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Abstract—=Some new results are obtained for the bounded and monotone properties of solutions
of second-order quasi-linear forced difference equations

A(pn—1(Ayn—1)%) = Qnyg + Tn, n > ng,

where ng € N ={0,1,2,3,...}, {pn};’f:noﬁl is a positive sequence, {qn};‘f’:no is a nonnegative real
sequence with g, £ 0, {rn}32, o is areal sequence, and « and 3 are quotients of odd positive integers.
Some errors in [1] are pointed out and addressed. Examples are given to illustrate the advantages of
the new results. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Asymptotic properties have been extensively investigated for the solutions of second-order quasi-
linear difference equations in recent years. For example, see [2-9] and the references cited therein.
In the present paper, we consider the following second-order quasi-linear difference equation

A (pn-—l(Ayn—l)a) = Qnyg + T, n > N, (1)

where ng € N = {0,1,2,3,...}, A denotes the forward difference operator defined by Ay, =
Yntl = Uns {PnYoen, 1 i a positive sequence, {gn}5e,, is a nonnegative real sequence with
Qn Z 0, {Tn}ny, is a real sequence, and o and § are quotients of positive odd integers.
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By a solution of equation (1), we mean a real sequence {y,} satisfying equation (1) for n > no.
We consider only solutions that are nontrivial for all large n. A solution {y,} of equation (1)
is bounded if there exists an M > 0 such that |y,| < M for all n > ng. A solution {yn}
of equation (1) is oscillatory if the terms {y,} are neither eventually positive nor eventually
negative and nonoscillatory otherwise. A solution {y,} of equation (1) is said to be weakly
oscillatory if {yn} is nonoscillatory whereas {Ay,} oscillates. A solution {yn} of equation (1)
is said to be of nonlinear limit-cycle type if > oo y1*# < co and of nonlinear limit-point type
otherwise, that is, 3 oo | Y1t = co.

Equation (1), especially when r, = 0 and & = 1, has been extensively studied. For example,
see [2-9] and the references cited therein. Recently, Thandapani and Ravi also considered the
bounded and monotone properties of solutions of equation (1) in [1]. They defined two sets of
nonoscillatory solutions of equation (1) in [1] as follows:

A:={{yn} : there exists an integer n € N such that y,Ay, > 0 for n > N},
B :={{yn} : there exists an integer n € N such that y,Ay, < 0 for n > N}.

Mainly, they obtained the following results (for the sake of readers, we extract them from the
original).

ProprosiTION 1. Let r, > 0 or < 0 for all large n. Then, every solution of equation (1) is
nonoscillatory.

PropPosITION 2. Let rn, > 0 for all large n and let {y,} be any solution of equation (1). Then,

{yn} either belongs to Class A or belongs to Class B.

REMARK 1. Propositions 1 and 2 include Lemmas 1 and 2 of [10], Theorem 1 of [11], Proposi-
tions 1 and 2 of [12], Lemma 3.1 and Corollary 3.1 of [2], as special cases.

THEOREM 1. Letr, > 0 for all large n. Then, every (Class A) solution of equation (1) is bounded

if and only if
1/a

- HQk‘{""'k
5 S

n=1 Lk=1

REMARK 2. Theorem 1 generalizes Theorem 2 of [11] and Theorem 4 of [10].

THEOREM 2. Assume that p, =1 for all largen. If } o gn < 00 and Y o ; T = 00, then all
solutions of equation (1) are unbounded.

THEOREM 4. Let r, > 0 for all large n. If $°°° , (1/p¥/®) = oo, then any Class B solution {y,}

of equation (1) satisfles ity o0 pn(Ayr)® = 0.

REMARK 4. Under the assumption of Theorem 4, it is not difficult to see that Y oo ; (gn+75) < 00
is a necessary condition for a Class B solution of equation (1) to converge to a nonzero limit as
n — 00.

