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SUMMARY

The major myeloid blood cell lineages are
generated from hematopoietic stem cells by
differentiation through a series of increasingly
committed progenitor cells. Precise character-
ization of intermediate progenitors is important
for understanding fundamental differentiation
processes and a variety of disease states, in-
cluding leukemia. Here, we evaluated the func-
tional in vitro and in vivo potentials of a range of
prospectively isolated myeloid precursors with
differential expression of CD150, Endoglin,
and CD41. Our studies revealed a hierarchy of
myeloerythroid progenitors with distinct line-
age potentials. The global gene expression
signatures of these subsets were consistent
with their functional capacities, and hierarchical
clustering analysis suggested likely lineage re-
lationships. These studies provide valuable
tools for understanding myeloid lineage com-
mitment, including isolation of an early ery-
throid-restricted precursor, and add to existing
models of hematopoietic differentiation by
suggesting that progenitors of the innate and
adaptive immune system can separate late,
following the divergence of megakaryocytic/
erythroid potential.

INTRODUCTION

Hematopoiesis represents a prototype system for the

study of selection, establishment, and restriction of indi-

vidual developmental programs from one common pre-

cursor (Bryder et al., 2006). In this system, hematopoietic
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stem cells (HSCs) have the capacity to both self-propa-

gate as well as differentiate into all blood cell lineages. He-

matopoietic differentiation is a multistep process involving

first the choice of HSC self-renewal versus differentiation,

followed by commitment to different lineage fates. To be

able to cope with the constant and varying challenges to

the blood system, a considerable flexibility needs to ac-

company these events. Because HSCs themselves only

rarely divide (Bradford et al., 1997; Cheshier et al., 1999)

and are limited in numbers, it appears that the immature

progeny of HSCs, which are more numerous and which

harbor differential developmental and proliferative poten-

tials, has been set up to cope with such altered demands

and thereby serve to maintain a primary level of homeo-

static control (Passegue et al., 2005).

Differentiation of immature progenitors into distinct

hematopoietic lineages is contingent on appropriate and

timely execution of specific gene expression programs.

These processes are under both intrinsic and extrinsic

control, which jointly serve to propagate or repress indi-

vidual genes (Laiosa et al., 2006). A wide range of tran-

scription factors are associated with lineage specificity,

and the regulatory networks in which they operate are

being elucidated (Blais and Dynlacht, 2005). The critical

requirement of appropriate control of such factors in oligo-

potent—but normally not self-renewing—progenitors has

been highlighted by the development of leukemias arising

as a consequence of the misappropriate expression of

such transcriptional regulators (Cozzio et al., 2003; Krivt-

sov et al., 2006). However, as such events are relatively

rare, the processes governing their expression are pre-

sumably under tight regulatory control.

Insights into the cellular and molecular mechanisms un-

derlying lineage specification have to a large extent been

provided from studies utilizing in vitro assays (Brady

et al., 1995; Hu et al., 1997; Iwasaki et al., 2006). Results ob-

tained from such work are, however, limited from a physio-

logic point of view, emphasizing the importance of
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paralleling such studies with in vivo strategies. One ap-

proach toward this goal is to determine the cellular stages

that accompany development into individual hematopoi-

etic lineages in the steady-state in vivo situation, followed

by dissection of the functional and molecular properties

of such cells. Using such approaches, the purification of

a common lymphoid progenitor (CLP) that produces lym-

phoid, but not myeloid, progeny (Kondo et al., 1997) and

a common myeloid progenitor (CMP) devoid of lymphoid

but retaining full erythromyeloid competence (Akashi

et al., 2000) suggested a separation of the lymphoid and

myeloid lineages as an early branchpoint in hematopoietic

lineage commitment. This model has been a useful working

model but is likely an oversimplification, as suggested

foremost by the low clonal frequency of mixed myeloid col-

onies obtainable from candidate CMP (Akashi et al., 2000;

Iwasaki et al., 2005; Nakorn et al., 2003; Terszowski et al.,

2005; Yoshida et al., 2006). Furthermore, Takano and col-

leagues provided evidence from in vitro paired daughter

experiments of highly purified HSCs, where differentiation

into individual myeloid lineages appeared to bypass a

CMP intermediate (Takano et al., 2004). Moreover, Nutt

and colleagues, using a transgenic knockin approach,

separated candidate CMP based on differential expres-

sion levels of the transcription factor PU.1 and found that

high-level expression of PU.1 in such cells was associated

with granulocytic/macrophage offspring, whereas cells

with low expression mainly produced megakaryocytic/

erythroid progeny, with no evident hierarchical relationship

in between those cells (Nutt et al., 2005). Consistent with

this, the hematopoietic defects associated with PU.1 defi-

ciency indicate a requirement of PU.1 for lymphoid and

myeloid development while being dispensable for the

generation of erythroid and megakaryocytic progenitors

(Scott et al., 1994). Other studies have suggested that

differentiation into the megakaryocytic/erythroid lineages

may be an event upstream or in parallel to the generation

of CMP (Adolfsson et al., 2005; Lai and Kondo, 2006),

by a mechanism proposed to involve the transcription fac-

tor Ikaros (Yoshida et al., 2006). Understanding the cellular

and molecular events underlying and accompanying such

processes has broad implications, including increased

understanding of aberrant hematopoiesis—such as the

emergence of different types of leukemias—and for the

development of effective strategies aimed at guiding

differentiation toward therapeutic benefit.

Here, we demonstrate that differential cell-surface

expression of signaling lymphocytic activation molecule

family member 1 (Slamf1/CD150), Endoglin (Eng/CD105),

and Integrin alpha 2b (Itga2b/CD41) allows for the pro-

spective identification of a range of myeloid progenitor

subsets with developmentally restricted lineage poten-

tials, including early lineage-restricted precursors for the

granulocyte/macrophage, erythroid, and megakaryocytic

lineages. Genome-wide expression analyses of these

subsets revealed distinct and ordered expression profiles

of multiple transcription factors and growth factor recep-

tors known to be key regulators of myeloid commitment

and function, thereby illuminating the cellular and molecu-
Ce
lar steps associated with definitive restriction into distinct

myeloid fates.

RESULTS

Early Hematopoietic Progenitors Exhibit
Differential Expression of CD150 and Endoglin
In the mouse, Endoglin and CD150 are two cell-surface

molecules associated with high expression in the primitive

HSC compartment (Chen et al., 2002; Kiel et al., 2005). Be-

cause these proteins encode for cell-signaling receptors

with a putative involvement in early HSC fate determina-

tion, we postulated that these markers might also exhibit

differential expression patterns within other hematopoi-

etic progenitor subsets.

