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Summary  Breast  cancer  is  significant  health  problem  diagnosed  mostly  in  women  worldwide.
Therefore,  early  detection  of  breast  cancer  is  performed  with  the  help  of  digital  mammography,
which can  reduce  mortality  rate.  This  paper  presents  wrapper  based  feature  selection  approach
for wavelet  co-occurrence  feature  (WCF)  using  Genetic  Fuzzy  System  (GFS)  in  mammogram
classification  problem.  The  performance  of  GFS  algorithm  is  explained  using  mini-MIAS  database.
WCF features  are  obtained  from  detail  wavelet  coefficients  at  each  level  of  decomposition  of
mammogram  image.  At  first  level  of  decomposition,  18  features  are  applied  to  GFS  algorithm,
which selects  5  features  with  an  average  classification  success  rate  of  39.64%.  Subsequently,  at
second level  it  selects  9  features  from  36  features  and  the  classification  success  rate  is  improved
to 56.75%.  For  third  level,  16  features  are  selected  from  54  features  and  average  success  rate
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is improved  to  64.98%.  Lastly,  at  fourth  level  72  features  are  applied  to  GFS,  which  selects  16
features  and  thereby  increasing  average  success  rate  to  89.47%.  Hence,  GFS  algorithm  is  the
effective  way  of  obtaining  optimal  set  of  feature  in  breast  cancer  diagnosis.
© 2016  Published  by  Elsevier  GmbH.  This  is  an  open  access  article  under  the  CC  BY-NC-ND  license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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reast  cancer  is  the  serious  health  problem  and  mostly
ound  in  women  around  40  ages.  New  cancer  cases  are
stimated  as  among  women  231,840  and  men  2350  cases.
CS  also  estimated  40,730  deaths  due  to  breast  cancer

icle under the CC BY-NC-ND license (http://creativecommons.org/

https://core.ac.uk/display/82762422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.pisc.2016.04.042
http://www.sciencedirect.com/science/journal/22130209
www.elsevier.com/pisc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pisc.2016.04.042&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:minakshee2000@gmail.com
dx.doi.org/10.1016/j.pisc.2016.04.042
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 M.M.  Pawar,  S.N.  Talbar

d
f
w
r
d
2
c
n
s
a
r
e
s
r

t
c
D
p
v
e
c
f
o
a
u
8
a
v
B
s
m

a
l
c
e
f
F
t
a
t
o
o
fi

G
s

T
r
w

P

M
i
2
2
t

Table  1  Details  about  MIAS  dataset.

Various  cases  of
breast  abnormality

Benign  Malignant  Total

Normal  —  —  27
Circumscribed  mass  (CIRC)  19  4  23
Microcalcification  (CALC)  12  13  25
Spiculated  mass  (SPIC)  11  8  19
ill-defined  mass  (MISC)  7  7  14
Asymmetry  (ASYM)  6  9  15
Architectural  distortion  (ARCH)  9  10  19

Total 64  51  142
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into  fuzzy  sets  (Fi) and  is  specified  using  membership  value.
Membership  value  for  each  feature  is  calculated  using  Gauss-
ian  membership  function  as

−0.5((f−mean)/std.dev.)2
48  

uring  the  2015  (American  Cancer  Society,  2015).  There-
ore,  breast  cancer  should  be  detected  in  its  early  stage,
hich  will  reduce  the  number  of  deaths.  Digital  mammog-

aphy  is  clinically  accepted  imaging  modality  worldwide  for
etection  of  breast  cancer  in  its  early  stage  (Eltoukhy  et  al.,
012).  Examination  of  large  volume  of  mammogram  may
ause  extreme  tiredness  as  a  result  of  which  radiologist  may
eglect  some  important  clues.  Researchers  have  demon-
trated  that  10—30%  of  the  visible  cancers  on  mammograms
re  overlooked  and  only  20—30%  of  biopsy  cases  are  actually
esulted  as  malignant  tissues  (Dheeba  et  al.,  2014;  Eltoukhy
t  al.,  2012).  Therefore,  Computer  aided  diagnosis  (CAD)
ystem  in  mammogram  classification  can  work  as  second
eader  for  radiologist.