THEOREM 5. In addition to the hypotheses of Theorem 4, assume that
0o 00 /o
() -
n=1 \t=n+1 Pn

Then, any Class B solution {y,} of equation (1) satisfies lim,_oc Yn = 0.

THEOREM 6. Let vy, > 0 for all large n. If {y,} is a nonlinear limit-circle solution of equation (1),

then y, — 0 as n — oo and y,Ay, < 0 for all Jarge n.

Here, we would like to point out some errors in the above propositions except for Proposition 1,
some in the conclusions and some in the proofs. First, we point out there is a mistake in
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Proposition 2, which results in a series of errors contained in [1]. We illustrate the mistakes with
the following counterexamples.

COUNTEREXAMPLE 1. Consider the difference equation of the form
A(Ayp-1) =4yn +8[1+ (-1)""], n>1 (C1)

Clearly, 7n = 8[1 + (—1)"*!] > 0 for all n > 1. We find that y, = =2+ (-1)", 2 > 0, is a
solution of equation (Cy1). But {y,} ¢ AU B because y,, < 0 for n > 0 whereas Ay, = 2(—1)"+!
is oscillatory.

COUNTEREXAMPLE 2. Consider the difference equation
A(n(n — 1D)Ay,—1) = 4n’y, +8n [1 + (—1)”“] , n > 2. (Cq)

Obviously, 7, = 8n[1+(—1)""1] > 0 for alln > 2. One can easily verify that y,, = [~2-+(~1)"]/n,
n > 1, is a solution of equation (Cy) whereas {y,} ¢ AU B because

(2n + 1)(=1)"*+! +2

Ayn = n{n+1)

oscillates.

In fact, the proof of Proposition 2 in [1] holds only for eventually positive solutions of equa-
tion (1) and it is invalid for eventually negative solutions of equation (1). From the two counterex-
amples shown above, it follows that it is necessary to supplement the classes of nonoscillatory
solutions of equation (1) with the following Class C

C:={{yn}: {yn} is eventually weakly oscillatory}.

Secondly, we present the following counterexamples showing that Theorem 1 is incorrect.

COUNTEREXAMPLE 3. Consider the following difference equation
A ((4n3 +n+1) (Ayn_1)1/5) =(12n+18)y, +6n—5,  n>1. (Cs)

Using the notation of equation (1), we have r, =6n—5>0foralln > 1, p,—1 =4nd +n+1,
a=1/5, ¢, =12n+ 18, n > 1. By simple calculation, we see that

_i on? +o2m  \* _
B dn+ 1) +n+2 ’

n=1

1/a

Z[qum

n=1 Lk=1

which says that the sufficient conditions in Theorem 1 are satisfied. We can easily verify that
Yp = —n, n > 0, is a Class A solution of equation (Cj), but ¥, is obviously unbounded.

COUNTEREXAMPLE 4. Consider the following difference equation
A ((n3 + 1)(Ayn_1)1/3> =0Bn+2)yn+n+1, n>1. (Cy)

Here, r, = n+1>0foraln>1,p,oy =n3+1, a =1/3, g, = 3n+ 2. By elementary
calculation, we have that

1/

i 2n2 + 5n 3<oo
— (n+1)3+1 ’

i [iQk;‘Tk

n=1 k=1 n
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which indicates that the sufficient conditions in Theorem 1 are satisfied. We find that y, = n,
n > 0, is a solution of equation (Cy) with {y,} € A. However, y, is evidently unbounded.

Because of Proposition 2 and Theorem 1 being wrong, Remarks 1 and 2 are also incorrect. In
Section 2, we will state some new results for the bounded and monotone properties of solutions
for equation (1).

Thirdly, the conclusion of Theorem 2 is true while there are two evident errors in the proof of
Theorem 2 in [1]. For the sake of readers, we restate their proof in Appendix A.

