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Abstract--Some new results are obtained for the bounded and monotone properties of solutions 
of second-order quasi-linear forced difference equations 

A(pn-l(Ayn-1) c~) =qny~n +rn, n>no,  

where no C N = {0, 1, 2, 3 . . . .  }, {Pn}n~=no_l is a positive sequence, {qn}n~=no is a nonnegative real 
$. oc sequence with q.n ,~ 0, { n}n=no is a real sequence, and a and fl are quotients of odd positive integers. 

Some errors in [1] are pointed out and addressed. Examples are given to illustrate the advantages of 
the new results. @ 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - Q u a s i - l i n e a r  forced difference equation, Monotone, Bounded solution. 

1. I N T R O D U C T I O N  

Asymptotic properties have been extensively investigated for the solutions of second-order quasi- 
linear difference equations in recent years. For example, see [2 9] and the references cited therein. 

In the present paper, we consider the following second-order quasi-linear difference equation 

A (Pn-1 (z2XYn-1) c~) ~ qnY~ + rn, n > no, (1) 

where no E N = {0, 1, 2, 3 , . . .  }, A denotes the forward difference operator defined by Ay~ = 
Y~+I - Yn, {Pn}~-~0-1 is a positive sequence, {q'~}~--~o is a nonnegative real sequence with 

r oo q~ ~ 0, { ~}~=~0 is a real sequence, and c~ and fl are quotients of positive odd integers. 
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By a solution of equation (1), we mean a real sequence {y~} satisfying equation (1) for n >_ no. 
We consider only solutions tha t  are nontrivial for all large n. A solution {y~} of equation (1) 
is bounded if there exists an M > 0 such tha t  lYn[ <- M for all n >_ no. A solution {Yn} 
of equation (1) is oscillatory if the terms {Yn} are neither eventually positive nor eventually 
negative and nonoscillatory otherwise. A solution {Yn} of equation (1) is said to be weakly 
oscillatory if {Yn} is nonoscillatory whereas {Ayn} oscillates. A solution {y,~} of equation (1) 
is said to be of nonlinear limit-cycle type if ~co--1 Y~+~ < co and of nonlinear limit-point type 
otherwise, tha t  is, v 'co  ~,1+~ f . - ~ n = l  ~ n  ----- OO. 

Equation (1), especially when r~ -- 0 and a = 1, has been extensively studied. For example, 
see [2-9] and the references cited therein. Recently, Thandapani  and Ravi also considered the 
bounded and monotone properties of solutions of equation (1) in [1]. They  defined two sets of 
nonoscillatory solutions of equation (1) in [1] as follows: 

A := {{y~} : there exists an integer n E N such tha t  y~Ay~ > 0 for n >_ N}, 

B := {{Yn} : there exists an integer n E N such tha t  y ~ A y  n < 0 for n >_ N}. 

Mainly, they obtained the following results (for the sake of readers, we extract  them from the 
original). 

PROPOSITION 1. Let  rn >_ 0 or < 0 for all large n. Then, every solution of equation (1) is 
nonoscii1atory. 

PROPOSITION 2. Let  r~ >_ 0 for a11 large n and let {y,~) be any solution of  equation (1). Then, 
{y,} either belongs to Class A or belongs to Class B. 

REMARK 1. Proposit ions 1 and 2 include Lemmas 1 and 2 of [10], Theorem 1 of [11], Proposi- 
tions 1 and 2 of [12], Lemma  3.1 and Corollary 3.1 of [2], as special cases. 

THEOREM 1. Let  r~ >_ 0 for all large n. Then, every (Class A)  solution of  equation (1) is bounded 
i f  and only i f  

qk {- rk  < 00. 

n=l  k=l Pn 

REMARK 2. Theorem 1 generalizes Theorem 2 of [11] and Theorem 4 of [10]. 

}c co co THEOREM 2. Assume that p ,  - 1 for all large n. f ~ = z  qn < co and ~ n = l  r~ = co, then all 
soIutions of equation (1) are unbounded. 

THEOREM 4. Let  rn > 0 ror all large n. I f ' - 'co  "1" 1/~, - -  2-~n=l~ /P" ) = co, then any Class B solution {yn} 
of equation (1) satisfies lim~-~co p~ (Aye) ~ = 0. 

