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Abstract

A Poisson coalgebra analogue of a (non-standard) quantum deformation ofsl(2) is shown to generate an integrable geode
dynamics on certain 2D spaces of non-constant curvature. Such a curvature depends on the quantum deformation
z and the flat case is recovered in the limitz → 0. A superintegrable geodesic dynamics can also be defined in the
framework, and the corresponding spaces turn out to be either Riemannian or relativistic spacetimes (AdS and dS) with
curvature equal toz. The underlying coalgebra symmetry of this approach ensures the existence of its generalization to
dimension.
 2005 Elsevier B.V.
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1. Introduction

Both theory and applications of quantum grou
have certainly motivated an intensive effort aimed
understanding the role played by Hopf algebra
formations from many different viewpoints (see, f
instance,[1–4]). In particular, Poisson–Hopf algebr
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(namely, Poisson–Lie groups and their associated
bialgebras and Drinfel’d doubles[5]) are just the Pois
son counterparts of quantum groups and algeb
Recently, a systematic approach to the construc
of integrable and superintegrable Hamiltonian s
tems from Poisson coalgebras has been introdu
(see [6–8] and references therein). In this conte
Poisson coalgebras associated to quantum group
be understood as the dynamical symmetries that ge
ate integrable deformations of well-known dynami
systems with an arbitrary number of degrees of fr
dom, but a clear geometrical interpretation of t
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integrability-preserving deformation procedure w
still lacking.

The aim of this Letter is to show a neat conne
tion between two-dimensional (2D) spaces with n
constant curvature and Poisson coalgebra defor
tions. In particular, we will show that a certain cla
of q-Poisson coalgebras(q = ez) generates in a ver
natural way a family of integrable geodesic motio
on 2D manifolds with a (in general, non-constant) c
vatureK that turns out to be a function of the defo
mation parameterz. Moreover, such a curvature is d
rectly generated by the “twisted” coproduct map of
deformed coalgebra. We also stress that, as a co
quence of coalgebra symmetry, a straightforward g
eralization of this construction to arbitrary dimensio
can be obtained, whose complete description will
presented elsewhere[9].

Let us briefly recall the basics of the constructi
of Hamiltonian systems with coalgebra symmetry
using the non-deformed Poisson coalgebra(sl(2),∆),
which is defined by the following Poisson brackets a
coproduct map∆:

{J3, J+} = 2J+, {J3, J−} = −2J−,

(1.1){J−, J+} = 4J3,

(1.2)∆(Ji) = Ji ⊗ 1+ 1⊗ Ji, i = +,−,3.

The Casimir function for this Poisson coalgebra isC =
J−J+ − J 2

3 . A one-particle symplectic realization o
(1.1) is given by

(1.3)

J
(1)
− = q2

1, J
(1)
+ = p2

1 + b1

q2
1

, J
(1)
3 = q1p1,

whereb1 is just the constant that labels the phase sp
realization:C(1) = b1. The corresponding two-particl
realization is obtained through the coproduct(1.2) by
using one symplectic realization for each lattice sit

J
(2)
− = q2

1 + q2
2, J

(2)
+ = p2

1 + p2
2 + b1

q2
1

+ b2

q2
2

,

(1.4)J
(2)
3 = q1p1 + q2p2.

Given any Hamiltonian functionH on the generator
of (sl(2),∆), the coalgebra symmetry ensures that
associated two-body HamiltonianH(2) := ∆(H) =
H(J

(2)
− , J

(2)
+ , J

(2)
3 ) is integrable since the two-partic
-

Casimir

C(2) = ∆(C)

(1.5)

= (q1p2 − q2p1)
2 +

(
b1

q2
2

q2
1

+ b2
q2

1

q2
2

)
+ b1 + b2,

Poisson commutes withH(2) with respect to the
bracket{f,g} = ∑2

i=1(
∂f
∂qi

∂g
∂pi

− ∂g
∂qi

∂f
∂pi

).
Some well-known (super)integrable Hamiltoni

systems can be recovered as specific choices forH(2).
In particular, if we set

(1.6)H = 1

2
J+ +F(J−),

whereF is an arbitrary smooth function, we find th
following family of integrable systems defined on t
2D Euclidean spaceE2:

(1.7)

H(2) = 1

2

(
p2

1 + p2
2

) + b1

2q2
1

+ b2

2q2
2

+F
(
q2

1 + q2
2

)
.

