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SUMMARY

Skeletal muscle must perform different kinds of
work, and distinct fiber types have evolved to
accommodate these. Previous work had shown
that the transcriptional coactivator PGC-1a

drives the formation of type I and IIA muscle
fibers, which are ‘‘slow-twitch’’ and highly oxi-
dative. We show here that transgenic expres-
sion of PGC-1b, a coactivator functionally
similar to but distinct from PGC-1a, causes a
marked induction of IIX fibers, which are oxida-
tive but have ‘‘fast-twitch’’ biophysical proper-
ties. PGC-1b coactivates the MEF2 family of
transcription factors to stimulate the type IIX
myosin heavy chain (MHC) promoter. PGC-1b

transgenic muscle fibers are rich in mitochon-
dria and are highly oxidative, at least in part due
to coactivation by PGC-1b of ERRa and PPARa.
Consequently, these transgenic animals can
run for longer and at higher work loads than
wild-type animals. Together, these data indi-
cate that PGC-1b drives the formation of highly
oxidative fibers containing type IIX MHC.

INTRODUCTION

Skeletal muscle converts chemical energy into motion

and force, ranging from rapid and sudden bursts of in-

tense activity to continuous low-intensity work (Berchtold

et al., 2000; Hood, 2001; Pette, 2002). At one functional

extreme, muscles such as the soleus perform slow but

steady activities such as postural tension. At the other

extreme, muscles such as the quadriceps and extensor

digitorum longus (EDL) typically perform intense and

rapid activities. Optimal efficiency of these disparate

roles in different fibers is achieved by both specific myofi-

brillar protein composition and a metabolic capacity that

is best suited for that composition. Most muscles in

mammals contain a mixture of fiber types, but some

muscle beds are enriched in particular fiber types. For
C

example, the soleus muscle is rich in type I and IIA myo-

sin heavy chains (MHCs), whose biophysical attributes

confer upon the soleus a ‘‘slow-twitch’’ phenotype.

Type I and IIA fibers are also rich in mitochondria, allow-

ing for continuous activity with less fatigue. These attri-

butes are ideal for the slow but constant role of maintain-

ing postural tension. In contrast, muscles like the EDL

and quadriceps contain more of the faster type IIB

MHCs and lack rich mitochondrial networks, attributes

more amenable to rapid and sudden activity of shorter

duration.

Adult skeletal muscle fibers also contain a fourth MHC

in abundance, type IIX (Schiaffino and Reggiani, 1994).

The specific role of IIX-containing fibers is still poorly

understood, but it appears to fall outside of the simple

paradigm of slow, oxidative fibers versus fast, glycolytic

fibers. Type IIX fibers are often oxidative, like I and IIA

fibers (Larsson et al., 1991). Consistent with this, they

often reside deeper in muscles (Larsson et al., 1991),

where fibers are likely to contribute more to baseline

muscle tone. However, IIX-containing fibers have ‘‘faster

twitch’’ attributes, intermediate between IIA and IIB

fibers (Bottinelli et al., 1994; Larsson et al., 1991). IIX-

containing fibers can also be recruited transiently during

fiber type conversion from IIB to IIA (Jacobs-El et al.,

1993) and appear to increase in frequency during old

age (Larsson et al., 1993). Hence, a spectrum of fiber

types exists, ranging from I through IIA, IIX, and IIB, with

a concordant decrease in oxidative capacity. How these

coordinated changes in fiber type and mitochondrial

content are determined is only beginning to be under-

stood.