REMARK 4. Under the assumption of Theorem 4, it is not difficult to see tha t  ~co--1 (qn+rn) < co 
is a necessary condition for a Class B solution of equation (1) to converge to a nonzero limit as 
n ----~ OO. 

THEOREM 5. In addition to the hypotheses o£ Theorem 4, assume that 

qt 

n = l  t = n + l  ~ = 0(3. 

Then, any Class B solution {Yn} of equation (1) satisfies lim~__,co Yn = 0. 

THEOREM 6. Let r,~ > 0 for all large n. I f  {y~ } is a non/inear limit-circle solution of equation (i), 
then y,~ ~ 0 as n ~ co and ynAy~ < 0 for ali large n. 

Here, we would like to point out some errors in the above propositions except for Proposit ion 1, 
some in the conclusions and some in the proofs. First, we point out there is a mistake in 
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Proposition 2, which results in a series of errors contained in [I]. We illustrate the mistakes with 
the following counterexamples. 

COUNTEREXAMPLE i. Consider the difference equation of the form 

A (Ayn-1) : 4yn + 8 [1 + ( -1 )~+1] ,  n _ 1. (C1) 

Clearly, rn = 8 1 1 + ( - 1 )  ~+1] > 0 for a l l n  > 1. We find tha t  y~ = - 2 + ( - 1 )  ~, n > 0, is a 
solution of equation (C1). But  {y~} ~ A U B because yn < 0 for n > 0 whereas Ay~ : 2 ( - 1 )  n + l  

is oscillatory. 

COUNTEREXAMPLE 2. Consider the difference equation 

A(n(n  - 1 )Ayn- l )  : 4n2yn -}- 8n [1 -k- ( -1 )n+l ]  , n _> 2. (C2) 

Obviously, rn : 8 n [ 1 + ( - 1 )  n+l] _> 0 for all n _> 2. One can easily verify tha t  y~ : [ - 2 + ( - 1 ) ~ ] / n ,  
n > 1, is a solution of equation (C2) whereas {y~} ~ A U B because 

zxy  = (2n + 1)(-1) + 2 
+ 1) 

oscillates. 

In fact, the proof of Proposit ion 2 in [1] holds only for eventually positive solutions of equa- 
t ion (1) and it is invalid for eventually negative solutions of equation (1). From the two counterex- 
amples shown above, it follows tha t  it is necessary to supplement the classes of nonoscillatory 
solutions of equation (1) with the following Class C 

C := {{yn} : {y~} is eventually weakly oscillatory}. 

Secondly, we present the following counterexamples showing tha t  Theorem 1 is incorrect. 

COUNTEREXAMPLE 3. Consider the following difference equation 

A ( ( 4 n 3 + n + l ) ( A y n _ l ) l / 5 ) : ( 1 2 n + 1 8 ) y ~ + 6 n - 5 ,  n > l .  (C3) 

Using the notat ion of equation (1), we have r n = 6n - 5 > 0 for all n > 1, P~- I  = 4n 3 + n + 1, 
a = 1/5, qn = 12n + 18, n > 1. By simple calculation, we see tha t  

f i  qk -}- r k  9n 2 + 22n 
~=1 k=l P~' = n = l  4 ( n + 1 )  3 + n + 2  < c o ,  

which says tha t  the sufficient conditions in Theorem 1 are satisfied. We can easily verify tha t  
y~ -- - n ,  n > 0, is a Class A solution of equation (C3), but  y~ is obviously unbounded. 

COUNTEREXAMPLE 4. Consider the following difference equation 

((~,3 + 1)(~y~_~)1/3)  = (3n + 2)y~ + n + 1, n _> 1. (C4) A 

Here, r~ -- n ÷ l  > 0 for all n > 1, P~- I  -- n 34-1 ,  ~ -- 1/3, q~ -- 3 n ~ - 2 .  By elementary 
calculation, we have tha t  

qk_+ = + 1)3 + 1 < 
n = l  k ~ l  ~ n  J n = l  
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which indicates that the sufficient conditions in Theorem 1 are satisfied. We find that Yn = n, 

n >_ 0, is a solution of equation (C4) with {fin} E A. However, fl~ is evidently unbounded. 