The caseF(J−) = ω2J− = ω2(q2
1 + q2

2) gives rise to
the 2D Smorodinsky–Winternitz system[10–12]. Ob-
viously, the free motion onE2 is described byH =
1
2J+. TheN -body generalization of this constructio
follows from iteration of the coproduct map[7].

The very same coalgebra approach[6] leads to
integrable deformations of(1.7) by considering de
formations of sl(2) coalgebras. This was the pr
cedure applied in[7] through the Poisson analogu
(slz(2),∆z) of the non-standard quantum deformati
of sl(2) [13]:

{J3, J+} = 2J+ coshzJ−,

{J3, J−} = −2
sinhzJ−

z
,

(1.8){J−, J+} = 4J3,

∆z(J−) = J− ⊗ 1+ 1⊗ J−,

(1.9)∆z(Ji) = Ji ⊗ ezJ− + e−zJ− ⊗ Ji, i = +,3,

wherez = lnq is the deformation parameter. Hereaf
we shall assume thatz ∈ R. The deformed Casimi
function reads

(1.10)Cz = sinhzJ−
z

J+ − J 2
3 .
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Since in the following we shall consider only free m
tion, we restrict to thebi = 0 case. Then, a one-partic
symplectic realization ofslz(2) turns out to be[7]

J
(1)
− = q2

1, J
(1)
+ = sinhzq2

1

zq2
1

p2
1,

(1.11)J
(1)
3 = sinhzq2

1

zq2
1

q1p1,

where C(1)
z = 0. Hence dimensions ofz are [z] =

[q1]−2 = [J−]−1. Next, the deformed coproduct∆z

provides the following two-particle symplectic rea
ization of(1.8):

J
(2)
− = q2

1 + q2
2,

J
(2)
+ = sinhzq2

1

zq2
1

ezq2
2p2

1 + sinhzq2
2

zq2
2

e−zq2
1p2

2,

(1.12)

J
(2)
3 = sinhzq2

1

zq2
1

ezq2
2q1p1 + sinhzq2

2

zq2
2

e−zq2
1q2p2.

Consequently, the two-particle Casimir given by

C(2)
z = ∆z(Cz)

(1.13)

= sinhzq2
1

zq2
1

sinhzq2
2

zq2
2

e−zq2
1 ezq2

2 (q1p2 − q2p1)
2,

is, by construction, a constant of the motion for a
HamiltonianH(2)

z = ∆z(H) = H(J
(2)
− , J

(2)
+ , J

(2)
3 ).

Thus, by taking into account the explicit expre
sions(1.12), we find that the most generalintegrable
(and quadratic in the momenta) deformation of the f
motion onE2 with (slz(2),∆z)-symmetry reads

(1.14)H = 1

2
J+f (zJ−),

where f is any smooth function such th
limz→0 f (zJ−) = 1 (note that limz→0 J+ = p2

1 + p2
2).

The simplest choice of(1.14) corresponds to takin
H = 1

2J+, namely

(1.15)

HI
z = 1

2

(
sinhzq2

1

zq2
1

ezq2
2p2

1 + sinhzq2
2

zq2
2

e−zq2
1p2

2

)
.

On the other hand, a further analysis of(1.14) leads
to asuperintegrable deformation of the free Euclidea
motion which is provided byH = 1
2J+ezJ− , that is,

(1.16)

HS
z = 1

2

(
sinhzq2

1

zq2
1

ezq2
1 e2zq2

2p2
1 + sinhzq2

2

zq2
2

ezq2
2p2

2

)
.

In this case, besides(1.13), there exists the additiona
constant of the motion[7]:

(1.17)Iz = sinhzq2
1

2zq2
1

ezq2
1p2

1.

As C(2)
z , Iz and HS

z are functionally independen
functions, the latter is a (maximally) superintegra
Hamiltonian.

It becomes clear that(1.14)and, consequently, bot
HamiltoniansHI

z andHS
z , can be interpreted as a d

formed kinetic energyTz(qi,pi) in such a way tha
a “deformation” ofE2 arises from the dynamics. I
fact,Tz(qi,pi) → T (pi) = 1

2(p2
1 +p2

2) under the limit
z → 0. In the sequel we shall unveil the “hidden” su
porting spaces related toTz coming from(1.15) and
(1.16). In particular, in Section2 we shall show tha
the HamiltonianHI

z will give rise to integrable geo
desic motions on 2D Riemannian spaces and(1+ 1)D
relativistic spacetimes, all of them with a non-const
curvature governed by the deformation parametez.
Section 3 will be devoted to the HamiltonianHS

z ,
which will provide superintegrable geodesics on
sphere and hyperbolic spaces as well as on the (a
de Sitter and Minkowskian spacetimes with a cur
ture exactly equal toz. Some comments concernin
other possible particular Hamiltonians contained in
family (1.14)(including the general expression for t
associated curvature) and several open problems c
the Letter.