Recent work has implicated the transcriptional coacti-

vator PGC-1a in muscle fiber type switching and determi-

nation (Lin et al., 2002b). PGC-1a and b are transcriptional

coactivators that interact directly with transcriptional

factors, chromatin-modifying enzymes, the basal tran-

scriptional machinery, and the splicing machinery to effect

powerful induction of transcriptional activity (reviewed

in Knutti and Kralli, 2001; Lin et al., 2005a; Puigserver

and Spiegelman, 2003; Scarpulla, 2002). PGC-1a was

originally identified as a coactivator for PPARg that

was induced by cold exposure in brown fat (Puigserver
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et al., 1998). PGC-1b was later identified by homology to

PGC-1a (Kressler et al., 2002; Lin et al., 2002a). It has

now become apparent that these proteins can also coac-

tivate a myriad of other transcription factors, both inside

and outside the nuclear receptor family. Most notably,

PGC-1a plays a dominant role in activating the full pro-

gram of mitochondrial biogenesis and respiration by

docking on transcription factors such as ERRa, NRF-2,

and NRF-1 (Mootha et al., 2004; St-Pierre et al., 2003;

Wu et al., 1999). PGC-1b appears equally potent in this

function in isolated cells (St-Pierre et al., 2003), although

in vivo evidence for this is still lacking. In addition, these

coactivators perform quite different functions in specific

tissues. In the liver, PGC-1a is strongly induced by fasting

and activates the program of gluconeogenesis via dock-

ing on HNF-4, FOXO1, GR, and other transcription factors

(Puigserver et al., 2003; Yoon et al., 2001). PGC-1b, on

the other hand, does not induce gluconeogenic gene

expression effectively. In contrast, a high-fat diet given

to mice leads to the induction of PGC-1b in liver, leading

to induction of fatty-acid synthesis and export via docking

of PGC-1b on LXR, SREBP1c, and FOXA2 (Lin et al.,

2005b; Wolfrum and Stoffel, 2006). PGC-1a can co-

activate LXR, but not SREBP1c or FOXA2. The differing

roles of PGC-1a and PGC-1b in tissues other than liver

are not clear.

Fiber composition in skeletal muscle is dictated by

a combination of developmental decisions and physiolog-

ical cues, most notably patterns of innervation (Pette,

2002). These cues are transduced via secondary path-

ways, such as calcineurin and CaM kinase. Transgenic

expression of PGC-1a in skeletal muscle leads to activa-

tion of genes typical of slow type I and IIA fibers (Lin

et al., 2002b). At the same time, as in most other tissues,

PGC-1a also induces a broad genetic program of mito-

chondrial biology (Lin et al., 2002b). In this way, PGC-1a

activates multiple transcriptional programs and induces

a coordinated conversion to fibers having characteristics

of slow, oxidative type I and IIA fibers. It is noteworthy

that PGC-1a is clearly not the sole determinant of type I

and IIA fibers since PGC-1a�/� mice still contain appar-

ently normal amounts of these fibers (Arany et al., 2005).

The role of PGC-1b in fiber type determination has not

been studied to date. Transgenic expression of PGC-1b

in all tissues at once leads to hypermetabolism and resis-

tance to diabetes (Kamei et al., 2003), but the skeletal

muscle phenotype and functional adaptations of these

animals had not been reported. Moreover, the role of

PGC-1a and b in regulating other fiber types, such as IIB

and IIX, had also not been examined. To address these

issues, we report here our analysis of mice with transgenic

expression of PGC-1b specifically in skeletal muscle. We

show that PGC-1b induces fibers with characteristics of

type IIX fibers without increasing type I fibers. It does

this at least in part via coactivation of the MEF2D tran-

scription factor. Simultaneously, PGC-1b powerfully acti-

vates the mitochondrial program. These changes yield

mice with greatly increased capacity to sustain physical

activity.
36 Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc.
RESULTS

Endogenous and Transgenic Expression

of PGC-1b in Skeletal Muscle

To determine the relative expression of PGC-1a and

b in different skeletal muscle beds, RNA was isolated

from various muscles of wild-type FVB mice, and quanti-

tative real-time PCR was performed. The relative expres-

sion levels of MHC isotypes were also measured, as MHC

expression is typically used as an indicator of the compo-

sition of different fiber types in muscle beds. As expected

(Lin et al., 2002b), PGC-1a was expressed at highest

levels in the type I-enriched soleus muscle and at relatively

lower levels in the ‘‘fast-twitch’’ beds like quadriceps and

extensor digitorum longus (see Figure S1 in the Supple-

mental Data available with this article online). In contrast,

although PGC-1b expression was relatively high in the

soleus, it was highest in the EDL muscle (Figure 1A;

