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Closed ProductFormulas for Certain R-polynomials

MARIO MARIETTI

R-polynomials get their importandeom the fact that they are used to define and compute the
Kazhdan—Lusztig polynomials, which have applications in several fields. Here we give a closed prod-
uct formula for certairR-polynomials valid for every Coxeter group. This result implies a conjecture
due to F. Brenti about the symmetric groups.
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1. INTRODUCTION

In their main work of 1979 [4] Kazhdan and Lusztig introduced a family of polynomials,
indexed bypairs of elements in a Coxeter group, which soon became well known thanks
to their applications in different contexts such as in the geometry of Schubert varieties and
in representation theory. In order to prove the existence of these polynomials, known as the
Kazhdan-Lusztig polynomials, another family of polynomials was definedRtpelyno-
mials, (see, for example, [3, Section 7.5], or [1]), which are important because their knowledge
permits the calculation dhe Kazhdan—Lusztig polynomials.

Recently many efforts have been made in trying to calculate the Kazhdan—Lusztig polyno-
mials and, as a consequence, in the attempt to give explicit closed formulas for the
R-polynomials. It is not easy even just to conjecture such formulas. One of these conjec-
tures, which appeared in [2], dealt with tiepolynomials of symmetric groupsyhich are
the Coxeter groups that have the largest number of applications. After having proved this con-
jecture, we realized that a more general result holds for every Coxeter group. Its proof follows
the steps of that of the original conjecture except that it needs a further lemma, which is almost
straightforward for the symmetric groups and whose proof uses Tits’ Word Theorem.

The paper is organized as follows. In Section 2 we recall some definitions and results that
are essential for theest of this paper. In Section 3 we prove the main theorem and the lemma
that is necessarfpr it. In Section 4, as a consequence of the proof of the theorem, we derive
an algorithm to computéhe exponent that appears in it and then we derive the conjecture
already mentioned as a consequence of our result.

2. PRELIMINARIES

In this section we collect some definitions and results that will be used in the rest of this

work. We letp & {1,2,3,...}, N ®p U{0}, Z be the set of integers; fa € N we let

[a] def {1,2,...,a} (where[0] def &).

We follow [1] for general Coxeter groups notation and terminology. In particular, given a

Coxeter systeniW, S) andu € W, we denote by (u) the length ofu in W, with respect to

S, and we letDy (u) def {se S: I(su) < I(w}, Dr(u) def {se S: s < I(w}, while

T {usu:se S ue W). We denote by the identity ofW. We will always assume that
W is partially ordered by (stronddruhat order. Recall (see [1, 3]) that< v means that there
existr € N andty,...,t; € T suchthat,...tyu = v andl(tj...tyu) > I(ti_1...t1u) for
i =1,...,r.Itiswellknown thatu < v if and only if for every reduced expressionwthere
exists a reduced expressionwivhich is a subword of that reduced expression.dbiven a

setG we let S(G) be the set of all bijections : G — G, and$, def S([n]). It is well known
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that(%, S), WhereSdzef{(l, 2),(2,3),...,(n—1,n)}, is a Coxeter system, théit= {(, j) :

i < j < n}and that every transpositiain, j) admitsss1...Sj_2Sj-1Sj—2...5415 as a

reduced expression, Whe:i;,edzef (k, k + 1). In introducing theR-polynomials, among all the

equivalent definitions, we choose the one that is best suited for our purposes. So we define
them through the following result:

THEOREM2.1. Let (W, S) be a Coxeter systerithen there is a unique family of polyno-
mials{Ry, () }u.vew S Z[q] satisfying the following conditions:

() Ryw(@) =0ifu £ v;
(i) Ryu(o) =1;
(iii) if s € DL (v) then

Rsusv (), if se DL (u),

Run@ = {quu,s,xq) +(@ = DRus(@, ifs ¢ DLW,

This theorem—definition will be useful because it will enable us to compute{helynomials

by induction. Note that a right version of formula (iii) is also true. The following two results
give, respectively, the definition of tHe-polynomials and a tool to compute them analogous
to that for theR-polynomials. For their proofs we refer to [1].

THEOREM2.2. Let (W, S) be a Coxeter systerithen there is a unique family of polyno-
mials{Ry,, () }u,vew S N[q] such that:

l(w)—l(u) ~

Rus(@) =0 2 Ryy(qZ —q2).

COROLLARY 2.3. Let (W, S) be a Coxetesystem, uv € W u < v. Then F?U,v(q) is a
monic polynomial of degreéd) — | (u). Furthermore if s€ D (v) then

5 _ | Raus@. ifs € DL(u),
Ruv (@) {RSU,SU<q)+qRu,SU<q), ifs ¢ DL ().

Obviously, again, there is also a right version of Corollary 2.3.
Now we gie a result due to J. Tits that will be useful for Lemma 3.1. Giggest € Slet
As.g 4f sdsg ... wherem(s, §') is the order (if< oo) of the producss. Two expressions

m(s,s')letters
are said to be linked by a braid move if it is possible to obtain the first from the second by

changing a factoss ¢ with a factoray s.