One error is that because Y, | 7, = 0o cannot ensure that r,, > 0 for all large n, it is incorrect

to use Proposition 1 in the beginning of the proof. We can demonstrate this with the following
counterexample.

COUNTEREXAMPLE 5. Consider the sequence {r,} with

l, n odd,

=4 " 1 n>1. (Cs)

——5, T even,
n

Obviously, one cannot find an Ny € N such that r, > 0 for all n > Ny while Z;’o___l Ty = 00.
The other error is that Proposition 2 cannot ensure that Ay, is eventually of one sign. Coun-
terexamples 1 and 2 make evident that Ay, is not eventually of one sign.
The following example also displays a limitation of Theorem 2.

ExaMPLE 1. Consider the difference equation
A(Ayn-1) =2y/* +4n, n2>1 (E1)

Since g, = 2 implies that Y .. ; ¢, = oo, Theorem 2 is not definite in answering whether all
solutions of equation (E;) are unbounded or not.

In the sequel we will give a correct proof of Theorem 2 and derive some new results.

We think that the method of the proof of Theorem 4 in [1] {see Appendix B) is suitable only for
the case where {y,} is eventually positive and it is invalid for the case of {y,} being eventually
negative. We will state a new result for the proposition in Section 2.

We now manifest the incorrectness of Remark 4 and Theorem 5 using the following counterex-
ample.

COUNTEREXAMPLE 6. Consider the following difference equation
in—1
A((n+1)Ayn—1) = 4yn +4 + m, n2>1, (Ce)

where r, > 0 foralln > 1, p,1 =n+1, a =1, g, = 4. Clearly, Z:’:l(l/pya) = oo and

Yo (X te 1 (@t/pn))t® = oo. So, all conditions of Theorems 4 and 5 are satisfied; but we find
that y, = -1 —1/(n+ 1), n > 0, is a Class B solution of equation (Cg). Nevertheless, we have
limp oo Yn=—1#0and 3 oo (gn +7n) = o0.

Theorem 6 is also incorrect. The following counterexample can show this.

COUNTEREXAMPLE 7. Consider the difference equation of the form
A(n{n —1)Ayn_1) = 6n(n + 3)y, + 12n + 36 + (10m + 18)(~1)"*1, n> 2. (C7)

Clearly, 7, = 12n + 36 + (10n + 18)(=1)"*! > 0 for all n > 2 and B = 1. We find that
Yn = (—2+ (=1)")/n, n > 1, is a nonlinear limit-circle solution of equation (C7). Nevertheless,
there does not exist an Ny € N such that y, Ay, < 0 for n > Ny because y, < 0 whereas

2n + 1)(=1)"* + 2

(
Ayn = n(n+ 1)

is oscillatory for n > 1.
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All these examples above demonstrate that it is worth doing further investigations for equa-
tion (1). To the authors’ knowledge, however, there are not yet any results to correct the errors.
The motivation of this note is to continue the study and to present some new results for the
solutions of equation (1), mainly, the bounded and monotone properties of solutions, the exis-
tence of Class A solutions, and the discriminating method of nonlinear limit-point solutions. Qur
results can easily solve the above problems. Some examples are also presented to illustrate the
advantages of the new results.

Throughout this paper, we use the convention

Zyn =0, whenever j <i— 1.

2. MAIN RESULTS

2.1. Bounded and Monotone Properties of Solutions
First, we revise Proposition 2 to derive the following result.

THEOREM 2.1.1. Let r, > 0 (< 0) for all large n and let {y,} be any solution of equation (1).
Then, {y,} e AUBUC.

ProoF. Since r, > 0 (< 0) for all large n, by Proposition 1, y,, is nonoscillatory. Thus, there is
an my 2> ng such that either

Un >0, for n > ny, (2)

or
Yn <0, for n > ny. (3)

If Ay, oscillates, then {y,} € C. Otherwise, there is an ny > ng such that either

Ay, > 0, for n > no, (4)
or

Ay, <0, for n > no. (5)

If (2) and (4) or (3) and (5) hold, then {y,} € A. If (2) and (5) or (3) and (4) are valid, then
{yn} € B. So, {y,} e AUBUC.