2. Integrable deformation and non-constant
curvature

The kinetic energyT I
z (qi,pi) coming from(1.15)

can be rewritten as the free Lagrangian

(2.1)

T I
z (qi, q̇i) = 1

2

(
zq2

1

sinhzq2
1

e−zq2
2 q̇2

1 + zq2
2

sinhzq2
2

ezq2
1 q̇2

2

)
,

that defines a geodesic flow on a 2D Riemann
space with a definite positive metric with signatu



110 A. Ballesteros et al. / Physics Letters B 610 (2005) 107–114

pe
that
-

med
n

s.
or-

a
to

re.
d

ate
al
r

–
di-
eir

s

e

w-

n

e

-

imes

ian)

-
-

-
-

diag(+,+) given, up to a constant factor, by

(2.2)ds2 = 2zq2
1

sinhzq2
1

e−zq2
2 dq2

1 + 2zq2
2

sinhzq2
2

ezq2
1 dq2

2.

If we write the metric as ds2 = g11(q1, q2)dq2
1 +

g22(q1, q2)dq2
2, the Gaussian curvatureK can be di-

rectly computed by using the formula[14]

K = −1√
g11g22

{
∂

∂q1

(
1√
g11

∂
√

g22

∂q1

)

(2.3)+ ∂

∂q2

(
1√
g22

∂
√

g11

∂q2

)}
,

which gives a non-constant andnegative curvature

(2.4)K(q1, q2; z) = −zsinh
(
z
(
q2

1 + q2
2

))
.

Thus the underlying 2D space is of hyperbolic ty
and endowed with a radial symmetry. We stress
the exponentials in the metric(2.2)are essential in or
der to obtain a non-vanishing curvatureK . Such expo-
nentials are indeed the ones appearing in the defor
coproduct(1.9), thus showing the direct connectio
between coproduct deformation and curved space

Let us introduce a change of coordinates that inc
porate, besidesz, another parameterλ2 �= 0. In par-
ticular, we writez = λ2

1 and consider a pair of new
coordinates(ρ, θ) defined through the expressions

cosh(λ1ρ) = exp
{
z
(
q2

1 + q2
2

)}
,

(2.5)sin2(λ2θ) = exp{2zq2
1} − 1

exp{2z(q2
1 + q2

2)} − 1
,

where bothλ1 = √
z andλ2 can take either a real or

pure imaginary value. In this way, we will be able
rewrite the initial metric(2.2) as a family of six met-
rics on spaces with different signature and curvatu
The geometrical meaning of(ρ, θ) can be appreciate
by taking the first-order terms of the expansion inz

of (2.5):

(2.6)ρ2 � 2(q2
1 + q2

2), sin2(λ2θ) � q2
1

q2
1 + q2

2

.

Thereforeρ can be interpreted as a radial coordin
andθ is a circular or hyperbolic angle for either a re
or an imaginaryλ2, respectively. At this first-orde
level, the “Cartesian” coordinates would be(x, y) =√

2(q2, q1).
Under the transformation(2.5), the metric (2.2)
takes a simpler form:

ds2 = 1

cosh(λ1ρ)

(
dρ2 + λ2

2
sinh2(λ1ρ)

λ2
1

dθ2
)

(2.7)= 1

cosh(λ1ρ)
ds2

0.

Now, if we recall the description of the 2D Cayley
Klein (CK) spaces in terms of geodesic polar coor
nates[15,16] (these spaces are parametrized by th
constant curvatureκ1 and a second real parameterκ2),
we realize that ds2

0 is just the metric of the CK space
provided that we identifyz = λ2

1 ≡ −κ1 andλ2
2 ≡ κ2.

In particular, from(2.7)and by taking into account th
admissible specializations ofz andλ2, we find the fol-
lowing underlying spaces:

• Whenλ2 is real, we get a 2D deformed sphereS2
z

(z < 0), and a deformed hyperbolic or Lobache
ski spaceH2

z (z > 0).
• When λ2 is imaginary, we obtain a deformatio

of the (1+ 1)D anti-de Sitter spacetimeAdS1+1
z

(z < 0) and of the de Sitter onedS1+1
z (z > 0).