To test this, we first screened for the expression of

CD150 and Endoglin by using quantitative RT-PCR

(qRT-PCR) in a wide range of early hematopoietic stem

and progenitor cells. The minor c-kit+Lin�Sca1+ (KLS)

compartment can be resolved into functionally distinct

subsets based on differential expression of CD34 and

flk2 (Adolfsson et al., 2001; Christensen and Weissman,

2001; Yang et al., 2005). When analyzing the three subsets

within the KLS fraction (LT-HSC, CD34�flk2�; ST-HSC,

CD34+flk2�; and MPPflk2+, CD34+flk2+; Figure 1A), we

found highest expression of both Endoglin and CD150

(Figures 1B and 1C) in LT-HSC. Endoglin expression levels

in ST-HSC and MPPflk2+ were approximately half of that

of LT-HSC, whereas CD150 expression was dramatically

reduced in ST-HSC and undetectable in MPPflk2+ cells

(Figures 1B and 1C). Within the CLP fraction expressing

flk2 (CLPflk2+) (Kondo et al., 1997; H. Karsunky, T. Ser-

wold, D. Bhattacharya, M.A. Inlay, and I.L.W., unpublished

data; Figure 1A), we detected low or undetectable expres-

sion levels of Endoglin and CD150, respectively (Figures

1B and 1C). Highly differential expression of these genes

was observed in the originally described myeloerythroid

progenitor fractions (Akashi et al., 2000). These fractions

are jointly characterized by a c-kit+Lin�Sca1� (KLS�)

phenotype and can be further separated based on expres-

sion of CD34 and FcgRII/III into common myeloid progen-

itors (CMP, CD34+FcgRlow), granulocyte-macrophage

progenitors (GMP, CD34+FcgRhigh), and megakaryocyte-

erythroid progenitors (MEP, CD34�FcgRlow) (Figure 1A).

Endoglin was highly expressed within the MEP fraction

and at lower levels in CMP and GMP, respectively

(Figure 1B). A similar expression pattern was observed

for CD150, although this gene was nearly undetectable

in GMP (Figure 1C). Expression levels of Endoglin and

CD150 were nearly undetectable in more mature granulo-

cytes and Ter119+ erythroid cells (Figures 1B and 1C).

Next, we phenotypically evaluated previously described

myeloerythroid precursors for the cell-surface expression

of CD150 and Endoglin. This analysis revealed that

although GMP were uniformly low for both these markers,

CMP could be subdivided into distinct CD150-negative and

-positive populations, whereas MEP consisted of both

CD150-positive and -negative cells as well as a large por-

tion of cells expressing high levels of Endoglin (Figure 1D).
ll Stem Cell 1, 428–442, October 2007 ª2007 Elsevier Inc. 429
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Figure 1. Endoglin and CD150 Expression Reveals Phenotypic Heterogeneity of Early Hematopoietic Progenitor Cell Compart-

ments

(A) Phenotypic relationship of early hematopoietic precursors. c-kit-enriched BM cells were costained with antibodies against Lineage markers, Sca1,

c-kit, CD34, FcgRII/III, IL7Ra, and flk2 and gated as indicated. Doublets and dead cells were excluded prior to analysis.

(B and C) RNA was extracted from sorted bone marrow LT-HSC, ST-HSC, MPPflk2+, CLP, CMP, GMP, MEP, and Mac1+Gr1+ myeloid and Ter119+

erythroid cells and subjected to quantitative RT-PCR for Endoglin (B) and CD150 (C) for each of the indicated cell types. Data show average relative

expression to unfractionated bone marrow cells ± standard deviation (SD) (after normalization to b-actin).

(D) Representative cell-surface expression of Endoglin and CD150 within the CMP, GMP, and the MEP myeloid progenitor compartments.
High-Resolution Fractionation of a Myeloerythroid
Progenitor Cell Compartment
The differential expression of CD150 and Endoglin in the

myeloid progenitor compartment suggested that these

markers might be used to subfractionate functionally dis-

tinct cell types. We therefore developed an isolation proto-

col that simultaneously assessed cell-surface expression

of Endoglin, CD150, FcgRII/III, and CD41 in the KLS�
compartment. We included CD41 in our fractionation pro-

tocol, as it has been reported that CD41-high cells within

this compartment are committed to the megakaryocytic

lineage (Nakorn et al., 2003). By contrast, we decided to

omit the use of CD34, as preliminary experiments had

demonstrated that this marker did not add further func-

tional resolution to our seven-color protocol (D.B., unpub-

lished data). Six resolvable cell populations within the

KLS� myeloid progenitor compartment could be identi-

fied (Figure 2). These individual populations showed evi-

dent morphological differences, suggesting that they

might be functionally distinct (Figure 2), and will hereafter

be referred to as Pre MegE, Pre CFU-E, CFU-E, MkP, Pre

GM, and GMP based on the subsequent characterization

work in these studies (see below).
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CD150 and Endoglin Expression on
Myeloerythroid Precursors Is Associated with
Distinct Lineage Outcomes In Vitro
The myeloid progenitor subsets obtainable from the iso-

lation protocol described in Figure 2 were next function-

ally evaluated at the clonal level by in vitro assays. First,

we determined their plating efficiencies. With the excep-

tion of CFU-E, a high proportion of cells from all other

subsets could be induced to proliferate in response to

a combination of early acting cytokines, with plating ef-

ficiencies ranging from 45% to 75% (Figure 3A). Lineage

potential of these cell subsets was evaluated by methyl-

cellulose and agar cultures. In these assays, MkP was

exclusively associated with megakaryocyte generation

(Figure 3B) and thus appears functionally equivalent to

the CD9-positive megakaryocyte-committed precursor

described previously (Nakorn et al., 2003). Consistent

with this, MkP cells were found to express high levels

of CD9 mRNA (D.B., unpublished data), and CD9-

positive MkPs were found to be CD150+, with very sim-

ilar in vitro lineage potentials of these subsets (Figure S1

in the Supplemental Data available with this article

online).
.
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Figure 2. High-Resolution Fractionation Murine Myeloid Precursors

Murine bone marrow cells were stained with antibodies against Sca1, c-kit, CD41 (Itga2b), Endoglin (Eng/CD105), CD150 (Slamf1), FcgRII/III, Ter119,

CD71, and a cocktail of mature blood cell lineage markers (Lin). Cell preparations were also stained with Propidium Iodide, and only live cells are

displayed. Based on this phenotypic analysis, two populations within the KLS compartment and six populations within the KLS� compartment

were defined. Morphology of KLS� cellular subsets was determined with Grunewald-Giemsa staining of cytospins from sorted fractions. Pro Ery

indicates a previously described proerythroblast population (Socolovsky et al., 2001). Flow cytometric profiles are representative of more than 50

individually stained BM preparations.
The GMP described here produced primarily granu-

locytes and/or macrophage colonies (94%, Figure 3B)

and are thus functionally equivalent to the previously

described GMP (Akashi et al., 2000). Within the
Ce
KLS�CD41lowFcgRlow/� compartment, Pre GM showed

a remarkably similar clonal lineage output to the FcgR-

positive GMP (82% granulocyte/macrophage clones),

although rare megakaryocytic and/or erythroid elements
ll Stem Cell 1, 428–442, October 2007 ª2007 Elsevier Inc. 431
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Figure 3. In Vitro Lineage Potential of Candidate Myeloid Precursor Subsets Separated Based on CD150, Endoglin, and CD41

(A) Indicated cell types were single-cell sorted by FACS into liquid cultures as described in the Experimental Procedures. Four, seven, and eleven days

after seeding, cloning frequencies were evaluated of 320–480 individual cells for each population (±SD).