Next, we give a correct proof for Theorem 2 of [1].
THEOREM 2.1.2. (See Theorem 2 in [1].) Assume that p, =1 for all large n. If Y oo ;g < ©
and Y oo | T = 00, then all solutions of equation (1) are unbounded.

PROOF. Let {yn} be a bounded solution of equation (1). Then, there exists an M > 0 such that
lyn] € M for n > ng. Summing equation (1) from ng + 1 to n gives

(Ayn)a' Ayno)a Z Qkyk+ Z Tk

k=ngo+1 k=np+1
n n
>(Ayn0)a_Mﬁ Z qr + Z T — 00, as n — oo,
k=ng+1 k=ng+1

which, in turn, implies that lim,_.. y» = 00, a contradiction.

Finally, we state two new results.
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THEOREM 2.1.3. Assume that for any given k € R, l > 0 and for some kg € N,

n Ve
k+ Z(Ts—le)}} = 00.

Dn oho

n=~ko

Then, all solutions of equation (1) are unbounded.
ProoOF. Suppose, there exists a sequence {y,, } which is a bounded solution of equation (1). Then,

there are a positive constant M and an ny € N such that |y,| < M for n > n;. By summing
both sides of equation (1) up from nj + 1 to n, one can get that

n

P (Bya)® =, (Bum)*+ S (auf + 1)
k=ni+1
n

Z Pny (Ayn1)a + Z (Tk - M'BQk)y
k=ni;+1

which leads to

n—1 1
Yn 2 Yni+1 + Z {;—

t=ni+1 n

t 1/
Pn,y (AyTu)a + Z (Ts - MEQs):] } — 00, as n — oo.
s=ni+1

This is contrary to the assumption that {y,} is a bounded solution of equation (1).

THEOREM 2.1.4. Assume that r,, Is eventually of definite sign. Let {y,} be any solution of
equation (1) with the same sign as r, eventually. Then, {y,} either belongs to Class A or
belongs to Class B.

PrOOF. We prove only the case where r,, is eventually negative. The proof for the other case
is similar and will be omitted here. By Proposition 1, we know that {y,} is nonoscillatory. So,
there exists an ny € N such that r, <0, y, < 0 for n > n;. Consider the sequence {W,,} defined
by

Wn = ynp'n(Ayn)ay n > n. (6)

Then,
AWy = Yni1A (pn(BYn)*) + pn(Ayn)*H!
= Ynt1Gn1Yng1 + Tre1Ynss + Pa(Byn) > 0.

(7)

If there exists an integer N; > ny such that Ayy, < 0, then from (6) and (7) we see that
Ay, < 0 for n > Np, which means that {y,} € A.

If there does not exist an integer N1 > ny such that Ayy, < 0, then it must be Ay, > 0 for
n > ny, which implies that {y,} € B. The proof is complete.

2.2. Existence and Boundedness of Class A Solutions

The existence of Class B solutions of equation (1) has been investigated in [1]. However, there
are no results for the existence of Class A solutions of equation (1). Now, we give a result.

THEOREM 2.2.1. Suppose that ry, is eventually of definite sign. If for some ny > ng

n—~1 . l/a
i gs +7Ts Slgn(’rs) < o0,
1 Pn-1

n=ni \s$=
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where sign(-) Is the sign function, then there exits at least one solution of equation (1) belonging
to Class A.

