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Recently there has been a growing interest in the problems of inference for stochastic processes 
when the underlying distribution is not specified in terms of a parametric family. Godambe's 
(1985) approach is here employed to obtain estimates for random signals for a continuous 
semimartingale model. The method, which avoids specification of the underlying distribution, 
leads to estimation for nonconjugate prior situations which is computationally attractive as well 
as optimal in a restricted sense. A number of techniques in the recent literature are special cases. 

estimating functions * lto's differential rule 

1. Introduction 

The problem of filtering of random standard processes consists of the following. 
On some probability space (D, F, P) with filtration (F,, t ~ 0) there is given a partially 
observable two-dimensional process (X, Z)  where X =(X , ,  t>>-O) is the observable 
component and Z = (Z,, t ~>0) is the unobservable component. It is required to find 
a "'convenient" representation for an appropriate estimate of the current state 
O~ = h , (Z)  of an unobservable process ~ = (0t, t~>0), based on observations for the 
process X up to the moment t. 

In this paper we introduce an optimality criterion for the process of estimating 
functions for 0~, t 1>0. It is based on a criterion introduced by Ferreira (1982a), and 
is analogous to the criterion used for stochastic process parameter estimation by 
Godambe (1984), Thavaneswaran and Thompson (1986) and Hutton and Nelson 

(1986). 
In Section 2 we introduce the optimality criterion a~id class of estimating functions 

for treating the discrete time case, and in Section 3 the continuous time case is 

considered. 
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2. Optimal estimation in discrete time case 

We begin not with stochastic processes but with the case of jointly distributed 
random variables. Let X, 0 be jointly distributed random variables with finite second 
moments, with X but not 0 being observed. An estimating equation for the realized 
value of 0 is an equation g(X, O)=0 which is solved for 0 in terms of the data X. 
The function g(X, O) may be called an estimating function. Within a class G of 
unbiased estimating functions satisfying Eg = 0 and appropriate regularity condi- 
tions, a function can be said to be optimal if it minimizes the quotient 
E[g/E(Og/O0)] 2 for all g~ G (Ferreira, 1982a). Briefly, an estimating function 
which is optimal in this sense has minimal variance, subject to having a fixed 
"sensitivity" E[Og/O0); ia large sample situations the quotient to be minimized 
approximates the variance of the resulting estimate of 0. A sufficient condition for 
gO to be optimal in G is that E[gg°] = KE[Og/O0] for all g in G where K is a 
constant. This condition has been shown also to be necessary by H. Mantel. See 
Godambe and Thompson (i985). 

Ferreira (1982a) showed that in a wide class of unbiased estimating functions 
when the joint distribution of X, 0 is known the optimal estimating function is 
O logjolx(OIx)/oO, yielding as estimate of 0 the "posterior" mode, given X = x. It 
is also easily shown that if we restrict to the class of estimating functions of the form 

g ( X , O ) = t ( X ) - O  

where E( t (X)  - O) =0, the optimal estimating function is g(X, O) = E( OIX) - O, and 
the estimate is the "posterior" mean of 0, given X. Note that this coincides with 
the posterior mode when the posterior distribution is symmetric and unimodal, and 
that its form will be optimal for the class of underlying joint distributions with 
conditional expectations E (OI X )  the same as for the given joint distribution. 

Suppose we restrict the class of estimating functions further to functions having 
the form 

g(X, 

with Eg = O, or equivalently, 

g(X, O ) = O - E ( O ) - C ( X - E ( X ) ) .  

Here, as in the previous case, since Og/O0 = 1 the optimality criterion will lead to 
minimal mean squared error; and since here g is linear in X we may refer to the 
estimate as "least squares" or the "least squares approximation" to the optimal 
estimate. The optimal g has the form given in the following theorem. 

Theorem 2.1. Let O, X be random variables having finite moments mo= E(O), m x =  
E (X), Doo = Coy( 0, 0), Dox = Coy(X, 0), Dxx = Cov(X, X).  Let 

G = [gig = ( 0 - too) - C (X  - tax ) for some constant C]; 

then the optimal estimating function for 0 is given by g* = 0 -  m o -  DoxDx~x( X -  mx) 
and the optimal estimate is O* =mo + DoxDx~x(X-  mx ). 
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Remark. If (0, X) are jointly normal then O* = E(OIX),  the conditional expectation, 
which is the optimal estimate of 0 in the mean square sense. 