(B and C) To evaluate lineage potentials, indicated cell types were isolated and grown in agar cultures. Seven days after seeding, colony types and

sizes were analyzed after fixation and stainings of intact cultures, as described in the Experimental Procedures. Data are from two experiments, with

six or eight replicates for each population.

(D) Five-hundred cells of indicated cell type were plated in OP9 stroma-supported liquid cultures in the presence of KL, IL3, and EPO. After 5 days of

culture, cells were stained with antibodies against Mac1 and Gr1 and expression was visualized by flow cytometry.
were also consistently observed from this cell population

(Figure 3B and C.J.H.P. and D.B., unpublished data). Sin-

gle Pre MegE cells effectively produced megakaryocytic,

erythroid as well as mixed megakaryocyte/erythroid colo-

nies. In contrast, Pre CFU-Es gave rise almost exclusively

to erythroid colonies of various sizes (Figure 3B). Stroma-

supported cultures confirmed that granulocyte/macro-

phage potential of KLS�CD41lowFcgRlow/� cells was

restricted to Pre GM (Figure 3D). Lineage potential of

CFU-Es had to be determined in methylcellulose cultures

due to their inability to proliferate in agar cultures (see

below, Figure 6), but we noted that such cells could be in-

duced to proliferate to some extent by using OP9 stroma-

supported cultures (Figure 6).

We next examined the potential of the more primitive

cells upstream in the KLS compartment to see whether

differential expression of CD150 within this compartment

might also be predictive of lineage potential. KLSCD150+

cells, which contain all HSC activity (Kiel et al., 2005), were

found to be associated with multiple colony types, includ-

ing many blast colonies, supporting the notion that this

fraction contains many immature cells that do not mature

fully within the 7 day cell culture protocol employed here

(Figure 3C). Of note was that this fraction also produced

a high portion of clones containing exclusively megakar-
432 Cell Stem Cell 1, 428–442, October 2007 ª2007 Elsevier In
yocyte progeny (137 out of 400 cells evaluated, Figure 3C).

By contrast, the KLSCD150� population, which contains

multipotent progenitor but no stem cell activity (Kiel

et al., 2005), essentially lacked megakaryocyte potential

at a clonal level, with only 2 out of 400 cells evaluated

yielding megakaryocytes (Figure 3C). These cells were

nonetheless very efficient in producing granulocyte and/

or macrophage progeny, which were observed in 88%

of evaluated clones (Figure 3C). Taken together, these

data establish that differential expression of CD150 and

Endoglin of early myeloerythroid progenitors is associated

with functional differences in their in vitro lineage poten-

tials, a feature extended to a high degree also to the imma-

ture KLS compartment.

CD150 and Endoglin Expression on
Myeloerythroid Precursors Is Associated
with Distinct Lineage Outcomes In Vivo
We next evaluated the in vivo reconstituting activities of

these cells. KLS�CD150+/� myeloid progenitors were

sorted from mice where GFP expression is driven from

a ubiquitously expressed b-actin promoter. Apart from

marking donor white blood cells, this system also permits

readout of mature platelets (Nakorn et al., 2003). Despite

the high-clonal megakaryocyte capacity of CD150+
c.
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Table 1. Capacity of Prospectively Isolated Myeloid Subsets to Generate Platelets and Granulocytes In Vivo

Cell Type
Number of
Injected Cells

Lineage
Evaluated

Percentage of Donor-Derived Cells

Day 7 Day 14 Day 52

No cells 0 Platelets 0 0 0

Granulocytes 0 0 0

Unfractionated BM 1,500,000 Platelets 3.5 ± 1.5 39.5 ± 3.6 49 ± 2.7

Granulocytes 14.4 ± 10.1 78.5 ± 1.2 71.7 ± 6.2

Myeloid progenitors, CD150� 6,000 Platelets 0.15 ± 0.05 0.56 ± 0.72 0

Granulocytes 5.6 ± 4.6 7.3 ± 11.4 0

Myeloid progenitors, CD150+ 1,500 Platelets 0.23 ± 0.04 0.07 ± 0.03 0

Granulocytes 0.1 ± 0.18 0 0

MPP, CD150� 300 Platelets 0.3 ± 0.16 3.2 ± 1.6 0

Granulocytes 1.2 ± 0.03 23.1 ± 10.3 0.14 ± 0.02

HSC, CD150+ 75 Platelets 0.43 ± 0.25 20.3 ± 2.7 42.2 ± 8.8

Granulocytes 0.1 ± 0.18 14.8 ± 7.6 55.3 ± 10.9

Sublethally irradiated recipients (450 rad) were transplanted with 1.5 3 106 GFP expressing whole BM cells or the indicated number

of isolated stem and progenitor cells estimated to be contained within 1.5 3 106 unfractionated BM cells. At days 7, 14, and 52 after

transplantation, mouse PB was analyzed for the levels of donor platelets and granulocytes, respectively. n = 3 recipients receiving

each cell type and show mean ± SD.
myeloid progenitors in vitro (Figure 2B), in vivo platelet

reconstitution was found to be limited with such cells

(Table 1). This was in striking contrast to that observed

for the CD150+ HSC subset, which already showed rapid

and robust platelet recovery 7–14 days after transplanta-

tion of as few as 75 cells (Table 1). Peak production of

granulocytes was observed with CD150� myeloid pro-

genitors 7 days after transplantation, a time point where

CD150� myeloid progenitors reconstituted the granulo-

cytic lineages to significantly higher degrees than ob-

served for either of the control KLS subsets (Table 1). The

failure to produce mature progeny in vivo beyond these

early time points (Table 1) confirms the lack of self-renewal

potential of these myeloid subsets.