Figure S1). A similar increase of PGC-1b in the EDL mus-

cle, compared to other fast-twitch muscles, has been

noted in the rat (Koves et al., 2005). As has been shown

elsewhere, MHC I and IIA were expressed most strongly

in the soleus muscle, and much less so in the EDL

(Figure S1). MHC IIX, on the other hand, was expressed

most highly in EDL, and expression of MHC IIX showed

a good correlation with that of PGC-1b, with the exception

of the specialized soleus (Figure 1A). Hence, the ex-

pression pattern of PGC-1b most closely resembles the

expression of MHC IIX.

To evaluate the relationship between PGC-1b and

MHC IIX levels in greater detail, cross-sections from gas-

trocnemius muscle were used for in situ immunohisto-

chemistry using an affinity-purified polyclonal antibody

recognizing PGC-1b and compared to in situ mRNA

hybridization using a probe unique for MHC IIX. Gastroc-

nemius was chosen because it contains the widest variety

of fiber types. As shown in Figure 1B, staining of PGC-1b

(brown arrows) was almost exclusively nuclear, consistent

with its role as a transcriptional coactivator. Importantly,

not every nucleus stained positive for PGC-1b (brown

versus blue arrows), and some nuclei stained much

more prominently than others. Similarly, a subset of fibers

contained prominent amounts of MHC IIX mRNA (black

dot), while the rest had little or none. Moreover, as with

staining for PGC-1b, fibers containing MHC IIX were

smaller in size, and more IIX fibers were found in the

deeper, more oxidative portions of the gastrocnemius

(Figure S2). Importantly, of the fibers that contained nuclei

clearly staining with PGC-1b antibody, 20% showed label-

ing for IIX, while only 7% of the remaining fibers were

labeled for IIX (Figure 1B, right panel). Hence, these data

illustrate that PGC-1b protein levels were significantly

enriched in IIX fibers.

We next evaluated the role of PGC-1b in skeletal muscle

biology by generating a transgenic mouse expressing

PGC-1b in skeletal muscle. The complete PGC-1b cDNA

was cloned 30 to 4.8 kb of the promoter of muscle creatine

kinase (MCK), which is expressed most strongly in skeletal

muscle, and less so in other striated muscles. The human
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growth hormone polyadenylation site was inserted 30 of

the cDNA (Figure S3). Mouse oocytes were injected with

this construct, and three mouse lines that expressed the

transgene were isolated. Line T9 expressed approxi-

mately 100-fold more PGC-1b mRNA in quadriceps mus-

cle than in nontransgenic wild-type controls, as assessed

by quantitative real-time PCR; expression of PGC-1b in

line T34 was increased about 25-fold; and expression in

line T37 was increased about 10-fold (Figure 2A). Most

Figure 1. Endogenous Expression of PGC-1b in Skeletal

Muscle

(A) Relative mRNA expression levels of PGC-1b MHC IIX in the indi-

cated muscles (SOL, soleus; DIA, diaphragm; EDL, extensor digitorum

longus; TA, tibialis anterior; QUAD, quadriceps). Muscles were isolated

from 5-month-old wild-type male FVB mice, and mRNA expression

was evaluated by quantitative real-time PCR. n = 6 for each muscle.

In this and all other figures, error bars represent ±SEM.