• In the non-deformed casez → 0, the Euclidean
spaceE2 (λ2 real) and Minkowskian spacetim
M1+1 (λ2 imaginary) are recovered.

Thus the “additional” parameterλ2 governs the sig
nature of the metric. The caseλ2 = 0, that we do not
consider here, corresponds to Newtonian spacet
endowed with a degenerate metric (see(2.7)).

In the new coordinates, the sectional (Gauss
curvature reads

(2.8)K(ρ) = −1

2
λ2

1
sinh2(λ1ρ)

cosh(λ1ρ)
,

and the scalar curvature is just 2K(ρ). Hence the be
haviour of the functionK(ρ) has a non-trivial depen
dence on the sign of the deformation parameter:

• If z is positive thenλ1 is a real number andK(ρ)

is always an increasingnegative function that goes
from K = 0 at the originρ = 0 up toK → −∞
whenρ → +∞.

• If z is negative thenλ1 is a pure imaginary num
ber, andK(ρ) is a periodic function with sin
gle poles at the points|λ1|ρ = π

2 , 3π
2 , . . . , and
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Table 1
Metric and sectional curvature of the underlying spaces for different values of the deformation parameterz = λ2

1 and signature parameterλ2

2D deformed Riemannian spaces (1+ 1)D deformed relativistic spacetimes

• Deformed sphereS2
z • Deformed anti-de Sitter spacetimeAdS1+1

z

z = −1; (λ1, λ2) = (i,1) z = −1; (λ1, λ2) = (i, i)

ds2 = 1

cosρ

(
dρ2 + sin2 ρ dθ2)

ds2 = 1

cosρ

(
dρ2 − sin2 ρ dθ2)

K = − sin2 ρ

2cosρ
K = − sin2 ρ

2cosρ
• Euclidean spaceE2 • Minkowskian spacetimeM1+1

z = 0; (λ1, λ2) = (0,1) z = 0; (λ1, λ2) = (0, i)
ds2 = dρ2 + ρ2 dθ2 ds2 = dρ2 − ρ2 dθ2

K = 0 K = 0

• Deformed hyperbolic spaceH2
z • Deformed de Sitter spacetimedS1+1

z

z = 1; (λ1, λ2) = (1,1) z = 1; (λ1, λ2) = (1, i)

ds2 = 1

coshρ

(
dρ2 + sinh2 ρ dθ2)

ds2 = 1

coshρ

(
dρ2 − sinh2 ρ dθ2)

K = − sinh2 ρ

2coshρ
K = − sinh2 ρ

2coshρ
-
at
-
n
te
e

es
its

im-
le”

to
as

es
s

e

se
tic

il-
(double) zeros at|λ1|ρ = 0,π,2π, . . . . Then
K(ρ) is negative in the intervals|λ1|ρ ∈ (0, π

2 ),

(3π
2 , 5π

2 ), . . . but it is positive when |λ1|ρ ∈
(π

2 , 3π
2 ), (5π

2 , 7π
2 ), . . . .

In Table 1we display the metric(2.7) and the sec
tional curvature(2.8) for the six particular spaces th
arise according to(λ1, λ2) by considering the sim
plest valuesλi ∈ {1, i}. In the deformed Riemannia
spaces (λ2 = 1) the metric is always a positive defini
one onH2

z , while on S2
z this can be either a positiv

or negative definite metric in the intervals withρ ∈
(0, π

2 ), (3π
2 , 5π

2 ), . . . and ρ ∈ (π
2 , 3π

2 ), (5π
2 , 7π

2 ), . . . ,
respectively. Likewise, in the deformed spacetim
(λ2 = i) we obtain a Lorentzian metric that keeps
global sign ondS1+1

z but alternates it onAdS1+1
z in

the same previous intervals. Thecontraction λ1 → 0
(z → 0) in each column ofTable 1gives either the
proper Euclidean or the Minkowskian space as the l
iting non-deformed/flat case; in the latter the “ang
θ is indeed a rapidity in unitsc = 1.

The metric(2.7)gives rise to the kinetic term ofHI
z

in the new coordinates(ρ, θ):

T I
z (ρ, θ; ρ̇, θ̇ )

(2.9)= 1

2 cosh(λ1ρ)

(
ρ̇2 + λ2

2
sinh2(λ1ρ)

λ2
1

θ̇2
)

.