To evaluate erythroid potential in vivo, we performed

day 8 spleen colony forming assay (CFU-S8) (Na Nakorn

et al., 2002) and also analyzed reticulocyte recovery after

transplantation. In contrast to transplantation of 200 Pre

MegE cells, which generated large CFU-S8 at high fre-

quency (�1/10) (Figure 4A, right), transplantation of 200

Pre GMs gave rise to few CFU-S8 colonies (Figure 4A,

left). We also transplanted lethally irradiated recipients

with cells of each subset in order to gauge their in vivo ery-

throid potential, because rapid erythropoiesis is critical to

circumvent the consequences of a lethal irradiation (Na

Nakorn et al., 2002; Uchida et al., 1994) (Figure 4B). We

observed substantial mortality at 12 days after transplan-

tation; however, enhanced survival was observed in mice

receiving either HSCCD150+ HSCs, Pre MegE, or Pre

CFU-E cells (3/5, 4/8, and 3/8 recipients, respectively;

Figure 4B). Survival above background was not detected

in mice transplanted with Pre GM and GMP, and no retic-

ulocytes were detected in peripheral blood of surviving
Ce
mice in these groups (Figure 4B). By contrast, large num-

bers of reticulocytes were observed in mice transplanted

with either Pre MegE (mean 20.7%, n = 4) or Pre CFU-E

(mean 7.2%, n = 3) cells. Neither HSCCD150+ nor CFU-

E produced substantial amounts of reticulocytes by 12

days (Figure 4B). For HSCs, this is consistent with the no-

tion that extensive erythroid generation from low numbers

of primitive HSCs is too slow to be detected 12 days post-

transplantation (Uchida et al., 1994). The failure of CFU-E

cells to generate a substantial amount of reticulocytes in

vivo is consistent with the limited proliferative potential

of CFU-E cells in vitro (Figure 2B).

Taken together, these data establish that the in vitro

lineage potential of these subsets is recapitulated in vivo.

These data also demonstrate that rapid in vivo generation

of platelets is critically contingent on the transfer of imma-

ture, rather than early lineage-restricted MkPs. This is in

contrast to the recoveries of neutrophils and erythrocytes,

which were both rapid and high for the prospectively iso-

lated myeloid subsets associated with these lineages.

Single-Cell Multiplex PCR Fails to Demonstrate
Robust Evidence of Mixed Myeloid Potential
at a Clonal Level
Given the apparently defined lineage potentials of these

fractions, we next performed multiplex single-cell RT-PCR

of Pre MegE, Pre CFU-E, MkP, and Pre GM cells in order

to investigate whether the lineage restriction of these sub-

sets could be traced also at a molecular level. We chose to

investigate the simultaneous expression of myeloperoxi-

dase (Mpo) due to its association with the granulocyte/

macrophage lineages, Mpl (Thrombopoietin receptor)

and Willebrand factor (Vwf) for the megakaryocytic
ll Stem Cell 1, 428–442, October 2007 ª2007 Elsevier Inc. 433
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lineage, and Erythropoietin receptor (Epor) and Kruppel-

like factor 1 (Klf1) as erythroid lineage markers. c-kit

was included in experiments as an internal PCR control,

as all these subsets are characterized by high c-kit

expression.

Ninety percent of single MkP cells expressed Mpl and

most also coexpressed Vwf (Figure 5). Coexpression of

Epor was noted for many (59%) of these cells, consistent

with Erythropoietin being a potent stimulator of megakar-

yocyte development (Metcalf et al., 2002). By contrast,

only 7% of single MkP cells expressed Klf1. These data

are consistent with our functional data, indicating that

MkP cells are restricted to a megakaryocyte fate (Fig-

ure 3B). All Pre CFU-E cells were found to express Epor,

and most of these cells (73%) also coexpressed Klf1.

Some Pre CFU-E cells exhibited Vwf expression (15%);

however, no cells of this fraction were found to express

either Mpl or Mpo, consistent with their restriction to the

erythroid lineage. By contrast, Pre MegE cells, which

Figure 4. In Vivo Erythroid Repopulation Activities of Progen-

itors Separated Based on CD150 and/or Endoglin Expression

(A) Two-hundred Pre GM or Pre MegE cells were transplanted into

lethally irradiated hosts, and 8 days after transplantation, spleens

were harvested and fixed, followed by macroscopic evaluations of

generated colonies.

(B) Two-hundred-fifty candidate HSC or 2500 of the indicated myeloid

progenitor type were transplanted into lethally irradiated hosts, and

after 12 days, peripheral blood was analyzed for reticulocyte levels in

surviving lethally irradiated recipients. For each cell type, eight recipi-

ents were transplanted, and the number of surviving mice is indicated

in addition to levels of reticulocytes in peripheral blood at day 12

(mean ± SD).
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Figure 5. Multiplex Single-Cell Gene Expression of Lineage-

Affiliated Genes of Myeloid Precursors Prospectively Sepa-

rated Based on Differential Expression of CD150, Endoglin,

and CD41

Indicated cell types were single-cell sorted directly into lysis buffer in

96-well PCR plates. After reverse transcription and a two-step nested

PCR approach, c-kit expressing cells (positive control, data not

shown) were analyzed for presence or absence of indicated gene

expression by using a multiplex single-cell RT-PCR approach. Each

line indicates a single cell, and presence of transcripts in individual

cells is shown by uniquely colored dots for indicated genes. In these

experiments, three to six cells of each fraction were positive for c-kit

but negative for all other genes; these cells have been omitted from

analysis.
c.
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produce both erythroid megakaryocytic as well as a few

mixed megakaryocyte/erythroid clones (Figure 3B), ex-

pressed Epor, Mpl, and Klf1 in various combinations but

only rarely (8% of cells) expressed Mpo, consistent with

their commitment to a megakaryocyte/erythroid fate. In

striking contrast, 97% of single Pre GM cells expressed

Mpo, 27% of which also coexpressed Mpl. Of all the cell

types investigated, only a few scattered cells were found

to simultaneously express granulocyte/macrophage with

megakaryocytic- and erythroid-oriented genes, and no

cell (0/323 cells scored) was found to simultaneously ex-

press all of the investigated genes.

Taken together, these data are in agreement with the

functional properties associated with each of the investi-

gated cell types. Importantly, these experiments provide

little evidence that a substantial fraction of the candidate

myeloid progenitors evaluated here displayed transcrip-

tional properties associated with mixed myeloid lineage

potential (megakaryocytic/erythroid/granulocytic/macro-

phage).

Proliferation and Differentiation In Vitro Suggest
a Hierarchical Structure of Murine Myeloid
Progenitors
In order to delineate the hierarchical relationship between

these myeloid progenitors, we analyzed the burst sizes of

colonies generated from the described progenitor frac-

tions, reasoning that higher proliferative activity correlates

with primitiveness (Baines et al., 1982). These experi-

ments demonstrated that clone sizes obtained from Pre

GM cells were larger than those obtained from GMP

(Figure 6A). Moreover, in short-term liquid cultures, Pre

GM cells rapidly generated phenotypic GMP, whereas

GMP could not generate phenotypic Pre GM (C.J.H.P.

and D.B., unpublished data). These results are consistent

with the interpretation that Pre GM lie developmentally

upstream of GMP.