ProOF. We first prove the case when r,, is eventually negative. Choose Ny € N large enough so

that
n 1/ .
+ rgsign(rs
3 (ZL__ﬁQ> <o n2Ne ®)

kE=No \s=1 Pr-1

Let Ay be the Banach space of all bounded sequences Y = {y,}, n > Ny, with supremum norm
1Y} = supp» w, [ynl. Set

S={Y €Ay :-2<y, < -1, n> Ng},

and define an operator T : S — Ay as follows

n 1/«
(Ty)=-1+ 3 < qsstm) . n>N,.
s=1

k=No Pr-1

Clearly, (Ty)n < ~1 for any {yn} € S. Again, according to (8), we have for n > Ny

n 1/
T > - 1+Z(qu ‘“”‘s)

k=Ng \s=1
= — g5 + 75 sign(r )/2'3 fe
14 (o Z(Z s siga(rs )
b=No \s—1 Pr—1
n k— e
> —1 4 (~g)P/a (Z M)
k=Ny \s=1 Pr—-1
- —9)f/« =—
>-1+(-2) SA7a 2.

This means that TS C S. It follows from the definition of T that T is an increasing mapping.
Hence, by the Knater-Tarski fixed-point theorem [13,14], there exists a Y € S such that TY =Y.

That is,
n P 1/a
=1+ Z ( qsy3+rs> ,  ‘m>Ng.
s=1

k=No Pr—1

From this, it is clear that {y,} is eventually a solution of equation (1). Since —2 <y, < —1 and

/e
n 8
S (D BEEL ) o oz,
1 Pn

one can see that {y,} € A.
For the proof when r, is eventually positive, it suffices to replace S and T', respectively, by

S={Y e Ay :1<y, <2, n> No}

and

n 1/
(T/ =14 Z < sYs +Ts) ’ n > No.
s=1

k=No Pr-1
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THEOREM 2.2.2. Assume that 1, is eventually of definite sign and that 8 < «. Then, every
solution {y,} of Class A of equation (1) with the same sign as r, eventually is bounded if and
only if for any given positive real numbers k and | and for some Ny € N,

> {L

i, LPn

n

1/a
k+ Z (gs -l—lsign(rs)rs)] } < o0, (9)

s=Np

where sign(-) is the sign function.

Proor. We only prove the case where r,, is eventually negative. The proof for the other case
is similar. Let {y,} be an arbitrary Class A solution of equation (1) with the same sign as r,
eventually. Then, there exists an ny € N such that

rm <0, 3y, <0, Ay,<0, for n > ny. (10)
NECESSITY. Suppose that {y,} is bounded. Then, there exists an M > 0 such that
~M <yn yn,, forn>ny. (11)

Taking the summation on both sides of equation (1) from n; + 1 to n, we have that

Pn (Ayn)a = P, (Ayn,)" + Z (Qkyf + Tk)

k=n1+1
< Py Aynl Z (quk + Tk)
k=ni+1
(A 51 n(r
— ,,‘611 p’n1 ynl + Z ( £ k:) k) ,
ynl k=ny+1 ( ynl)

which produces

el 1 (Ayp, )™ ! ign{ry)r He
ny n1 S1
b S s+l S {—[p-—;—_Jr 5~ (qk+%#)]} |
= e’

t=n1+1 Pn

And so,

S 2 (i)}

y”l k=ni+1

n—1
Yn Yni1+1
Yo, 5 {
y’ﬁ{a yg{a t=ny1+1 Pn

From this and (11), one can see that (9) is true.

SUFFICIENCY. From equation (1), we have

o 21
G BTN (pn_lgfn-l> ) ST s 12)
Yn Yn Yrn—1 Yn

Summing both sides of (12) from n1 + 1 to n and noticing y, < yn, < 0 for n > nq, we derive

1/
Ayn Pnq (Aynl < Tk >:| }
= < + qr + —3
yn' {p“ [ yrs k= Z Vi
! [ (B ign(rore ]
Pny\LYn, SIgN Tk )Tk
{2 b3 (wriz
{pn I: yn1 Z ("yru)ﬂ ] }

k=ni1+1
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This, together with (9), implies that there exists an M > 0 such that

- Ayk

k=n;+1 yle/

<M, foralln > n; + 1.