It is a matter of straightforward computation
obtain the new Hamiltonian, that we define
H̃ I

z(ρ, θ;pρ,pθ ) = 2HI
z(qi,pi); this reads

(2.10)H̃ I
z = 1

2
cosh(λ1ρ)

(
p2

ρ + λ2
1

λ2
2 sinh2(λ1ρ)

p2
θ

)
.

The corresponding constant of the motion com
from (1.13). If we denote the new integral a
C̃z(ρ, θ;pρ,pθ ) = 4λ2

2C
(2)
z (qi,pi) it can be shown

that C̃z = p2
θ which, in turn, allows us to perform th

usual reduction of(2.10) to the 1D (radial) Hamil-
tonian given by

(2.11)H̃ I
z = 1

2
cosh(λ1ρ)p2

ρ + λ2
1 cosh(λ1ρ)

2λ2
2 sinh2(λ1ρ)

C̃z.

The integration of the geodesic motion on all the
spaces can be explicitly performed in terms of ellip
integrals, and it will be fully described elsewhere[9].

3. Superintegrable deformation and constant
curvature

Let us consider now the superintegrable Ham
tonian(1.16). The free LagrangianT S

z turns out to be
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T S
z (qi, q̇i ) = 1

2

(
zq2

1

sinhzq2
1

e−zq2
1 e−2zq2

2 q̇2
1

(3.1)+ zq2
2

sinhzq2
2

e−zq2
2 q̇2

2

)
.

Thus the associated metric is given by

ds2 = 2zq2
1

sinhzq2
1

e−zq2
1 e−2zq2

2 dq2
1

(3.2)+ 2zq2
2

sinhzq2
2

e−zq2
2 dq2

2.

Remarkably enough, in this case the Gaussian cu
ture (obtained by applying(2.3)) is constant and coin-
cides with the deformation parameterK = z.

Under the change of coordinates(2.5), (q1, q2) →
(ρ, θ), the metric(3.2)becomes

ds2 = 1

cosh2(λ1ρ)

(
dρ2 + λ2

2
sinh2(λ1ρ)

λ2
1

dθ2
)

(3.3)= 1

cosh2(λ1ρ)
ds2

0,

where ds2
0 is again the metric of the 2D CK spaces.

these spaces are also of constant curvature, a fu
change of coordinates should allow us to reprod
exactly the CK metric. This can be achieved by int
ducing a new radial coordinater as

(3.4)r =
ρ∫

0

dx

cosh(λ1x)
,

which forλ1 = 1 is the Gudermannian function, whi
for λ1 = i is the lambda function[16,17]. By making
use of the functional relations

tanh

(
λ1

ρ

2

)
= tan

(
λ1

r

2

)
,

cosh(λ1ρ) = 1

cos(λ1r)
,

(3.5)sinh(λ1ρ) = tan(λ1r),

we finally obtain

(3.6)ds2 = dr2 + λ2
2
sin2(λ1r)

λ2
1

dθ2,

which is just the CK metric written in geodesic pol
coordinates(r, θ) and provided thatz = λ2

1 ≡ κ1 and
r

λ2
2 ≡ κ2 [16]. Note that in this casez = κ1, in con-

trast with the previous section wherez = −κ1; this is
due to the interchange between circular and hyperb
trigonometric functions (see(3.5)) entailed by the defi
nition (3.4). Notice also that in the limiting casez → 0
the coordinateρ → r .

The kinetic energy in the new coordinates reads

(3.7)T S
z (r, θ; ṙ , θ̇ ) = 1

2

(
ṙ2 + λ2

2
sin2(λ1r)

λ2
1

θ̇2
)

.

The HamiltonianHS
z (1.16) and its constants of th

motion C(2)
z (1.13) and Iz (1.17) are expressed i

canonical geodesic polar coordinates(r, θ) and mo-
menta(pr ,pθ ) as

H̃S
z = 1

2

(
p2

r + λ2
1

λ2
2 sin2(λ1r)

p2
θ

)
, C̃z = p2

θ ,

(3.8)Ĩz =
(

λ2 sin(λ2θ)pr + λ1 cos(λ2θ)

tan(λ1r)
pθ

)2

,

where we have denoted̃HS
z = 2HS

z , C̃z = 4λ2
2C

(2)
z and

Ĩz = 4λ2
2Iz. Then H̃S

z is transformed into a “radial
1D system from which the geodesic curves can be
tained[9]. Namely,

(3.9)H̃S
z = 1

2
p2

r + λ2
1

2λ2
2 sin2(λ1r)

C̃z.