Similarly, erythroid clone sizes were larger from Pre

MegE than for Pre CFU-E, suggesting a hierarchical pro-

gression from Pre MegE to Pre CFU-E (Figure 6B). Consis-

tent with this, clones obtained from Pre MegE were found

to contain CFU-E-like clusters at day 7 (D.B., unpublished

data). As clonal liquid culture assays did not support

growth of CFU-E (Figure 2B), we compared proliferative

potentials of Pre CFU-E and CFU-E with methylcellulose

cultures. CFU-E gave primarily rise to single-cluster

CFU-Es, whereas Pre CFU-E produced not only CFU-Es

(many which comprised two to three clusters) but also

some larger sized BFU-Es (Figure 6C). KLS� cells with

robust erythroid potential were also cultured in stroma-

supported liquid media. After 4 days of culture, 9.3% of

cells generated from Pre MegE still exhibited an immature

Ter119-c-kit+ phenotype, whereas these cells were de-

tected at progressively decreased levels from cultures

with Pre CFU-E and CFU-E cells (Figure 6D). These exper-

iments established that Pre MegE can generate pheno-

typic Pre CFU-E and CFU-E, and that Pre CFU-E can gen-

erate CFU-E, and thereby suggest a developmental

progression of early erythropoiesis wherein Pre MegE
Cell
give rise to Pre CFU-E, which in turn differentiates into

CFU-E.

We next assessed the proliferative capacities of cells

with megakaryocyte potential. MkPs generated single

megakaryocytes in 85% of wells (Figure 6E) and only

rarely larger clones, indicating their proximity and restric-

tion to a mature megakaryocytic fate. In contrast, mega-

karyocyte colonies generated from Pre MegE generated

two or more cells in 40% of the wells, suggesting a hierar-

chical progression from Pre MegE to MkP. Consistent with

these observations, 85% of megakaryocyte containing

clones generated from single CD150+ HSCs gave rise to

two or more cells and generated a substantially higher

number of large megakaryocyte clones compared to

both Pre MegE and MkP (Figure 6E).

Analysis of Global Gene Expression Patterns
Reveals Specific Genetic Programs Associated
with Lineage Restriction within the Early
Myeloerythroid Compartment
Having established the distinct functional properties

associated with subsets of early myeloid progenitors, we

undertook a global gene expression approach in order

to objectively evaluate their molecular identities and to

evaluate the transcriptional changes accompanying early

unilineage megakaryocytic and erythroid restriction.

To this end, we FACS purified 2,000–10,000 Pre MegE,

Pre GM, MkP, and Pre CFU-E cells, followed by RNA

extraction, reverse transcription, linear amplification, and

hybridization to Affymetrix 430.2 arrays, which contain

�46,000 probe sets representing �36,000 genes. In addi-

tion, we also generated an expression signature of CLPflk2+

cells (H. Karsunky, T. Serwold, D. Bhattacharya, M.A.

Inlay, and I.L.W., unpublished data). With this approach,

we were aiming at simultaneously exposing such genes

that are involved in early lymphoid versus myeloid fate

decisions.

After filtration (see Experimental Procedures), 3184

genes remained and were subjected to hierarchical clus-

tering. This analysis confirmed the distinct gene expres-

sion characteristics of the various progenitor subsets

and suggested an internal relationship of these cell types

based on their transcriptional similarities (Figure 7A).

Next, we focused our analyses more directly on the

transcriptional changes associated with early lineage es-

tablishment. To this end, we investigated the genes pass-

ing the above filtering criterion and investigated genes

with a 2-fold or higher expression change between CLP,

Pre GM, and Pre MegE (with a 90% confidence interval).

These analysis criteria revealed that only 623 probe sets

that were differentially regulated within these cell types

(298 associated with Pre MegE, 147 with Pre GM, and

178 with CLPflk2+) (Figure 7B, full gene lists from these

analyses can be found in Table S2). In order to evaluate

the quality of these data by independent means, we per-

formed quantitation real-time PCR (qRT-PCR) of several

of the genes identified by our microarray approaches,

including Gata1, Gata2, EpoR, granulocyte-colony stimu-

lating factor 3 receptor 1 (G-csfr), macrophage colony
Stem Cell 1, 428–442, October 2007 ª2007 Elsevier Inc. 435
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Figure 6. Hierarchical Structure and Proliferative Capacities of Candidate Myeloid Precursors Prospectively Separated Based on

Differential Expression of CD150, Endoglin, and CD41

(A and B) Single Pre GM, GMP, Pre MegE, and Pre CFU-E cells were plated in IMDM supplemented with FCS, KL, IL3, and EPO in 60-well Terasaki

plates by using a flow cytometry coupled single-cell depositor. Seven days after initiation of cultures, clone sizes were determined from cells gen-

erating either (A) granulocyte/macrophage or (B) erythroid progeny, respectively, and scored according to criteria as described previously (Bryder

and Jacobsen, 2000).

(C) Pre CFU-E and CFU-E were plated at low densities in methylcellulose. CFU-Es were enumerated at day 3 and BFU-E at day 7.

(D) Five-hundred cells of indicated cell type were plated in stroma (OP9)-supported liquid cultures in the presence of kit ligand, Interleukin 3, and

Erythropoietin. After 5 days of culture, cells were stained with antibodies against c-kit, Ter119, Endoglin, and CD150, and expression of these markers

on generated progeny was visualized by flow cytometry.

(E) HSC, Pre MegE, and MkP were plated at low densities in agar cultures. After 7 days of culture, the number of acethylcholinesterase-positive mega-

karyocytes was determined in colonies containing such cells.
stimulating factor 1 (M-csfr), CCAAT/enhancer binding

protein alpha (Cebpa), Terminal deoxynucleotidyl transfer-

ase (Dntt), immunoglobulin heavy chain 6 (Igh-6/sterile

IgM), and Notch 1, which showed that the qRT-PCR
436 Cell Stem Cell 1, 428–442, October 2007 ª2007 Elsevier
data were in close agreement with the microarray data

(Figure 7C).

When exploring the differentially expressed genes as-

sociated with early lineage restriction, we could identify
Inc.
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multiple well-known regulators of such processes in addi-

tion to a range of genes associated with lineage specific-

ity. For instance, for the Pre MegE cluster, we observed

high expression of Glycoprotein 1 (both a and b polypep-

tides), von Willebrand factor (Vwf), Thrombin receptor, and

Glycoprotein 5: genes with nonredundant functions spe-

cific to platelet function. Expression levels of these genes

were further elevated in MkP (Table S2), in agreement with

the notion that the transition of Pre MegE into lineage-

restricted MkP is accompanied by a strengthening of the

genetic program associated with terminal differentiation.