Because of Proposition 2 and Theorem 1 being wrong, Remarks I and 2 are also incorrect. In 

Section 2, we will state some new results for the bounded and monotone properties of solutions 

for equation (1). 

Thirdly,  the conclusion of Theorem 2 is t rue while there are two evident  errors in the proof of 

Theorem 2 in [1]. For the  sake of readers, we restate  their  proof  in Append ix  A. 

One error is t ha t  because ~n°°__ 1 rn = co cannot ensure tha t  rn >_ 0 for all large n, it  is incorrect 

to use Proposi t ion 1 in the  beginning of the  proof. We can demonst ra te  this wi th  the  following 

counterexample.  

COUNTEREXAMPLE 5. Consider the sequence {r~} with 

~ ,  n odd, 
rn = 1 n _> 1. (C5) 

--- n even, 
722 ' 

05 
Obviously, one cannot find an No E N such that rn _> 0 for all n >_ No while ~=z rn = co. 

The other error is that Proposition 2 cannot ensure that Ay n is eventually of one sign. Coun- 

terexamples 1 and 2 make evident that Ayn is not eventually of one sign. 

The following example also displays a limitation of Theorem 2. 

EXAMPLE i. Consider the difference equation 

A(AYn-I) = 2Y~/3 + 4n, n >_ I. (El) 

Since qn = 2 implies that  En=lC~ qn = co, Theorem 2 is not  definite in answering whether all 
solutions of equation (El)  are unbounded or not. 

In  the  sequel we will give a correct proof  of Theorem 2 and derive some new results. 

We th ink  tha t  the  method  of the  proof of Theorem 4 in [1] (see Append ix  B) is suitable only for 

the case where {y,}  is eventually positive and it is invalid for the  case of {y~} being eventually 

negative. We will s ta te  a new result for the  proposi t ion in Section 2. 

We now manifest the incorrectness of Remark  4 and Theorem 5 using the following counterex- 

ample. 

COUNTEREXAMPLE 6. Consider the following difference equation 

4 n -  1 
A( (n  + 1)Ayn-1)  = 4yn + 4 + n(n + 1~' n _> 1, (C6) 

v-,oo "1" i/e~\ where r~ > 0 for all n >_ 1, P ~ - i  = n + 1, a = 1, qn = 4. Clearly, 2--Jn=Z[ /pn ) = co and 
~n=l(~t=n+l(q t /pn)  ) o o  oo 1/a = CO. So, all conditions of Theorems 4 and 5 are satisfied; but  we find 

tha t  y~ = - 1  - 1/(n ÷ 1), n >_ 0, is a Class B solution of equation (C6). Nevertheless, we have 

l i m ~ _ ~  y ,  = - 1  # 0 and ~-~-_l(qn + rn) = co. 

Theorem 6 is also incorrect. The following counterexample can show this. 

COUNTEREXAMPLE 7. Consider the difference equation of the form 

/k(n(n -- l ) A y n _ l )  = 6n(n ÷ 3)yn ÷ 12n ÷ 36 ÷ (lOre ÷ 18)( - - i )  n+1, n _> 2. (C7) 

Clearly, r~ : 1 2 n + 3 6 +  ( 1 0 n + 1 8 ) ( - 1 )  n+z > 0 for all n > 2 and fl = 1. We find tha t  

yn = ( - 2  + ( - 1 ) ~ ) / n ,  n > 1, is a nonlinear limit-circle solution of equat ion (C7). Nevertheless, 
there does not  exist an No C N such tha t  y~Ayn < 0 for n >_ No because yn < 0 whereas 

Ay,~ = (2n + 1 ) ( - 1 )  n+l ÷ 2 
n(n ÷ I) 

is oscil latory for n >__ 1. 
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All these examples above demonstrate  tha t  it is worth doing further investigations for equa- 
tion (1). To the authors '  knowledge, however, there are not yet any results to correct the errors. 
The motivation of this note is to continue the s tudy and to present some new results for the 
solutions of equation (1), mainly, the bounded and monotone properties of solutions, the exis- 
tence of Class A solutions, and the discriminating method of nonlinear l imit-point solutions. Our 
results can easily solve the above problems. Some examples are also presented to illustrate the 
advantages of the new results. 