Also, we have

T

T Ay i Yk 1 Yk 1
>, i = Z/ (—ye)fle ds 2 Z/ (—s)f/a ds

k=n;+1 Yk k=ng+1Y Ye+1 e e,
Ynp41 Infynt1l —In|yn, 11|, B=a,

= - — = 1- 1-—
/yn+1 Sﬁ/a ds yn-l-[lg/a _ ynlf{a ,8 <a

Therefore, for n > n; + 1, we have In|yny1| < In|yn, 41| + M if B = @, and |y,41|17F/* <
y,lzlf{a + M1 - B/a), when 8 < a. In either case, {y,} is a bounded solution of equation (1).

We are now in the position to deal with the convergence of solutions in Class B of equation (1)
to correct Theorems 4 and 5 in [1]. We have the results as follows.

THEOREM 2.2.3. Assume that ry, is eventually of one sign and that > o ; 1/ pl/ * = oc. Then, ev-
ery solution {y, } of equation (1) in Class B with the same sign asr,, eventually satisfies lim, oo Pr,
(Ayp)* =0.

ProoF. We treat only the case where r, is eventually negative. Let {y,,} be an arbitrary solution
of equation (1) in Class B with the same sign as 7, eventually. Then, there exists an n; € N
such that r, < 0, ¥, < 0, Ay, > 0 for n > n;. From equation (1), we know p,(Ay,)* > 0 is
decreasing when n > nj. So, limy_, 0o pn(Ayn)® £ > 0. If L > 0, then there is an ny € N such
that p,(Ay,)* > L/2 for n > ny. Summing this inequality gives

L /o n 1
Yntl = Yng + (5) Z 75 T 0 as n — oo.

n=n; Pn
This is a contradiction.

THEOREM 2.2.4. Suppose that r, is eventually of definite sign and that for any given real
numbers k and I and for some Ny € N,

S
> (L
n=Np

n /e
k+ Z (gs —l—lsign(rs)rs)} } = 00, (13)

s=Np

where sign(-) is a sign function. Then, every Class B solution {y,} of equation (1) satisfies
limy, oo ¥ = 0.

ProOF. Similarly, we only prove the case where 7, is eventually negative. Let {y,} be an
arbitrary solution of equation (1) in Class B. Then, the limit limy,—c0 Yn 2 [ exists and is finite.
It suffices to verify L = 0. We now consider the case y, < 0, Ay, > 0 for n > ng for some
nz € N. Obviously, L < 0 and y,, < L for n > n3. If L < 0, then we obtain by summing up both
sides of equation (1) from ng + 1 to n that

Pn (Ayn)a = Pns (Ayns)a + Z (Qkyf + Tlc)
k=ns+1

<Pny (Byny)* + D (LPgk +1%)
k=ngs-+1

—_If {pns (Ayng)” Z ( mgn(;z;?jm)}

k=ng+41
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Combining this with (13) leads to

= |1 (A sign(rg)r e
Yo S et + L7737 {pt l:pna ol Z < L_];ﬂ_ﬁ)]} o

t=ng+1 k=n3+1
as n — oQ.

This is a contradiction. The proof for the case y, > 0, Ay, < 0 for n > ng € N is similar.

2.3. Discrimination Method for Nonlinear Limit-Point Solutions

THEOREM 2.3.1. Suppose that for a sufficiently small positive number a and any real number b,

00 1/c &
Z { [b + Z -~ aqy } } = 0, for some No € N. (14)

n=Ny s=Np

Then, any solution of equation (1) is a nonlinear limit-point type one.