THEOREM 2.4 (TITS' WORD THEOREM). Let u € W. Then every two reduced expres-
sions of uare linked by a finite sequence of braid moves.

We refer to [1, 3] for more details concerning general Coxeter group theory.

3. THE MAIN RESULT

In this section we give the proof of the main theorem of this paper. We first need the follow-
ing:
LEMMA 3.1. Given aCoxeter systerf\WV, S), letstj € Ss#t Vi € [n]andl(t;...ty) =

n. Furthermore letjt. . . tj, be a reduced subword of.t .ty such that st...t, < t1...tss.
Then s commutes with every.t. ., tj,.
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PROOF Beings # tj Vi € [n], stj,. ..t andt;...t,s are reduced expressions. Then there
exists a reduced subwotg. . . tj, ., of t;...tys such that

G-ty =Sty Gy,

First of all we observe thadf, , must bes becauses must appear irj,...tj, ., which is a
subword ofty. .. tys ands # tj Vi € [n]. By Tits’ Word Theorenst, .. . tj, andtj,...tj,sare
linked by a (finite) sequence of braid moves. The analysis of this construction will give us the
assertion.

Let us start fromst, . . . tj,. We do all the braid moves until we encounter a braid move that
involvess. There must be such a move in the sequence because at tisengihdbe in the
rightmost place. So we reach an expression of the following type:

and the next braid move involvesind (necessarlly) Bemgt # s, it must beast, = sq,

namelys commutes with;. . i;- Sowe do that move and we Obt&,l{El‘,
At the mth step we reach an expression of the following type:

| TP (RS U

with the knowledge that commutes with everyy,, ...t _,. As before, we do all the follow-
ing braid moves of the sequence till we encounter a move that invelVegain there must be
such a move in the sequence because at the @rillibe in the rightmost place. So we reach
an expression of the following type:

ti/l"'ti;nf Sﬁrfn...tir/].

If the following braid move involves andt; Lo we do it and return to thém — 1)th step. If it
involvess andt;, , sinces # t/ , it must beast, = s§, , namelys commutes with;, . We
do the move obtaining
'[i/l. . 'tii’ﬂsﬁ;m-l' . 'tiﬂ

and we pass at th@n + 1)th step, with the knowledge thattcommutes not only with every
LTRREER 18 but also witht;; .

At the end of the finite sequence of braid moves we oligin. tj,s and we have demon-
strated thas commutes with every;,, ..., tj,, that is with every,, .. ., ti,. 0

Now we are able to prove the main result of this paper.

THEOREM3.2. Given a Coxeter systefiV, S), letVi e [n]s € Ss§ # sj ifi # j and
Uu,v € W suchthatu< v < s1...S-15%-1. . . St Where this last expression is reduced.
Then there exists a N such that

Riv(@ =(@-13%0*-q+1) 2

PROOF We proceed by induction am

The resulis clearforn < 1.

Now we fix a reduced expression ofthat is a subword o§;...s-15%-1...51 and a
reduced expression ofthat is a subword of this reduced expressiom.dfor simplicity we
will refer to these two fixed expressions@andu, respectively.

Let us focusour attention on the number and the position of the occurrencgs af v and
u. We have to consider the following cases, in whiglmeans thas; has beemmitted and in
which we do not bother abost, i # 1.

lw-lw-a I(U) —a
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Then by Theorem 2.1 we g&, ,(qQ) = Rsu,501(Q) and we conclude bynduction since
SUSSV =9...5-15%-1--- .

— ~ ~ ~ ~ 2~

b v=SAl...A...A...Sq...A...A...SAl
(b2) {UZSl ......... Sh.. S1.

Then by Theorem 2.1 we g&y,,(0) = qRsus0 + (@ — 1)Ry s,0(q) and we conclude by
induction sincesiu £ spv andu < S1v < ... SH-19S-1. ...

1=%..0. .. s

(c) u=s...".. ... S.. s

Like (b1) using the right version of Theorem 2.1.
v—§1 ...... A...Sn...A...A...Sl

(CZ) U=§1 ......... Sn...A...A...SAj_

Like (b2) using the right version of Theorem 2.1.

d 2231::5“::31

(ch) U=s1...... ... Sy.. S S1.

... 5-1$9S-1-..- 2.
(d2)

Ru,v (@) = Rsu,50(0) = qRsus;, 5105, (@) + (@ — 1)Rsu,5,0s, @nd we conclude by induction
sinces;us; f S1vS, SHIU <181 < ... $55-159S%-1...- .

— ~ ~ ~ ~

=S].. i S S
(d3) {U 1 o S R 1

u=s...5.. ... Sh.. S1.
Like (do).

1=5...... ... ..n
(da) {U:31..f..f...sn..f..f...sAl.

We have to distinguish two subcases:
1) siu £ v
Then we get

Ry, v (@) = qRsyu,50(@) + (0 — DRy spv = (0 — DG Rusy 505 (@) + (0 — DRy 5108 ]
and we conclude by induction sinog £ sjvs1,U < 1081 < ... SH-1$9S-1- .- -
(2) s1u < sv.