Throughout  this paper,  we use the convention 

J 

E y,~ -- 0, 
n= i  

whenever j < i - 1. 

2.  M A I N  R E S U L T S  

2.1. B o u n d e d  a n d  M o n o t o n e  P r o p e r t i e s  o f  S o l u t i o n s  

First, we revise Proposit ion 2 to derive the following result. 

THEOREM 2.1.1. Let rn >_ 0 (< 0) for all large n and let {yn} be any solution of equation (1). 
Then, {y~} EAUBUC. 

PROOF. Since rn >_ 0 (< 0) for all large n, by Proposit ion 1, Yn is nonoscillatory. Thus, there is 
an nl  _> no such tha t  either 

y~ > 0, for n > nl ,  (2) 

or  

y~ < 0, for n _> nl.  

If  Ayn oscillates, then {y~} E C. Otherwise, there is an n2 _> no such tha t  either 

(3) 

Ay~ > O, for n _> n2, (4) 

or  

Ayn < 0, for n _> n2. (5) 

If (2) and (4) or (3) and (5) hold, then {Yn} E A. If (2) and (5) or (3) and (4) are valid, then 
(yn} E B. S o , { y ~ } E A U B U C .  

Next, we give a correct proof for Theorem 2 of [1]. 

f oo THEOREM 2.1.2. (See Theorem 2 in [1].) Assume that pn - 1 for all large n. I ~n=l  q~ < c~ 
and oo }-~-n=l rn =- oo, then all solutions of equation (1) are unbounded. 

PROOF. Let {Yn} be a bounded solution of equation (I). Then, there exists an M > 0 such that 

lYnl <-- M for n _> n0. Summing equation (I) from n0 + 1 to n gives 

k = n o +  l k = n o + l  

> ( A Y n o ) ~ - M Z  ~ qkH- f i  rk--+oo, 
k=no-k  l k : n o +  l 

as  n~-~ oo, 

which, in turn, implies tha t  lim~-.oo y~ = cx~, a contradiction. 

Finally, we state two new results. 
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THEOREM 2.1.3. Assume that for anygiven k E R, 1 > 0 and for some ko E N,  

k +  ~ ( r s - l q s )  = c o .  
n=ko t ~n  s=ko 

Then, all solutions of equation (1) are unbounded. 

PROOF. Suppose, there exists a sequence {y~} which is a bounded solution of equation (1). Then, 
there are a positive constant M and an nl  E N such that  [Y~I -< M for n >_ nl .  By summing 
both sides of equation (1) up from nl  + 1 to n, one can get tha t  

A o A o p (w) + 
k=n1+l 

n 

k=n l+ l  

which leads to 

Y~ >- Yn~+l + _ _  n~(Ayn~) '~ + (rs - MZqs ~ co, as n ~ co. 
t=nl-k  l s=nl-k l 

This is contrary to the assumption that  {Yn} is a bounded solution of equation (1). 

THEOREM 2.1.4. Assume that r~ is eventually of definite sign. Let {y~} be any solution of 
equation (1) with the same sign as r~ eventually. Then, {y~} either belongs to Class A or 
belongs to C/ass B. 

PROOF. We prove only the case where r~ is eventually negative. The proof for the other case 
is similar and will be omitted here. By Proposition 1, we know that  {y~} is nonoscillatory. So, 
there exists an nl C N such that  r~ < 0, y~ < 0 for n _> nx. Consider the sequence {W~} defined 
by 

W~ = y~p~(Ay~) ~, n >_ hi .  (6) 

Then, 

AWu = y ~ + l n  (p,(Ay~) a) + pn(Ay~) ~+1 

= Yn+lq~+lY~+l + r~+lYn+l + p~(AYn) ~+l > 0. 
(7) 

If there exists an integer N1 >_ nl  such that  AyN1 < 0, then from (6) and (7) we see that  
Ay~ < 0 for n >_ N1, which means that  {y~} 6 A. 