Usefulness  of  wavelet  and  curvelet  transform  based  fea-
ure  extraction  approach  has  been  studied  for  mammogram
lassification  (Dhahbi  et  al.,  2015;  Beura  et  al.,  2015;
heeba  et  al.,  2014;  Eltoukhy  et  al.,  2012).  Methods  pro-
osed  in  (Eltoukhy  et  al.,  2012)  are  based  on  signature
ector  extracted  from  biggest  wavelet  coefficients.  How-
ver,  size  of  signature  vector  is  large  and  needs  more
omputations.  Therefore,  it  needs  to  focus  on  reduced  set  of
eatures.  In  view,  Genetic  algorithm  was  used  for  selection
f  most  relevant  features  (Ramos  et  al.,  2012),  presenting
n  AUC  =  0.9.  Only  8-selected  curvelet  moments  have  been
sed  in  (Dhahbi  et  al.,  2015)  for  malignancy  detection  and
1%  classification  accuracy  is  obtained.  Beura  et  al.  (2015)
pplied  t-test  and  F-test  on  feature  matrix  to  obtain  rele-
ant  features.  Aforementioned  studies  (Dhahbi  et  al.,  2015;
eura  et  al.,  2015;  Ramos  et  al.,  2012)  have  been  demon-
trated  only  for  classification  of  breast  tissues  as  benign  or
alignant.
Fuzzy  logic  is  better  for  mammogram  analysis  (Vadive

nd  Surendiran,  2013)  and  its  computational  complexity  is
ess  as  compare  to  other  tools  (Pawar,  2006).  Therefore,
urrent  mammogram  classification  problem  uses  feature
xtraction  based  on  wavelet  co-occurrence  features  (WCF),
eature  selection  for  breast  abnormality  using  Genetic
uzzy  System.  The  rest  of  paper  is  described  as  sec-
ion  ‘‘Genetic  Fuzzy  system  (GFS)  based  feature  selection
lgorithm’’  explains  Genetic  Fuzzy  System  (GFS)  based  fea-
ure  selection  algorithm;  section  ‘‘Performance  analysis
f  Genetic  Fuzzy  System’’  presents  performance  analysis
f  Genetic  Fuzzy  System  whereas  conclusion  is  mentioned
nally.

enetic Fuzzy System (GFS) based feature
election algorithm

he  proposed  system  is  developed  using  preprocessing  as
egion  of  interest  (ROI)  selection,  feature  extraction  from
avelet  coefficients  and  feature  selection  with  GFS  system.

reprocessing
ammogram  images  from  MIAS  data  set  are  used  for  exper-
mentation  work  as  the  previous  studies  (Dhahbi  et  al.,
015;  Beura  et  al.,  2015;  Dheeba  et  al.,  2014;  Ramos  et  al.,
012;  Eltoukhy  et  al.,  2012)  have  used  it  for  experimenta-
ion  purpose.  The  details  about  MIAS  dataset  are  given  in
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able  1. Original  mammogram  image  of  1024  ×  1024  pixels
s  cropped  into  128  ×  128  pixels  image  called  as  ROI  image,
hich  reduces  background  noise.

eature  extraction

iscrete  wavelet  transform  is  used  to  decompose  mammo-
ram  image  using  db8  wavelet  function.  Wavelet  coefficients
rom  detail  subbands  (horizontal,  vertical  and  diagonal)  are
sed  to  form  GLCM  matrix  (G(i,j  | d,  �)  where  d  =  1  and

 =  0◦).  Texture  features  viz.  energy,  cluster  prominence,
luster  shade,  sum  variance,  sum  average  and  entropy  are
alculated  from  GLCM  matrix  and  are  denoted  as  wavelet
o-occurrence  features  (WCF).  Each  wavelet  subband  gives

 features  and  each  level  gives  18  features.  Therefore,  total
2  features  are  obtained  from  four  level  of  mammogram
ecomposition.

enetic  Fuzzy  System  for  feature  selection

FS  is  constructed  by  combining  fuzzy  classifier  with  genetic
lgorithm  as  shown  in  Fig.  1.  This  section  provides  brief
escription  about  fuzzy  classifier  and  formulation  optimiza-
ion  problem  for  GFS  so  as  to  perform  feature  selection  as
ell  as  maximization  of  classification  performance.

uzzy  classifier
uzzy  classifier  is  developed  using  four  units  viz.  Fuzzi-
cation,  rules,  inference  engine  and  defuzzification.
uzzification  unit  converts  each  crisp  input  (WCF)  features
(f)  =  e (1)

here,  f  =  {f1,  f2, . .  ., fm} T ∈  Rm represents  m  input  fea-
ures,  mean  and  std.  dev.  are  computed  from  features  of
amples  each  breast  abnormality.
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Figure  1  Sc

Rule  development  and  Inference  engine
Fuzzy  rule  for  each  abnormality  is  developed  using  fuzzy  sets
(Fim).  Therefore,  the  ith  rule  will  be  viewed  as

Ri :  IF  f1 is  Fi1 AND  f2 is  Fi2 AND.  .  .fm is  Fim THEN  y  =  Ci

i  =  1,  2,  .  .  ., L
(2)

where  m  is  number  of  WCF  features  and  L  represents  number
of  rules  or  number  of  output  classes  (C  =  {C1,  C2,  .  .  ., CL} T ∈
R)  of  fuzzy  classifier.