Also, well-characterized transcriptional regulators of mega-

karyocyte development, including Gata2 and Zfpm1

(Fog1), exhibited this pattern of expression, although sig-

nificant expression was noted for both of these genes also

in the Pre CFU-E population. Similarly, multiple genes

associated with erythroid specification, including Gata1,

Tal1 (Scl), Gfi1b, Kruppel–like factor 1 (Klf1), and Epor

were robustly expressed in Pre MegE cells and further

elevated in Pre CFU-E (Table S2).

Of the genes associated with high expression in Pre GM

cells, we observed several growth factor receptors asso-

ciated with neutrophil/macrophage production, including

G-csfr, M-csfr, and the b common chain for Interleukin-

3, Interleukin-5, and GM-CSF (Figures 7B and 7C). Ele-

vated expression of the transcription factor Cebpa was

also associated with this subset, as was expression of

lysozyme and Mpo, all well-characterized neutrophil and

macrophage effector molecules (Borregaard and Cow-

land, 1997). A somewhat intriguing expression pattern

was observed for a number of the genes associated with

the Pre GM subset, including for instance M-csfr and G-

csfr; as we could observe clear expression of such genes

also in CLPflk2+. Conversely, several genes with high

expression in CLPflk2+ cells, including Dntt, Notch 1, and

sterile IgM, were expressed also in Pre GM cells (Fig-

ure 7C). These data are consistent with the lineage prox-

imity of CLPflk2+ and Pre-GM cells that emerged from

the hierarchical clustering analysis (Figure 7A).

Based on the large number of genes previously shown

to be associated with myeloid lineage restriction and var-

ious myeloid effector cell functions, we conclude that the

global expression patterns obtained here are in striking

accordance with the functional behavior of these subsets.

Taken together, these data illuminate the molecular cir-

cuitry underlying the specification of distinct myeloid fates

and provide previously unknown insights into the lineage

relationship existing between different progenitors. More-

over, in addition to the many genes with well-established

roles in fate specification, these data reveal a large num-

ber of candidate myeloid specification genes that have

not been previously implicated in such fate decisions.

DISCUSSION

Unraveling the stepwise differentiation processes that

lead from multipotent stem cells to mature effector cells

is critically important for understanding both normal and

neoplastic hematopoiesis. The isolation of progenitors
Ce
with well-defined functional and molecular properties is

an important step toward this goal. In this work, we have

explored the processes of myeloid cell differentiation

and reveal a number of novel intermediate progenitors

(Figure 7D). Our data showing the potent in vivo reconsti-

tuting activities of several of these subsets in the short-

term transplantation setting highlight their potential utility

for cellular therapy, although the limited in vivo platelet

reconstitution potential obtained from committed MkPs

suggest a unique requirement for transplantation of more

immature precursors to ensure robust in vivo generation

of this lineage.

Our studies demonstrate distinct transcription patterns

associated with the progenitor subsets identified in this

work. In accordance with their functional properties,

such patterns are characterized by differential expression

of multiple established regulators for the individual mye-

loid lineages. In addition to the well-characterized lineage

specification genes we identified, it is likely that many of

the lesser known genes we found to be enriched in each

of the progenitor subsets will likely play important roles

in lineage specification, which may be borne out of future

studies.

The possibility of generating genome-wide transcrip-

tional signatures of prospectively isolatable and well-

defined cellular subsets has provided a means through

which lineage relationships can be correlated to an entire

transcriptome. Such approaches uncovered an unexpect-

edly close relationship between progenitors committed

toward lymphoid and granulocyte/macrophage lineages

as opposed to cell populations containing merely mega-

karyocytic/erythroid potentials. The clustering of the Pre

MegE and CFU-E against MkP cells at this branch could

be explained by the presence of a higher number of

erythroid-primed or -committed cells within the hetero-

geneous Pre MegE, giving this population more of an

erythroid than a megakaryocytic global transcription sig-

nature. In addition to genome-wide clustering analysis,

the close lineage relationship between CLP and Pre-GM

progenitors was supported by the expression of individual

genes such as sterile IgM and Dntt (TdT) transcripts in Pre

GM cells, transcripts traditionally associated with lympho-

poiesis (Medina et al., 2001). In parallel, significant expres-

sion of myeloid-oriented growth factor receptors such as

M-csfr and G-csfr were highly expressed in CLPflk2+.

Evidence for a developmental relationship between the

lymphoid and granulocyte/macrophage lineages was re-

cently provided by observations of residual granulocyte/

macrophage capacity of isolated lymphoid progenitors

(Balciunaite et al., 2005; Rumfelt et al., 2006) and by the

identification of early progenitors with robust lymphomye-

loid but little megakaryocyte/erythroid potential (Adolfs-

son et al., 2005; Lai and Kondo, 2006). Those studies sug-

gested that the megakaryocytic and/or erythroid lineages

can diverge prior to a lymphoid/myeloid branchpoint

(CMP/CLP), a view that is in accordance with the data pre-

sented here and proposed more than 10 years ago based

primarily on the hematopoietic defects in PU.1-deficient

mice (Singh, 1996). On the other hand, one must be
ll Stem Cell 1, 428–442, October 2007 ª2007 Elsevier Inc. 437
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Figure 7. Genome-wide Expression Signatures of Early Myeloid Progenitors and Developmental Position of Precursors Described

in This Work

RNA was extracted from 2,000–10,000 cells of each indicated fraction, followed by linear amplification, and hybridized to Affymetrix 430A 2.0 arrays.

(A) Clustering of cell fractions based on total transcripts on arrays. Replicate arrays were pooled, followed by gene filtering (0.5 < SD/mean < 1000 and

present calls in at least one subset) to eliminate noise and genes not differing in expression in between samples. Filtering resulted in 3184 probe sets,

on which overall clustering was performed.
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mindful of the absoluteness of such pathways, as we and

others do observe rare cells in the myeloid progenitor

compartment investigated here that possess mixed mye-

loid lineage potential. In fact, it appears likely to us that the

frequency of such cells might be even higher, as improve-

ments in marker detection (i.e., for Sca1) do not justify

direct comparison to original studies of CMP.

Several reports have demonstrated that lineage conver-

sion can occur in already lineage committed cells, most

convincingly evidenced by the presence of immunoglobu-

lin or T cell receptor rearrangements in myeloid progeny

(Drynan et al., 2005; Kondo et al., 2000; Xie et al., 2004).

Such studies have implicated the possibility of lineage

plasticity to accompany hematopoietic progenitor biology.

When seeded in vitro, lineage switching of CLP into the

granulocyte/macrophage lineages could only be induced

within the first 2 days after plating, but not at later time

points (Kondo et al., 2000). Similar observations were re-

cently made for Cebpa-mediated conversion of CLP and

MEP, with a notably wider time window through which

conversion could be achieved for megakaryocyte precur-

sors (Fukuchi et al., 2006). Such data suggest that varying

degrees of lineage plasticity accompany initial phases of

lineage commitment and may relate to the presence of

residual transcripts or transcript accessibility. However,

it is at this point unclear whether such developmental

plasticity represents a physiologic-utilized mechanism for

regulating homeostasis or if it is strictly an experimentally

introduced phenomenon.