If there does not exist an integer N1 _> nl  such that  AyN1 < 0, then it must be Ay~ > 0 for 
n _> nl ,  which implies tha t  {y~} 6 B. The proof is complete. 

2.2. E x i s t e n c e  and B o u n d e d n e s s  of  Class  A So lut ions  

The existence of Class B solutions of equation (1) has been investigated in [1]. However, there 
are no results for the existence of Class A solutions of equation (1). Now, we give a result. 

THEOREM 2.2.1. Suppose that rn is eventually of definite sign. I f  for some nl >_ no 

n=nl  \ s = l  P n - 1  / 
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where sign(.) is the sign function, then there exits at 1east one solution of equation (I) belonging 
to Class A. 

PROOF. We first prove the case when rn is eventually negative. Choose No E N large enough so 
that 

qs + ~sign(r , )  < 1 
\=No \~=1 pk21 ] _ 2~/~, n > No. (8) 

Let AN be the Banach space of all bounded sequences Y = {y~}, n > No, with supremum norm 

I IYI I  = supn>No l y - I .  Set 

S = {Y  E AN : --2 < yn <----1, n >_ No}, 

and define an operator T : S --~ AN as follows 

, n > N o .  

Clearly, (Ty)n < - 1  for any {y~} E S. Again, according to (8), we have for n _> No 

( T y ) ~ > - l +  ~ ( ~  q~(-2)Z + r~ ) ~/~ 
k= o p-E-1 

k=No \ s = l  Pk--1 ] 

k=No \ s = l  Pk-1 

>__ -1  + (-2)~/~=~1,_ = 
2t-,/~ 

This means that T S  C S. It follows from the definition of T that T is an increasing mapping. 
Hence, by the Knater-Tarski fixed-point theorem [13,14], there exists a Y E S such that T Y  = Y. 
That is, 

y~ = - 1  + qsyf + rs , n > No. 
k=No \ s = l  Pk--1 /I 

From this, it is clear that {y,~} is eventually a solution of equation (1). Since - 2  < y~ _< -1  and 

= s=l ] <o,  n>_No, 

one can see that {y~} E A. 
For the proof when r~ is eventually positive, it suffices to replace S and T, respectively, by 

S ' =  {Y  E AN : I <_yn < 2, n>_No} 

and 

k=No \ s = l  Pk--1 
n> No. 
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THEOREM 2.2.2. Assume that rn is eventualiy of definite sign and that ~ < a. Then, every 
solution {y~} of Class A of equation (1) with the same sign as rn eventually is bounded if and 
only if for any given positive real numbers k and l and for some No E N~ 

k + (q~ + I sigr,(~D~D < oo, 
n=No s=No 

(9) 

where sign(.) is the sign function. 

PROOF. We only prove the case where rn is eventually negative. The proof for the other case 
is similar. Let {y~} be an arbitrary Class A solution of equation (1) with the same sign as rn 
eventually. Then, there exists an nl  E N such that  

r n < 0 ,  Y n < 0 ,  A y e < 0 ,  f o r n > _ n l .  (10) 

NECESSITY. Suppose that  {y~} is bounded. Then, there exists an M > 0 such that  

- M  < Yn -< Y~, for n _> ni.  (ii) 

Taking the summation on both sides of equation (1) from ni  + 1 to n, we have that  

which produces 

k=n l+ l  

k=ni+l 

~- Y~i Pni (AYni) -~ £ qk'~- 
k=n i+ l  

+ +,'/<" ] ~  P'<'(AY'<' 
Yn ~ Yn~+l -n~ + E 

t = n i + l  Yn~l k=n i+ l  

And so, 

Yn Yni+l ~ ~ 1 [ pni(/kyn~)a t I 
y~{o >- ~ + - + ~ q~ + 

~nl t=ni+l [ Pn Y~ni k=ni+i 
(_y,,~)~ 

From this and (Ii), one can see that  (9) is true. 