PROOF. Assume that there exists a solution {y,} of equation (1) which is a nonlinear limit-
circle type one. Then, according to the definition of nonlinear limit-circle type solution, we have
My oo Yn = 0. So, for an arbitrarily sufficiently small positive number a € (0,1), there is an
ny € N such that |y,| < a for n > ny. By summing up both sides of equation (1) from nj +1
to n, one can get that

n n
pn(Ayn)a = Pny (Aynl)a + Z (Qkyf + Tk) > Pny (Aynl)"‘ + Z (rk - aﬁqk) ,
k=ni+1 k=ni1+1

which, together with (14}, gives

n—1 t l/a
Yn Z UYnge1 + Z {pt [pnl(Aym) + Z (rs — aﬁqs)J } — 00, as n — 00.

t=ny+1 s=7i1+1

This is contrary to lim,—eo ¥n = 0.

3. EXAMPLES

Now, we give some examples, including Example 1 mentioned previously, to illustrate the
advantages of our results.

ExaMpLE 1. Consider the difference equation
AAyn_y) =20 +4n,  n2>1 (Eq)

Using the notation in equation (1), we have a =1, 8 =1/3, pp, =1, ¢» =2, and r, = 4n.

Obviously, Theorem 2 in [1] cannot determine whether or not all solutions of equation (E;)
are unbounded because ¥ | gn = 0o. Whereas one can easily verify that for any given k € R,
{ > 0 and for some kg € N,

n 1/a
k+ Z(rs—lqs)}} = oo.

S:ko

> {

n=ko

So, by Theorem 2.1.3, all solutions of equation (E;) are unbounded. In fact, y, = n3,n>0,is
one such solution.
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EXAMPLE 2. Consider the difference equation

1 sy 1
A((27‘L—-ﬁ> (Ayn-—l) ) —myn+2, TLZl, n € N. (Ez)

Corresponding to equation (1), we get pp—1 =2n—1/n,a=3, =1, ¢, = 1/n?(n+1), r, =2,
n>1.

Clearly, Theorem 2 in [1] cannot be used to determine whether all solutions of equation (E;)
are unbounded or not because p, Z 1. However, it is easy to see that for any given k € R, [ > 0,

and kg € N,
= [1
>{x

ko L P7

n 1/«
k+ z(rs—lqs)J} = 00.

s=ko

So, all conditions of Theorem 2.1.3 hold, which in turn means that all solutions {y,} of equa-
tion (Eq) are unbounded. Indeed, y, = n, n > 0, is such a solution.

ExaMPLE 3. Consider the difference equation
A ((4n3 ~3n+ 1)(Ayn_1)1/3) — 2+ 1)y +n+l, n>2 (Es)
where p,1 =4n® -3n+1,a=1/3,8=1, g, = 12n+11, r, = n+1, n > 2, the same notations

as in (1).
It is clear that

= /(13n+24)(n — 1)\°
:}:< 2(4n3 — 3n+1) ) < oo

oo n—1 q +T l/a
S 8

Thus, all assumptions in Theorem 2.2.1 hold. It follows that there exists at least one solution
of equation (E3) which belongs to Class A. Actually, y» = n, n > 1, is such a solution of
equation (E3).

ExXaMPLE 4. Consider the difference equation

AGBn(n —1)2Ayn1) = yn +1 + % n>2. (Ba)

According to equation (1), a =3=1,p,—1 =3n(n—1)%, ¢, =1, 7, =1+1/n, n > 2. One can
easily prove that
oo n—1 1o o
1
DX B <Y <,
n=2 \s=1 Pr-1 n=2 n(n - 1)

and that for any given positive real numbers & and [

x 1 7 1/6!
Z {—— k+ Z (gs -l—lsign(rs)rs)} } < 00, for some Ny € N.
S=N0

n
n=Np

Therefore, it follows from Theorems 2.2.1 and 2.2.2, respectively, that there exists at least one
solution of equation (E4) in Class A and every eventually positive solution of equation (Ey) in
Class A is bounded. Indeed, y, =2 —1/n, n > 1, is such a solution.