Although correlative, the finding of genetic similarities

between early lymphoid and early granulocytic/macro-

phage precursors could help to explain the origin of cer-

tain lymphomyeloid biphenotypic leukemias, which do

not appear to involve the erythroid and/or megakaryocytic

lineages (Imamura et al., 2002; Wang et al., 2005). Our

data would suggest that such leukemias, rather than

reflecting reactivation of previously repressed genetic

programs, might be a consequence of transformation of

normally occurring precursors with limited or no megakar-

yocytic/erythroid potential. The finding of common tran-

scriptional features at several stages of differentiation

(either CLP, early granulocytic/macrophage precursors,

or an early bipotent precursor with the ability to generate

both adaptive and innate immune components) broadens

the developmental window where immortalization events

might display such biphenotypic properties.

In conclusion, the results presented herein have defined

a panel of myeloid progenitor cell intermediates that offer

an unprecedented resolution of early myelopoiesis. These

studies set the stage for their further exploration in the

study of mechanisms governing both normal and aberrant
Cell
myelopoiesis and also should provide valuable insight for

the identification of corresponding subsets in the human

system. This might be directly applicable for markers

such as CD150 and Endoglin, as development into mature

platelets from HSCs appears to be characterized by con-

tinuous CD150 expression, and human platelets are also

CD150 positive (Nanda et al., 2005), whereas subsets of

early human erythroid progenitors are characterized by

Endoglin expression (Rokhlin et al., 1995). The identifica-

tion of the first lineage-restricted precursors of the ery-

throid, granulocytic/monocytic, and megakaryocytic line-

ages should be useful to dissect the processes governing

entry, proliferation, and maturation into these lineages.

EXPERIMENTAL PROCEDURES

Mice

Two- to three-month-old b actin GFP transgenic mice (Wagers et al.,

2002) or C57BL/6 mice (either CD45.2 or CD45.1) were used through-

out these studies. Mice were maintained at the Lund University and

Stanford University animal facilities. All mice procedures were per-

formed with consent from the local ethics committees.

Purification of Hematopoietic Stem and Progenitor Cells

Hematopoietic stem and myeloid progenitor cells were isolated by

staining of unfractionated bone marrow cells with unconjugated anti-

bodies against CD4, CD5, CD8, B220, Ter119, Gr1, and Mac1 and

visualized with fluorochrome-conjugated goat and rat antibodies. Lin-

eage-stained cells were next c-kit-enriched by using c-kit-conjugated

magnetic beads (Miltenyi, Bergisch Gladbach, Germany). c-kit-en-

riched cells were subsequently stained with antibodies against Sca1,

c-kit, FcgRII/III (FcgR), CD41 (Itga2b), CD150 (Slamf1), and Endoglin

(Eng/CD105) or for investigation of CD150 and Endoglin expression

on previously described myeloid progenitor cell fractions, with anti-

bodies against lineage markers, Sca1, c-kit, CD34, FcgRII/III, CD150,

and Endoglin. Propidium Iodide (Molecular Probes) or 7-Amino-Acti-

nomycin D (7-AAD; Sigma-Aldrich Co., St. Louis, MO) was used to ex-

clude dead cells. Common lymphoid progenitor cells were obtained by

sorting cells with a lineage-negative, Sca1 low, ckit low, IL7Ra positive,

flt3 positive phenotype. Antibody clones and suppliers are indicated in

Table S1. Cells were maintained on ice when possible through all pro-

cedures and were sorted on FACS Aria cell sorters (Becton Dickinson).

All flow cytometry and FACS data were analyzed with FlowJo software

(Tree Star, Ashland, OR). In some experiments, indicated cell popula-

tions were transferred on slides by using a cytospin centrifuge and

subsequently stained with May-Grünwald/Giemsa-staining (Sigma-

Aldrich) for morphological examination.

In Vitro Culture Assays

Freshly isolated unfractionated BM cells and sorted hematopoietic

stem and progenitor cells were cultured with liquid and semisolid

culture conditions (at 37�C, 98% humidity, and 5% CO2) to evaluate

single-cell clonogenic activity and lineage potentials of isolated cell

populations. For clonogenic liquid cultures, single cells (using a sin-

gle-cell depositor coupled to a FACS Aria) were sorted into Terasaki

plates in 20 ml medium (IMDM) supplemented with 20% prescreened
(B) A heat map is displayed with genes that were 2-fold or higher differentially expressed between Pre MegE versus Pre GM and CLP, Pre GM versus

Pre MegE and CLP, and CLP versus Pre GM and Pre MegE. Red indicates high expression; white, intermediate; and blue, low-level gene expression.

A selection of individual genes found in each gene cluster is presented next to the heat map display.

(C) qRT-PCR was performed on selected genes identified by our microarray approach. To be able to directly correlate qRT-PCR data with those

expression patterns on arrays, array data was also normalized internally to b-actin (± SD). When genes were called absent from one or more popu-

lation on arrays, the corresponding expression value for such arrays was subtracted from all other samples.

(D) Proposed myeloid developmental scheme and cell surface marker changes associated with the precursors studied in detail in this work (gray box).
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fetal calf serum (FCS; Hyclone, Logan, UT), 0.1 mM b-mercaptoetha-

nol and recombinant growth factors c-kit Ligand (KL; 50 ng/ml Pepro-

Tech Inc, Rocky Hill, NJ), Interleukin-3 (IL-3; 10 ng/ml, PeptroTech) and

Erythropoietin (EPO; 2 U/ml, Janssen-Cilag), and in some cases

addition of granulocyte-colony stimulating factor (G-CSF;10 ng/ml,

Amgen). Wells were evaluated for colony size and type by light micros-

copy after 4, 7, and 11 days in culture. Lineage potentials were evalu-

ated in semisolid agar cultures (Metcalf, 2004) or methylcellulose. Indi-

cated cell numbers and cell types were seeded in either serum

containing methylcellulose-based medium (M3434, StemCell Technol-

ogies Inc., Vancouver, Canada) or agar-based medium supplied with

growth factors as indicated above. Colonies generated in methylcellu-

lose were scored as CFU-E (3 days after seeding) or BFU-E, GM, Meg,

mixed Meg, and E or GM by morphologic criteria 7 days after seeding.

