say that B = n {A,; PE X} is a subintersection of A. A subintersection of 
a semi-Krull domain A is a generalized quotient ring of A. Now we prove 
the converse, that is, a generalized quotient ring of a semi-Krull domain A 
is a subintersection of A. Thus by Corollary 4.4 we obtain that generalized 
quotient rings of semi-Krull domains are semi-Krull. 

THEOREM 4.6. Let A be a semi-Cull domain and A, a generalized 
quotient ring of A. Let X be the set of height one prime ideals P of A such 
that P$Jfor any JEC. Then A,=0 (A,; PE%‘} (if X=(zI, we define 
n {A,; PEX}=K). 

Proof Set B=n (A,; PEX} and take XEB. If XEA, then XEA,. 
Otherwise, consider the ideal I= x ~ ‘A n A. Z is contained in just finitely 
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many ideals Q,, . . . . Q,EX’(A) and contains a power of its radical 
(Lemma 1.4). Since XEA,, then I # P for any P E X. Hence Qi contains 
some ideal Ji in C, for i = 1, . . . . n. If J = Jr . . . J,, , then JE Z and I contains 
a power J” of J. Therefore J” c x -‘A, that is, XE (A :J’) and so XE A,. 
Conversely, let x E A, and JE Z be such that xJc A. Then J $ P for any 
PEX. Let yp~ J\P for any PEX. Then xype A and x E A, for any 
PEX. l 

THEOREM 4.7. If A is a semi-Krull domain, then any generalized quotient 
ring A, of A is a semi-Krull domain. Moreover, tfX is the set of height one 
prime ideals P of A such that P $ J for any J E Z‘, then X1( A,) = 
(PA.~A,;PEX~. 

Proof By Theorem 4.6, A, = fi (A,; PE X}. Thus we can use 
Corollary 4.4. 1 

COROLLARY 4.8. Zf A is a semi-Krull domain and I is any ideal of A, then 
the Nagata transform of A with respect to I is a semi-Krull domain. 

COROLLARY 4.9. [M, Proposition 4.81. Zf A is a semi-Krull domain, then 
any flat overring of A is a semi-Krull domain. 

A generalized quotient ring of a semi-Krull domain A is not always flat. 
Indeed, by Theorem 4.6 and [M, Proposition 4.81, A,= n {A,; PE X} is 
flat if and only if QAZ = A, for every prime ideal Q E x’(A)\X. However, 
if A is one-dimensional, then every generalized quotient ring of A is flat 
over A by [M, Proposition 5.7 3. An example of a noetherian Krull domain 
A with a generalized quotient ring which is not flat is given in [F, p. 321. 

With the usual notation, we say that a domain A is a QQR-domain if 
every overring of A is an intersection of quotient rings of A, that A is a 
GQR-domain if every overring of A is a generalized quotient ring of A, and 
finally that A is a QR-domain if every overring of A is a quotient ring of A. 

PROPOSITION 4.10. Let A be a semi-KruN domain and consider the 
following conditions: 

(i) A is a GQR-domain; 

(ii) A is a QQR-domain; 

(iii) Each overring of A is an intersection of localizations of A; 

(iv) Each overring of A is a subintersection of A; 

(v) Each overring of A is flat over A; 

(vi) A is a Prufer domain; 
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(vii) A is a Dedekind domain; 

(viii) Each overring qf A is a Dedekind domain; 

(ix) Each overring qf A satisfies a.c.c.p. 

Then (i) o (ii) o (iii) o (iv) and (v) o (vi) o (vii)- (viii) + (ix). 
Moreover, if A is integrally closed, then all the conditions are equivalent. 

Proof: (iv) * (iii) + (ii) + (i) are trivial and (i) * (iv) by Theorem 4.6. 
(v)~ (vi) by [Rc, Theorem 41. (vi) Z. (vii). A is a Krull domain by 
(ii) + (iii) in Theorem 3.1 and it is well known that a Prufer Krull domain 
is Dedekind. (vii) o (viii) is well known (cf. [ID, p. 1981). (vii) + (vi) and 
(viii) * (ix) are trivial. When A is integrally closed, (ii) o (vi) follows from 
[D, p. 197 and Corollary l] and (ix)* (vi) by [BD, Lemma 3.21. a 

We observe that if (P) is any property such that Dedekind * 
(P) 3 a.c.c.p., like the property of being semi-Krull, Krull, or Mori, then, 
in the integrally closed case, any condition in Proposition 4.10 is equivalent 
to the following: each overring of A satisfies (P). 

PROPOSITION 4.11. Zf A is a semi-K41 domain, then A is a QR-domain 
if and only if A is a Dedekind domain with torsion class group. 

Proof. A QR-domain is always Prufer [D, pp. 197-1981. Hence, if A is 
semi-Krull, then A is Dedekind by (vi) * (vii) in Proposition 4.10. But a 
Dedekind domain is a QR-domain if and only if it has torsion class group 
CD, P. 2001. I 

We recall that a QR-domain which is not noetherian need not have tor- 
sion class group [H]. On the other hand, if A is a Krull domain, then 
every subintersection of A is a ring of quotients if and only if the divisorial 
class group of A is a torsion group [F, Proposition 6.71. We generalize this 
statement to semi-Krull domains with a finite number of strongly divisorial 
height one primes (Theorem 4.14 below). 