ExaMPLE 5. Consider the difference equation

1
A (4n4 (n-+1)* (Aga1)®) =9m =1 - —  nzl (Es)
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Evidently, a =3>8=1,p,1 =dni(n+ 13, ¢ =1, 7, =-1-1/(n+1) <0, n > 2.

One can easily prove that (9) holds for any k,! > 0 and for some Ny € N. Thus, it follows from
Theorem 2.2.2 that all eventually negative solutions of equation (Eg) in Class A are bounded.
Certainly, y, = =3+ 1/(n + 1), n > 0, is one of such solutions of equation (Ej).

EXAMPLE 6. Consider the difference equation

A(ln —1)Ayp—1) = n > 2. (E¢)

1
TR AT

Clearly, wesee that a = 8=1,pp1=n—-1, ¢, =1/(2(n+ 1)), rn =1/(n(n+1)) >0, n > 2.
One can easily show that for any &, > 0 and for some Ng € N

00 n /e o0
Z {;}; kE+ Z(qs—i—lsign(rs)rs)}} > Z S:oo.

n=Np s=Np n=Np

Thus, it follows from Theorem 2.2.4 that all eventually positive solutions of equation (Eg) in
Class B satisfy limp o0 yn = 0. Indeed, y, = 2/n, n > 1 is such a solution.

Because Y o, 1 /p/* = Yo 1 1/n = oo and for the solution limp—cc Pr(Ayn)® = liMp oo
~2/(n+1) =0, Example 6 also illustrates Theorem 2.2.3.

ExXAMPLE 7. Consider the difference equation

1
A((n+1)(n+2)Ayp—1) =yn +k+ T k>1, n>1 (E7)

Here,a=0=1,ppc1=(n+1)(n+2),gn=1,r=k+1/(n+2)>0,n>1.
One can easily prove that for any a € (0,1) and any real number b,

- n 1/a oo
. b+(k—an _
Z{_ b+Z(m—aqs)H >Z(71Tz‘m”°°

n=1 Pn s=1 n=1

Therefore, it follows from Theorem 2.3.1 that all solutions of equation (E-) are of nonlinear
limit-point type. In fact, y, = —k —1/(n +2), n > 0, is such a solution of equation (E;).
REMARK 3.1. The properties shown above for the solutions of (E1)—(Eg) cannot be derived from
the known results.

APPENDIX A

Proor oF THEOREM 2 IN [1]. Let {y,} be a solution of equation (1). By Proposition 1, we
may assume that first y, > 0 and Ay, >0 for all n > N € N. If possible, let {y,} be bounded.
So, there exist constants M; and M, such that 0 < My <y, < M, for n > N. Now, summing
equation (1) from NV 41 to n, we obtain

n

By)* = Byw)*+ > atf+ S re> S e+ M Y g

s=N+1 s=N+1 s=N-+1 s=N+1

Consequently, lim, o Ay, = co. This, in turn implies that lim,_,.c y» = 00, a contradiction.
Suppose yn, > 0 and Ay, <0 for all n > N € N. Summing equation (1), we have

n n n n
(—Ayn)a = (-AyN)a - Z qS’Uf - Z Ts < (—AyN)a - Mia Z qs — Z re < O,
s=N+1 s=N+1 s=N+1 s=N+1

for large n, a contradiction. Hence, {y,} cannot be bounded. This completes the proof of the
theorem.
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APPENDIX B

Proor oF THEOREM 4 IN [1]. Suppose that {y,} is a Class B solution of equation (1), say,

Yn
K

as

10.

11.

12.

13.

14

>0 for all n > N € N. Then, p,(Ay,)* < 0 and increasing. If p,(Ay,)* + 0, there exists
> 0 such that p,(Ay,)* < —K for n > N. Summing, we have

KYe S~ 1
Yn+1 S y’n1 - ———}}l:L' —r —0Q,
n — o0, which is a contradiction.
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