ProoL g* is optimal in G if E(gg*)= KE(Og/O0) for every g in G, or equivalently 
since for g e G the expectation E(Og/O0) = 1, if E [ ( g g * - g . 2 ) ]  = 0. With g* as given, 
E*gg = Doo -DoxDxx-I Dox, which is independent of C, proving the result. El 

If the class of underlying joint distributions of X, 0 is sufficiently broad that only 
the means mo and mx are known, the functions g in G are the only unbiased 
estimating functions for 0. It is true that computing the optimal g involves knowledge 
(possibly of D0x, Dx~c) that may make other unbiased estimating functions available. 
However, if the product DoxDx~x is only approximately known, an approximately 
optimal estimating function from G can still be computed, while G remains the 
source of those estimating functions which are certainly unbiased. In the filtering 
context, Krichagina et al. (1984) suggest a related justification for restriction to 
linear functions of 0, namely "simplicity in computations and lower sensitivity with 
respect to data inaccuracy". 

We now turn to the case of estimating the current state of a signal process O 
when the process X is observed and both processes have a discrete time parameter. 

Theorem 2.2. Let X = (Xo, X~, . . .) and 0 = (0o, 0~, . . .) be square integrable stochas- 
tic processes on (K~, F, P) and for t = O, 1, 2 , . . . ,  let F x be the tr-field generated 
by Xo, . . . ~ Xt. Then ...in the ~,'!,,~¢_~ G - [ g i g  - O,+m - E l vt+ ~]FX) - 
C( t, X)(X,+~ - E(X,+~]FX))] of  estimating functions with C( t, X )  measurable with 
respect to F x the optimal one is given by 

g* = [0,+,-  E(O,+, lFX)-d ,~d~](X,+~-  E(X,+,IFX))],  

and the optimal estimate is 

0"+1 = E(O,+~IFX)+ d l 2 d 2 ] ( X t + l -  E(X,+~IFX)) 

where d2: = Cov(X,+~, X,+~]F x) and d~2 = Cov(X,+~, O,+~lFX). 

Proof. Since E ( g l F X ) = o  a.s. for each g e G ,  g* is optimal in G if 
E(gg*lF x)  = KE(Og/OO)IF~ c) a.s. for every g in G, or equivalently, since Og/aO = 1, 
if E [ g * ( g * - g ) l F x ] = o  a.s., for every g in G. Then the optimal value for C is given 
by C * =  d~2d2], as in the proof of Theorem 2.1. El 

Remark. West, Harrison and Migon (1985) studied the related dynamic forecasting 
problem, in the discrete time case, for dynamic generalized linear models using the 
same state evolution (same 0 sequence) but they specified the conjugate prior form 
for the natural parameter in the general exponential family model (observation 
sequeace). The key feature of their analysis is the use of conjugate prior and posterior 
distributions for the exponential family parameter. In our analysis we do not make 
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any distributional assumptions but we restrict ourselves to a certain class of estimat- 
ing functions. Neither approach is full Bayesian since a full Bayesian analysis 
requires also the posterior flw O, IF,X; this is not available because the prior is only 
partially specified (only the first two moments) and the model does not provide a 
likelihood for 0,. 

3. Optimal estimation in continuous time case 

3.1. The Theorem 

In this section we derive the analogous optimal estimating equation for continuous 
semimartingale models regarding parameters as random signals. Let (X,, t >I 0) be 
the _~k valued observation process governed by the semimartingale model of the form 

X, = Xo+ Z ~ d R .  + n , ,  

and let the R" valued state (cumulative signal) process (0,, t ~ 0) have a semimartin- 
gale representation (; )T 

O, = Oo + Iz .  dr.  + m, 
o 

where H, m are continuous independent vector-valued martingales of dimensions 
k and n respectively. The integrators R and r are observable continuous matrix- 
valued processes of dimensions k x k and n x n respectively, increasing in the sense 
that for s < t, ~'s dR.  and ~'s dr. are positive definite. The Z and /z  processes are 
unobservable; typically, Z is a functional of the cumulative signal process (0,, t >I 0). 
The processes (X, , t>-O) and (O,,t>~O) are assumed continuous and square 
integrable. 

In the following lemmas, ~, denotes E (~/,[F x) for any random process (rh, t ~> 0), 
where now F, x i~ generated by (X~, rs, Rs, 0~s<~ t). 