SUFFICIENCY. From equation (1), we have 

q ~  ---- 
y~ 

rn Cpn-l(Yn-1) a ) rn 

Summing both sides of (12) from nl  + 1 to 

n~__~ 2. 

n and noticing Yn <_ Ynl < 0 for n ~ r~l, we derive 

(12) 

k=nl+l 

k=n,+l 
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This, together with (9), implies tha t  there exists an M > 0 such tha t  

Ayk 
k=~+l Y~I~ <- M, for all n k n l  + 1. 

Also, we have 

1 
y~k/a - -  (_yk)B/~ ds >_ 

k=nl+l k = n l + l  k+l k----nl+l 
, ( - s ) , / .  

- -  d s  

f 
y.,+i 1 { l n [ y ~ + l [ - l n [ y ~ l + l [ ,  f l = a ,  

.y~+l sZ/~ ds = Yn+l- 1-~/a Ynl+ll--~/a 

1 -  /~/a l - i l i a '  /~ < a" 

Therefore, for n > nl  + 1, we have ln]y~+ll _< ln ]y~+l [  + M if fl = a ,  and ]y~+z] 1-z/~ _< 

~1+1 + M(1 - t3/a),  when/~ < a.  In either case, {Yn} is a bounded solution of equation (1). 

We are now in the position to deal with the convergence of solutions in Class B of equation (1) 
to correct Theorems 4 and 5 in [1]. We have the results as follows. 

THEOREM 2.2.3. Assume tha t  r~ is eventually of one sign and that ~n~_l 1 / l / a  _ ~/~,n = oc. Then, ev- 

ery solution {Yn } of equation (1) in C1~ss B with the same sign as rn eventually satisfies limn-+oo Pn 
= o .  

PROOF. We treat  only the case where r~ is eventually negative. Let {y~} be an arbi t rary  solution 
of equation (1) in Class B with the same sign as r~ eventually. Then, there exists an nz C N 
such tha t  r~ < 0, y~ < 0, Ay~ > 0 for n ~ hi.  From equation (1), we know p~(Ay~) ~ > 0 is 

decreasing when n > nl.  So, lim~__+o~ p~(Ay~) ~ ~ L _> 0. If  L > 0, then there is an n2 E N such 
tha t  pn(Ay~) ~ > L/2 for n _> n2. Summing this inequality gives 

Yn+l >-- Y~ + 1/~ --~ oo, as n --+ co. 

This is a contradiction. 

THEOREM 2.2.4. Suppose that r n is eventually of definite sign and that t'or any given real 
numbers k and 1 and for some No E N, 

n=No s=No 

where sign(.) is a sign function. Then, every Class B solution of equation (i) satisfies 
limn--~oo Yn = 0. 

PROOF. Similarly, we only prove the case where r~ is eventually negative. Let {y~} be an 

arbi t rary  solution of equation (1) in Class B. Then, the limit lim~-+oo y~ ~ L exists and is finite. 
I t  suffices to verify L = 0. We now consider the ease y,~ < 0, Ay~ > 0 for n > n3 for some 
n3 6 N. Obviously, L <: 0 and yn < L for n k n3. If L < 0, then we obtain by summing up both 
sides of equation (1) from n3 + 1 to n tha t  

+ 

k = n s + l  

_ < p ~ ( A y ~ ) ~ +  ~ (L~qk+rk)  
k=n3+l  

L~ + + " 
k=n3+l  
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Combining this with (13) leads to 

{Ft Y~ <_ Y~+I + LZ/~ ~ 1 
t=n3+l 

+ ,_-, qk + 
k=na+l 

as 7%---~ 00. 

- o o ,  

This is a contradiction. The proof for the case y~ > 0, A y ,  < 0 for n >_ na C N is similar. 

2.3. D i s c r i m i n a t i o n  M e t h o d  for N o n l i n e a r  L i m i t - P o i n t  S o l u t i o n s  

THEOREM 2.3.1. Suppose that for a sut~ciently small positive number a and any real number b, 

f i  b+ ~ ( r s - a q s )  =oo, 
n=No s=No 

for some No E N. (14) 

Then, any solution of equation (I) is a nonlinear limit-point type one. 