PROPOSITION 4.12. Zf A is a semi-K&l domain, then A, = n {A,; 
PGX}, !Zt^cX’(A), is a quotient ring of A fund only ifQ$ U {P; PE%} 
for every prime ideal Q E X’(A)\%. In this case A, = A,, where 
S= A\U {P; PEX}. 

Proof. By Theorem 4.6, AS= n {A,; Q E X’(A) and Q n S= a}. Thus 
A, c A, and, by Remark 4.5, AS = AZ if and only if Q n S # 0, that is, 
Q$U{p;f'~%^),f or any Q E X’(A)\%‘. To finish, it is easy to prove that 
if A,=A, for some multiplicative part T c A, then T c S and so 
A,=A,=A,. 1 
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The following lemma generalizes [MuS, Lemma 4.31. 

LEMMA 4.13. Let A be any domain and Q, , . . . . Qn E t,(A). Then for every 
t-invertible t-ideal I of A there exists x E Q(A) such that xIc A and xl $ Q, 
.for i = 1, . . . . n. 

ProoJ Since I is t-invertible, then IA, is principal for every PE t,(A). 
Let S=A\U (Q;>. The domain B=A,=n {A,;i= 1, . . ..n} is semi- 
quasilocal with maximal ideals Q:= QiAg,n B, i= 1, . . . . n. The ideal IB is 
a t-invertible t-ideal of B [BvZ, Lemma 2.61 and IB,; = IA,, is principal 
for every i = 1, . . . . n. Thus IB is principal [BvZ, Corollary 2.91. Let IB = aB, 
a E Q(A). Since I is u-finite in A, there is s E S such that SIC aA. Then 
a ~ ‘SIC A and moreover a ~ ‘sI $ Qi because a ~ ‘sIAp, = sA,, = A,, , 
i= 1, . . . . n. Thus x=apls. 1 

THEOREM 4.14. Let A be a semi-Krull domain with a finite number of 
strongly divisorial height one primes. Then the following are equivalent: 

(i) Every subintersection of A is a ring of quotients; 

(ii) Q $ U{P; PeX’(A) and PZQ} for every QEX’(A); 

(iii) Q is the radical of a principal integral ideal for every Q E X’(A); 

(iv) C(A) is a torsion group. 

ProoJ: (i)o (ii) by Proposition 4.12. (ii) o (iii) because any ideal mini- 
mal over a principal ideal is a t-ideal [J, Corollaire 3, p. 311, thus it is a 
height one prime by Proposition 1.2. (iii) * (iv). It is enough to prove that 
for any integral t-invertible t-ideal I of A, there exist k > 1 such that (Ik), 
is principal [BvZ, Proposition 3.11. By Lemma 4.13 we can assume that I 
is not contained in any strongly divisorial height one prime of A. Then, by 
Remark 15 I=Pyl)n ... . 9 (-) p(m) = (p;’ . . P;)” for some t-invertible height 
one primes P,, . . . . P, and r, B i. Suppose that Pi = rad(xiA) for i = 1, . . . . n. 
Then xjA = PTA,,n A = Pi”’ for some e,> 1. It follows that (Ik), is 
principal for some k2 1. (iv)+ (iii). Let QEX’(A). There exists XE Q 
such that x is not contained in any strongly divisorial height one prime 
of A different from Q. If Q is the only t-maximal ideal containing x, 
then rad(xA) = Q, and there is nothing to prove. Otherwise, 
xA=(xAQnA)nPyl)n ... nPF”, where Pi is a t-invertible height one 
prime and ri 2 1 for i = 1, . . . . n.SetI=xA,nAandJ=Pyl’n . . . nPp)= 
(Pi’ . . P;)“. We claim that xA = (IJ),. Indeed rad(xA) = rad(In J) = 
rad(IJ) and, since IJc (IJ), c xA, rad(xA) = rad( (IJ),). We have 
IJA, = IA, =xAe and IJA., = JA.,=xA,, for i= 1, . . . . n. It follows that 
xA, = (IJ), A, for every PE X’(A) and thus xA = (IJ), by [AA, Proposi- 
tion 1.41. Since J is t-invertible, by hypothesis (Jk), = yA for some y E A 
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and k 3 1. Thus xkA = (Ik), y and so (Zk), is principal. Since 
rad(Zk) = rad(Z) = Q and (Zk), c Q, then rad(Zk), = Q and we are done. 1 

The equivalences (i) o (ii) o (iii) proved in Theorem 4.14 above hold for 
any semi-Krull domain. In the case of one-dimensional noetherian 
domains, (iii) o (iv) has been proved in [PSh, Remark 2). Note that if A 
is one-dimensional, then every t-invertible t-ideal of A is invertible and so 
C(A) is the Picard group of A [BvZ, Corollary 2.101. 
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