Lemma 3.1. I f  (Tq,, F,, t>~O) is a [square integrable] [continuous] martingale, then 
so is ( r , " ,  " o). 

Proof of martingale property: 

^ X E(ThlF~ )=  E(E(*I, IF,X)IFX) - E ( E ( n ,  IF~)IFX) = E(n~lFX) = ~ a.s., s < t .  

Lemma 3.2. I f  (yH, u >t O) is adapted to (F.,  u >1 O) and R is a matrix integrator 
adaptea to (F,  x ,  t~O) ,  then E(~' o y~rdR.lF~) ~o A-r , - ' y .  dRu i f  it exists and is integrable 
is a martingale with respect to ( F~,  t >>-0). 
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Proof. This follows since 

E y ~ d R . -  ~/TdR, IFX = 0  a.s. 

Now from Lemmas 3,1, 3.2 we note that by taking expectations conditional on F x 
we can represent the observation process as 

A T x, -Xo+ Z.dR.  +~, 

where (/4,, t i> O) is a martingale with respect to (Ft  x, t >I 0). Moreover, 

(io )" 6, = 0o+ / ~  dr .  +rh, 

where (rh,, t i> 0) is also a martingale with respect to ( F  x, t I> 0). 
Let (3 be the class of  continuous square integrable estimating functions g of the 

form 

g, = 0 , -  0o-  /~v dr .  -jo C. dH. 

Io 
where (C,, t I> 0) is an n x k dimensional ( F  x, t I> 0)-predictable process, integrable 
with respect to d/~.. Note that E(g,[F x) is a mean 0 martingale with respect to 
( F  x, t 1> 0), and in this sense g, in G may be said to be unbiased. Its form suggests 
that it is the increments of the 0 process which are being optimally estimated, rather 
than the 0 values themselves. Adapting the optimality criterion of previous sections, 
we say g* in G is optimal if 

E(g , -g* )g*=O for eacht .  [-I (3.1) 

T h e o r e m  3.3. The function g* ~ G is optimal if 

g*=(o, ~o)- ^T - ~ .  dr.  

where C*, T can be represented as 

£ - c*. a &  

e ( d 0 q ,  -T + ,, H >.d<Jq, M ' > . I F .  ), 

the symbol + denotes inverse and M, = 0, - 0o -  (~'o p.. dr,,)T.AT 

Proof. For simplicity we give the proof for k = 1, n = 1. Using Ito's differential rule 
for the product UV of two semimartinga!es U and V, namely 

d(UV),- U. dV,+ E dU,+d(U, V), 
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where (U,  V) is the corresponding quadratic variation process associated with U, V, 

we have 

d( ( g , -  g*)g*) = ( g , -  g*) dg* + g* d(g, - g*) + d(g - g*, g*},. 

We note the following: 
(a) g, - g* = Jo (C- - C*)  d H . ,  t I> 0 is a martingale with respect to ( F  x, t ~> 0), 

~ . I  ~ k  ~ 
and hence E(~' o g* d ( g . -  g . ) i r ' f ) ,  t >1 O, is a zero mean martingale with respect to 
(FX, t>~0); 

(b) similarly E(~' o ( g , - g * )  dg*lFX), t>-O is the same kind of object. 

Applying Lemmas 3.1, 3.2 we have 

E [ ( g , -  g*)g*iFX] = E ( ( g - g * ,  g*),lF,") + N, (3.2) 

where (PC,, t i> 0) is a zero-mean (F  x, t I> 0) martingale. 
Using Lemma 3.2, (3.2) implies that (3.1) would be true if 

Io i (c.-...,~.c*~r* d(~,  H) .  = (C. - C*)E(d(t~,  M).IF x) 
0 

which is true if C* E(d(/~, M), /d (H ,  ° x = " H) , IF ,  ), and the optimal estimate is given 

by 

0* = d .  + C*  

Remark. When H = W, a Wiener process, this corresponds to the model treated in 
Elliott (1982, p. 280), and the solution is easily seen to reduce to the one he derives 
via the innovation methad. Thus 0* is the "posterior" or conditional mean of 0,, 
given F x. In the case where H, m are R k, R" valued processes respectively, the 
model of this section corresponds to the setup in Curtain and Pritchard (1978, p. 4). 

Remark. The criterion for optimality in (3.1) is of course applicable to more general 
semimartingale models than the one considered above. 
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