PROOF. Assume that  there exists a solution {Yn} of equation (1) which is a nonlinear limit- 
circle type one. Then, according to the definition of nonlinear limit-circle type solution, we have 
lim~_+o~ y ~ =  O. So, for an arbitrarily sufficiently small positive number a E (0,1), there is an 
nl  E N such that  [Y~I < a for n > nl.  By summing up both sides of equation (1) from nl  + 1 

to n, one can get tha t  

pn ( y l) + , 
k = n l + l  k=nl+l 

which, together with (14), gives 

Y~>-Y~I+I+  ~ A n l ( Y n l )  3C ~ (rs--aJ3qs 
t = n l + l  S = n l + l  

---+ OO, as  n ---+ oo. 

This is contrary to lim,~-~oo y ,  = 0. 

3 .  E X A M P L E S  

Now, we give some examples, including Example 1 mentioned previously, to illustrate the 

advantages of our results. 

EXAMPLE 1. Consider the difference equation 

A(Ayn-1)  = 2y 1/3 + 4n, n > 1. (El) 

Using the notation in equation (1), we have a = 1,/~ = 1/3, p,~ = 1, qn = 2, and rn = 4n. 
Obviously, Theorem 2 in [1] cannot determine whether or not all solutions of equation (El) 

are unbounded because ~n°°=l q,  = oo. Whereas one can easily verify tha t  for any given k ~ R, 
l > 0 and for some k0 E N, 

So, by Theorem 2.1.3, all solutions of equation (El) are unbounded. In fact, yn = n 3, n >__ 0, is 
one such solution. 
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EXAMPLE 2. Consider the difference equation 

A ( ( 2 n l ) ( A y n _ l ) 3 ) =  1 1) y n + 2 '  n2(n+ n >_ 1, n C N. (E2) 

Corresponding to equation C), we get p~_~ = 2,~- 1/~, ~ = 3, Z = i, q,~ = 1/n~(~ + I), ~,~ = 2, 

n > l .  

Clearly, Theorem 2 in [1] cannot be used to determine whether  all solutions of equation (E2) 

are unbounded or not because p~ ~ 1. However, it  is easy to see tha t  for any given k E R, l > 0, 

and k0 C N,  

k + (rs lqs) oo. 
n=ko Pn 

So, all conditions of Theorem 2.1.3 hold, which in turn  means tha t  all solutions {y~} of equa- 

tion (E2) are unbounded.  Indeed, Yn = n, n > 0, is such a solution. 

EXAMPLE 3. Consider the difference equation 

A ( (4n  3 - 3n + 1)(AYn_l) 1/3) : (12n + l l ) y n  + n + 1, n _> 2, (E3) 

where p~_l  = 4n 3 - 3 n +  1, c~ : 1/3, /3 : 1, q~ : 12n+11 ,  rn : n + l ,  n > 2, the  same notat ions 

as in (1). 
I t  is clear t ha t  

n : 2  \ s : l  Pn-1 ] n = 2  

Thus, all assumptions in Theorem 2.2.1 hold. I t  follows tha t  there exists at  least one solution 

of equation (E3) which belongs to Class A. Actually,  Yn = n, n _> 1, is such a solution of 

equation (E3). 

EXAMPLE 4. Consider the difference equation 

1 
A(3n(n  - 1)2Ay~_l)  : y,~ + 1 + --, n > 2. (E4) 

n 

According to equation (1), a = / 3  - :  1, P , - 1  : 3n(n - 1) 2, q ,  - 1, r ,  : 1 + 1/n, n > 2. One can 

easily prove tha t  

E qs + rs 1 < < oc~ 

n = 2  \ s = l  Pn-1 n : 2  

and tha t  for any given positive real numbers k and l 

E 1 k + (qs + l sign(r~)rs) < oo, for some No E N. 
n=No Pn s=No 

Therefore, i t  follows from Theorems 2.2.1 and 2.2.2, respectively, tha t  there  exists at  least one 

solution of equation (E4) in Class A and every eventual ly posit ive solution of equation (E4) in 
Class A is bounded.  Indeed, y~ = 2 - l /n ,  n > 1, is such a solution. 