Defuzzification

Final  step  of  fuzzy  classifier  is  defuzzification,  which  uses
maximum  matching  method.  Degree  of  matching  of  ith  rule
with  kth  pattern  can  be  found  as  Di

k = ∏m

p=1�pi,  where  �pi

represents  membership  value  of  pth  WCF  feature  in  ith  rule

F
F
fi

Figure  2  Plot  for  fitness  value  versus  number  of  generation  using  
atic  for  GFS.

f  fuzzy  region.  Therefore,  the  maximum  matching  of  L  rules
ive  output  class  label  C1 as

max
k (Ci) = maxiD

i
k (Ci) (3)

The  classification  accuracy  (CA)  is  calculated  after
efuzzification  process  as

A  = NC

NT

∗  100  (4)

here  NC denotes  number  of  correctly  classified  samples
y  =  Ci)  and  NT as  the  total  samples.
ormulation  of  optimization  problem  for  GFS
or  feature  selection,  Genetic  algorithm  is  used  to  reduce
tness  value  ˇ  (classification  error  ˇ)  in  turn  maximizes  the

GFS  at  (a)  Level  1,  (b)  Level  2,  (c)  Level  3  and  (d)  Level  4.
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Table  2  Number  of  feature  selected  at  each  level  of
decomposition.

Name  of  WCF
Feature

Number  of  features  selected  at  each
level  of  decomposition

Level  1  Level  2  Level  3  Level  4

Energy  01  01  01  01
Cluster

prominence
02 05  05  01

Cluster shade  01  01  04  04
Sum variance  —  01  02  02
Sum average —  —  03  03
Entropy  01  01  01  05
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Figure  3  Classification  accuracy  for  Level  1,  Level  2,  Level  3
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11036—11047.
Total 05  09  16  16

lassification  accuracy  (CA).  Thus,  the  optimization  problem
s  defined  as

inimize

L∑

i=1

ˇ(i)

ubject  to  :  ˛il ∈  {0  1}

il =  1,  ˛il =  0;

il =  �il, ˛il =  1  for  l  =  1,  2,  .  .  ., m  (5)

here,  L  is  the  number  of  rules  and  �il membership  value
f  ith  rule  for  lth  in  fuzzy  region.

erformance analysis of Genetic Fuzzy System

he  performance  of  GFS  is  analysed  at  each  level  of  decom-
osition  using  WCF  features  as  shown  in  Fig.  2.  At  Level1,
5  features  are  selected  from  18  features  with  39.64%  clas-
ification  accuracy.  Subsequently,  36  features  from  level1
nd  level2  are  applied  to  GFS,  which  selects  9  features  and
lassification  accuracy  is  improved  to  56.75%.  Further,  54
eatures  of  level1,  2  &  3  are  used  for  GFS  and  16  features  are
elected  with  classification  accuracy  of  64.98%.  Finally,  72
eatures  from  level1  to  level4  are  used  out  of  which  16  dis-
riminative  features  are  selected  and  classification  accuracy
s  improved  to  89.47%.  Table  2  describes  number  of  fea-
ure  selected  at  each  level  of  decomposition.  It  is  observed
hat  levels  3  and  4  select  same  number  of  features  but  its
istribution  is  different.  Therefore,  we  have  obtained  differ-
nt  classification  performance.  Classification  accuracy  from
evel1  to  level4  is  represented  in  Fig.  3  and  it  is  also  noted
hat  the  classification  accuracy  is  improved  for  each  type

f  abnormality  in  level4,  for  normal  100%,  circumscribed
ass  80%,  calcification  as  92.59%,  spiculated  mass  as  94.73%,

ll-defined  mass  93.33%,  architectural  distortion  78.94%  and
symmetry  86.67%.

V

nd Level4.

onclusion

he  proposed  CAD  system  uses  WCF  features  from  four  level
f  decomposition  to  select  optimal  feature  set  and  maximize
lassification  accuracy  using  GFS.  The  mammogram  images
re  converted  into  corresponding  wavelet  coefficients  using
b8  wavelet  function.  WCF  features  were  computed  from
avelet  coefficients  of  detail  sub-bands  from  mammogram
ecomposition.  Performance  of  GFS  system  is  demonstrated
sing  mammograms  from  MIAS  database.  The  highest  clas-
ification  accuracy  of  89.47%  is  achieved  with  only  16
iscriminative  features  from  four  level  of  mammogram
ecomposition.  Hence,  it  is  advantageous  to  use  GFS  system
or  mammogram  classification.
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