Then we get

Ruv(q) =q Rslu,slv(q) + (q - 1)Ru,slv
= 0 Rsyus;, 5105 (@) + (4 — D[ Rusy, 5108 (@) + (4 — DRy 5108, ()]
= (9 — 4+ DRy s (@)

being, by Lemma 3.1y = sjus andus; £ sjvs. Sowe conclude by induction since
U<S91 <...5-1$9%N-1..-. O
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4, CONSEQUENCES

In this sectiorwe derive some consequences from our main result. First we give an algorithm
to calculate the exponeatthat appears in the formula fét, ,(q) and finally we present the
conjecture appearing in [2] as a corollary of Theorem 3.2.

Since the algorithnreflects the induction in Theorem 3.2, it depends on the particular
reduced expressionsandu chosen forv andu. In orderto simplify the notation, for every
reduced expressionand for everys € S, we definex (s) as the number of factossappearing
inX.

THEOREM4.1. Fix areduced expressianof v thatis a subword ofss. . sh—_1S$S-1...S1
and a reduced expressianof u that is a subword af. We have the following formula for the
exponent af TheorenB.2:

n
a=) &
i=1

where ]
0, if v(s)=2,u(s) =0and s commutes

with everys; j > i such thatti(sj) # 0

v(s) —U(s), otherwise.

PROOF We calculatea guided bythe proofof Theorem 3.2.

In everycase, except in the subcase (2) of casg, (ithe R-polynomial indexed by and
v is equal to theR-polynomial indexed by the elements we obtain frarandv by deleting
all the factorss;, multiplied by (q — 1)’®Y=76D, Subcase (2) ofase (d) happens whem
(s1) = 2,U (s1) = 0 andsiu < spv, namely,by Lemma 3.1, whew (s1) = 2,U (s1) = 0
ands; commutes with esrysj j > 1 such thati (sj) # 0. There theR-polynomial indexd
by u andv is equal to theR-polynomial indexed by the elements we obtain frarandv by
deleting the factors; multiplied by (g% — g+ 1). So we have no contribution to the exponent
of (q —1).

By iterating this procedure, the result follows. |

Note that in the algorithm given by Theorem 4.1, for the computation ogithét does not
matterunder which case we view a problem if it can be viewed under more than one case.

EXAMPLE. Let us calculate theR-polynomial indexedby u = $59s551 and v =
S1SS3SSeu3Ss1 in Sy, We immediately find thag; = 0,a; = 1, a3 = 0 (giving a
factorqg? —q+1),a4 = 2,a5 = 0,85 = 1,a = Ziezlai = 4 and thereforeR, ,(q) =
@-D*q*—q+1).

Now we give the proof of Conjecture 7.7 in [2] written in the equivalent way in terms of the
R-polynomials.

COROLLARY 4.2. Letu, v € §, be suchthatu < v < (i, j) forsomejj € [n],i # j.
Then there exists a N such that

l(v)—l(u)—a

Riv@=(@-1%0*>-q+1) 2 .

PROOEF It is straightforward from Theorem 3.2. In fact the transpositignj) admits
SS41...S)—2Sj—1Sj—2...S+1S as areduced expression, whege= (k, k + 1). ]
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5. REMARKS

We would like to mention the following equivalence that deals wRipolynomials of the
type studied in this paper. This result is valid for every Coxeter gkbiand for every element
weW.

THEOREM5.1. Given a Coxeter systethV, S), letw € W. Therthe following are equiv-
alent:
() a(u,sv) =a(su,sv) +1forallu,v I<)u|; ?nt(j se S such that .k su< sv < v;
(v (u)—a(u,v)

(i) Ru(q) =(q—212UY (@2 —-q+1) forallu < v < w;
where for x, y € W x <y, (q — 1)3%¥) is the largest power ofg — 1) that divides R y(q).

PrROOF Let us prove that (i) implies (ii) by induction dr(v). Lets € D_(v). If s €
D (u) orif s ¢ D (u) butsu £ sv then we conclude by induction. Otherwifg ,(q) =
qRsusu(Q) + (g — 1)Ry s (q) that, by inductive assumption, is equakbfiag — 1)25%5?) (g2 —

q l)l (sv)—| I(su) a(su,sv) ]+ (q 1)[(q 1)a(u sv) (q 1)|(SL) I(u) a(u, sv)] By hypothes|sth|s

I(su) I(su) a(SU.SL)

polynomial is equal taq — 1)24$V) (g% — q + 1) [a+ (g —1)72.
Conversely fix(if there are)s € Ssuch thatu < su < sv < v. ThenRy,(q) =

T(sv)—I (su)—a(su,sv)

ARsusn (@) +(@—DRysy(@) = al(q - D" =g+ ) T (g - DI@ -
DA (g2 —q+1) " F ] BUt Ry (@) = (@ - DA (@2 —q+ D) 2 and
an easy argunm of divisibility shows that this is possible onlyaf(u, sv) = a(su, sv) + 1.
O
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