EXAMPLE 5. Consider the  difference equation 

( ) 1 
A 4n 4 (n + 1) 3 ( A y e _ l )  a : Yn -- 1 n + 1 n > 1. (Es) 
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Evidently, a = 3 >/9  = 1, pn-1 = 4n4(n + 1) 3, q~ --- 1, r~ = - 1  - 1 / (n  + 1) < 0, n > 2. 
One can easily prove that  (9) holds for any k, 1 > 0 and for some No E N. Thus, it follows from 

Theorem 2.2.2 tha t  all eventually negative solutions of equation (E~) in Class A are bounded. 
Certainly, y~ = - 3  + 1 / (n  + 1), n > 0, is one of such solutions of equation (Eh). 

EXAMPLE 6. Consider the difference equation 

1 1 
A((n  - 1 ) A y e - l )  = 2(?% + V) y~ + ?%(n + 1------~' ?% > 2. (E6) 

Clearly, we see that  c~ = /9  = 1, P~-I  = n - 1, q~ = 1/(2(n + 1)), rn = 1 / (n (n  + 1)) > 0, n > 2. 
One can easily show that  for any k, l > 0 and for some No E N 

k + (q~ + l sign(rs)rs) > - = oo. 
n=No s=No n=No ?% 

Thus, it follows from Theorem 2.2.4 tha t  all eventually positive solutions of equation (E6) in 
Class B satisfy lim~-~oo y~ -- 0. Indeed, y~ = 2/n,  n > 1 is such a solution. 

Because 2--,n=1 /P~ = ~ n = l  1/n = co and for the solution l im~_~p~(Ayn)~  = l i m . _ ~  

- 2 / ( n  + 1) = 0, Example 6 also illustrates Theorem 2.2.3. 

EXAMPLE 7. Consider the difference equation 

1 
A((?% -~- 1)(7% -~- 2)myn_l) = Yn ~- k -~- 7% -~-'----'~' k > 1, ?% > 1. (ET) 

1, r,~ = k + l / ( n + 2 )  > O, n > 1. 

and any reM number b, 

} i/~ oo 
> E b + ( k - a ) n  

n=l (n + 2)(n + 3) = oo. 

Here, a = /9  = 1, p~- i  = (n + 1)(n + 2), q~ - 
One can easily prove that  for any a E (0, 1) 

b+ aq.) 
n = l  [ ~n  s = l  

Therefore, it follows from Theorem 2.3.1 tha t  all solutions of equation (ET) are of nonlinear 
limit-point type. In fact, yn = - k  - 1 / (n  + 2), n > 0, is such a solution of equation (ET). 

REMARK 3.1. The properties shown above for the solutions of (E1)-(E6) cannot be derived from 
the known results. 

A P P E N D I X  A 

PROOF OF THEOREM 2 IN [1]. Let {y~} be a solution of equation (1). By Proposition 1, we 
may assume that  first y~ > 0 and Ay~ > 0 for all n >__ N C N. If possible, let {y~} be bounded. 
So, there exist constants M1 and M2 such that  0 < M1 < Yn < M2 for n > N. Now, summing 
equation (1) from N + 1 to n, we obtain 

s=N+l s=N+l s=N+l s=N+l 

Consequently, limn-~oo Ayn ---- oo. This, in turn implies that limn-.oo Yn - oo, a contradiction. 

Suppose Yn > 0 and A y  n < 0 for i l  n >_ N E N. Summing equation (1), we have 

s=N+l  s = N + l  s = N + l  s = N + l  

for large n, a contradiction. Hence, {y~} cannot be bounded. This completes the proof of the 
theorem. 



Some New Results 1009 

A P P E N D I X  B 

PROOF OF THEOREM 4 IN [1]. Suppose tha t  {Yn} is a Class B solution of equation (1), say, 
A Yn > 0 for all n >_ N E N.  Then, p , ( Y n )  < 0 and increasing. If p , ( A y n )  ~ 74 O, there  exists 

K > 0 such tha t  pn(Ayn)  ~ <_ - K  for n > N.  Summing, we have 

Y.~+I ~_ Ynl 

as n ~ ce, which is a contradiction. 

K 1/c~ ~ 1 
n = n l  

pl/C• n 

--+ i ( X ) ~  
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