4. Concluding remarks

Some short comments and remarks are in or
Firstly, we stress that have worked out the geom
ric interpretation of two outstanding representativ
among the class of Hamiltonians(1.14). However,
the general expression(1.14) comprises many othe
possible choices for a deformed kinetic energy a
therefore for the “dynamical” generation of deform
spaces. A preliminary analysis can be performed
considering the general expression of the curva
coming from(1.14), which turns out to be

K(x) = z

f (x)

(
f (x)f ′(x)coshx

(4.1)
+ (

f (x)f ′′(x) − f 2(x) − f ′2(x)
)
sinhx

)
,
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a

ted
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ts

e-
04-
ject

o-
ns,
ce,

ge

ge

ps
m-
wherex ≡ zJ− = z(q2
1 + q2

2) = zq2, f ′ = df (x)
dx

and

f ′′ = d2f (x)

dx2 . Now if we take, for instance,H =
1
2J+ezαJ− , whereα is an extra real parameter, we o
tain the following Gaussian curvature

(4.2)K
(
q2; z) = zezαq2(

α cosh
(
zq2) − sinh

(
zq2)),

with power series expansion inz given by

K
(
q2; z) = αz + (

α2 − 1
)
q2z2

(4.3)+ α

2

(
α2 − 1

)
q4z3 + o

[
z4].

Thus the casesα = ±1 are the only ones with con
stant K (α = 1 is just HS

z ) and α �= ±1 defines a
class of spaces with non-constant curvature that
cludesHI

z for α = 0. Another example is provided b
H = 1

2J+ cosh(zβJ−) whereβ can be either a real or
pure imaginary parameter. The curvature and its po
series expansion read

K(q2; z) = z
(
β2 − cosh2

(
zβq2)) sinh(zq2)

cosh(zβq2)

+ zβ cosh
(
zq2)sinh

(
zβq2)

= (
2β2 − 1

)
q2z2 − 1

6

(
2β4 − β2 + 1

)
q6z4

(4.4)+ o
[
z6],

so that the underlying deformed spaces are alway
non-constant curvature (for anyβ).

We also stress that the generalization to arbitrary
mensions can be readily obtained from theN -degrees
of freedom symplectic realization of the(slz(2),∆z)

coalgebra given in[7]. For example, the explicit form
of theN -body kinetic energy arising from the Ham
tonianH = 1

2J+ would be:

HI,(N)
z = 1

2

N∑
i=1

sinhzq2
i

zq2
i

p2
i

× exp

(
−z

i−1∑
k=1

q2
k + z

N∑
l=i+1

q2
l

)
.

The exponentials coming from the coproduct are
objects that generate the non-vanishing sectional
vatures. The geometric characterization of the un
lying N -dimensional curved spaces is under investi
tion [9].
On the other hand, by considering the deform
tion of the more general symplectic realization(1.3)
with bi �= 0 [7], together with a Hamiltonian of th
type(1.6), one could obtain the non-constant curvat
analogues of the Smorodinsky–Winternitz potent
We also mention that the study of the free motion
a quantum mechanical particle on the curved spa
here introduced should provide a geometric interp
tation of the quantum analogue of the Poisson alge
(1.8), which is just the non-standard quantum def
mation ofsl(2) [13]. Work on these lines is in progres

Finally, one could consider the Poisson alge
(1.8) as a Poisson–Lie structure on a dual gro
G∗ with Lie algebra given by the dual of the L
bialgebra cocommutator associated to the copro
(1.9) [18]. In other words,(1.8) is a sub-Poisson coa
gebra of the full canonical Poisson–Lie structure
the Drinfeld doubleDns(su(2)) associated to the non
standard quantum deformation ofsl(2) (as a real Lie
group,Dns(su(2)) was proven to be isomorphic to
(2+ 1)D Poincaré group[19]). Sinceσ -models re-
lated by Poisson–Lie T-duality are directly connec
to canonical Poisson–Lie structures on Drinfel’d do
bles[20–23], the construction of theσ -model associ-
ated toDns(su(2)) and its relationship with the resul
here presented could be worth to be considered.
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