Agar cultures were performed as described (Metcalf, 2004) with some

minor modifications. In short, 0.6% BactoAgar 2X (Becton Dickinson)

was mixed with preheated DMEM 2X (Chemicon), supplemented with

sodium pyruvate (Sigma) and sodium bicarbonate (Sigma), FCS, and

cytokines as above and kept at 37�C. Sorted cells were added, and

1 ml was plated in quadruplicates in 25 mm Petri dishes. After 7

days, cultures were fixed with glutaraldehyde (Fluka) and thereafter

floated in a water bath and dried onto a glass slide and subsequently

stained for (I) 4 hr for acethylcholinesterase (components: trisodium

citrate [Sigma], copper sulfate pentahydrate [Sigma], potassium ferri-

cyanide [Sigma], disodiumhydrogen orthophosphate [Fluka], sodium-

dihydrogen orthophosphate [Fluka] and acethylthiocholine iodide

[Sigma]), (II) 1.5 hr luxol fast stain (Luxol fast blue powder [Sigma],

Urea [Fluka], 70% alcohol), followed by (III) 2 min of hematoxylin stain-

ing (hematoxylin [Sigma], sodium iodide [Sigma], potassium aluminum

sulfate [Sigma], chloral hydrate [Sigma], and citric acid [Sigma]). Slides

were mounted with coverslips using DePex. Thereafter, numbers and

types of generated colonies were determined by light microscopy.

Sorted progenitor cells were cultured in stroma-supported cultures

(OP9) and analyzed for lineage potentials. Briefly OP9 cells (kindly

provided by Drs. A. Cumano, Paris) were maintained in OptiMEM

with L-Glutamine (Invitrogen, Carlsbad, California), supplemented

with 10% FCS. Cell lines were trypsinized and plated at a density of

2 3 10�4 cells/ml 4–5 hr prior to addition of cells. Immediately prior

to addition of cells, medium was removed from stroma and indicated

sorted progenitor cells (500 of each type) were plated in quadrupli-

cates in 250 ml medium supplemented with cytokines as above. After

5 days of culture, cells were harvested, washed, and stained with

indicated antibodies and analyzed by flow cytometry.

Transplantation Experiments

Cells were transplanted at indicated cell numbers into sublethally irradi-

ated recipients to evaluate their in vivo capacities to generate granulo-

cytes or platelets. We transplanted 1.5 3 106 whole bone marrow cells

or the estimated number of sorted hematopoietic stem and progenitor

cells contained within 1.5 3 106 whole bone marrow cells. At indicated

time points, blood samples were evaluated by flow cytometry for the

levels of GFP+CD150+ positive platelets, and GFP-positive granulo-

cytes were identified by their distinct forward and side scatter profile.

For granulocyte analysis, peripheral blood was obtained from the tail

vein and red blood cells sedimented with 2% Dextran T-500 (Pharma-

cia, Uppsala, Sweden), and remaining red blood cells were lysed with

ammonium chloride. For platelet analysis, whole peripheral blood was

shortly centrifuged and platelet-containing supernatant was stained

with antibodies against CD150 (Nanda et al., 2005) and evaluated based

on their small size, CD150 expression, and donor/host origin (GFP/non-

GFP). Erythroid potential was determined by transplantation of lethally

irradiated recipients with indicated cell populations (2500 cells or

250 cells for HSC containing fraction). Reticulocyte counts were deter-

mined at the Stanford University laboratory animal facilities. For gener-

ation of CFU-S8, an assay that primarily detects erythroid production

(Na Nakorn et al., 2002), macroscopic evaluation of spleens obtained

from lethally irradiated mice and transplanted with indicated cell frac-

tions were performed after fixation in Tellesniczky’s fixative.
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Quantitative RT-PCR and Multiplex Single-Cell RT-PCR

For quantitative (q)RT-PCR, total RNA was isolated with an RNeasy

mini kit (QIAGEN) or by Trizol reagent (Invitrogen) from purified hema-

topoietic cells, digested with DNase I to remove genomic DNA con-

tamination, and used for reverse-transcription with random hexamers

according to the manufacturer’s instructions (SuperScript II kit, Invitro-

gen). Real-time PCR reactions were performed with 200–500 cell

equivalents of RNA in an ABI 7000 sequence detection system using

the 2XSYBR green master mix according to the manufacturer’s in-

structions (PE Applied Biosystems, Foster City, CA). Fold expression

relative to unfractionated BM cells after b-actin normalization was cal-

culated by using the comparative Ct (2-DDCt) method. For the quanti-

tative RT-PCR (qRT-PCR) analyses in Figure 7C, we used ABI (Foster

City, CA) Taqman assay on demand primers and probes. Triplicate

real-time PCR reactions were performed with 100 cell equivalents of

RNA and normalized to b-actin (for comparative purposes to array

data, array data were also normalized to b-actin). Multiplex single-

cell RT-PCR was performed as described by Hu et al. (1997). Single

hematopoietic cells were deposited into 96-well plates containing

4 ml lysis buffer (0.4% Nonidet P-40, 65 mol/l dNTPs, 25 mol/l dithio-

threitol, and 0.5 U/ml RNaseOUT) (Invitrogene Corporation, California).

Cell lysates were reverse transcribed with six pairs of gene-specific re-

verse primers (against c-kit, Mpo, Mpl, Vwfh, Epor, and Klf1) and 50 U

MMLV-RT per reaction in the buffer provided by the supplier (Invitro-

gen Corporation, California). The first-round PCR was performed by

addition of 40 ml PCR buffer containing dNTPs, forward outside

primers, and Taq polymerase (TaKaRa Bio Inc., Shiga, Japan) and

run for 35 cycles. One-microliter aliquots of first-round PCRs were

further amplified with fully nested gene-specific primers. Primer se-

quences are available upon request. Aliquots of second-round PCR

products were subjected to gel electrophoresis and visualized by

ethidium bromide staining on ordinary agarose gels or E gels (Invitro-

gen). c-kit gene product was used as positive internal control.

Affymetrix Gene Expression and Data Analysis

RNA was extracted from purified adult BM subsets with an RNeasy

mRNA purification kit (QIAGEN). Subsequent handling was performed

at the SweGene Affymetrix unit at Lund University (http://www.lth.se/

index.php?id=11754). Briefly, RNA (arrays in triplicate for all progenitor

fractions except for Pre MegE for which five arrays were produced)

was labeled and amplified according to Affymetrix Small Sample

Labeling Protocol v.2, with the exception that the second round of

in vitro transcription (IVT) was performed with an Affymetrix GeneChip

Expression 30-Amplification kit. Hybridization and washing was per-

formed according to Affymetrix GeneChip Expression analysis techni-

cal manual. Chips were scanned with an Affymetrix GeneChip Scanner

3000 and scaled to a median intensity of 100. For subsequent analysis,

probe level expression values were extracted by using RMA (Irizarry

et al., 2003), and subsequent analyses were performed with dChip

software (http://biosun1.harvard.edu/complab/dchip/) after filtering

(0.5 < SD/mean < 1,000).

Supplemental Data

Supplemental Data include one figure and two tables and can be found

with this article online at http://www.cellstemcell.com/cgi/content/full/

1/4/428/DC1/.
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