(B) 1003 magnification images of immunohistochemical staining with

affinity-purified antibody against PGC-1b (left panel) and in situ mRNA

hybridization with a probe specific for MHC IIX (right panel) from adja-

cent cross-sections of gastrocnemius muscle of wild-type male FVB

mice. Brown arrows indicate nuclei that are deeply stained for PGC-

1b protein, while blue arrows indicate nuclei that did not stain. The

black dot indicates a fiber containing abundant MHC IIX mRNA. The

graph below shows the fraction of fibers that clearly contain nuclei

staining for PGC-1b and that also contain abundant MHC IIX mRNA

(right bar), as compared to the fraction of the remaining fibers that

contain MHC IIX mRNA (left bar). >400 fibers from two WT and two

transgenic animals were scored.
Ce
subsequent experiments were conducted on the lowest

expresser, T37. Expression of the transgene in various

tissues and different muscle beds was evaluated

(Figure 2B). As expected from using the MCK promoter,

the transgene was expressed only in muscle. Moreover,

consistent with the expression of endogenous MCK,

expression of the transgene was highest in ‘‘white,’’ glyco-

lytic muscle such as quadriceps, EDL, and gastrocnemius

and was lower in ‘‘red,’’ oxidative muscle such as soleus

or heart (Figure 2B). Western blotting confirmed that the

mRNA from the transgene was translated into protein,

with PGC-1b protein levels in the gastrocnemius and tibia-

lis muscles from the T37 line approximately 10-fold and

3-fold greater than in nontransgenic muscle, respectively

(Figure 2C). In situ immunohistochemistry revealed that

nearly every fiber in muscle from transgenic mice con-

tained nuclei that were deeply stained, as compared

with the paler staining of nuclei from wild-type fibers

(Figure 2D). Of note, even though almost all fibers from

the transgenic animals contained at least one strongly

staining nucleus, some nuclei remained unstained; these

nuclei likely reflect satellite or endothelial cells, where

the transgene would not be expected to be expressed.

PGC-1b Converts Muscle Fibers to a IIX Type

The muscle from the PGC-1b transgenic mice was strik-

ingly redder in appearance than wild-type controls

(Figure 2E). This was equally true in all three mouse lines,

despite the differences in expression levels of the trans-

gene. H&E stains revealed that fibers in the transgenic

animals tended to be smaller in size (Figure S4), while

trichrome stains showed no evidence of fibrosis in the

transgenic animals. To determine whether the change

in muscle color was due to fiber type switching like

that seen in PGC-1a transgenic mice (Lin et al., 2002b),

ATPase chromatographic stains were used to identify

fibers containing type I and IIA MHCs. Surprisingly, no in-

duction of type I or IIA fibers was seen in the PGC-1b

transgenic mice (Figure S5). This suggests that PGC-1b,

unlike PGC-1a, does not induce the formation of classical

slow type I or IIA fibers.

To evaluate the composition of fibers in PGC-1b trans-

genic mice more specifically, the expression of each of

the four adult MHC transcripts was measured in skeletal

muscle from WT and transgenic mice. As shown in

Figure 3A, mRNAs encoding MHCs I, IIA, and IIB were

all repressed in the transgenic mice compared to wild-

type littermates. However, there was a striking induction

of MHC IIX mRNA in the transgenic animals, by as much

as 5-fold in the gastrocnemius muscle. This was true in

all skeletal muscles examined (Figure 3A), except the

type I-rich soleus, where the transgene is poorly ex-

pressed (Figure S6). Interestingly, the levels of PGC-1a

mRNA in PGC-1b transgenic animals were substantially

reduced (Figure S7). To determine whether the induction

of the MHC IIX mRNA transcript resulted in increased

MHC IIX protein, western blotting was performed on

whole-cell extracts using an antibody specific for the IIX

isotype (6H1, a kind gift from L.A. Leinwand). As shown
ll Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc. 37
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Figure 2. Transgenic Expression of PGC-1b in Skeletal Muscle

(A) Relative mRNA expression levels of PGC-1b in quadriceps muscle from each of three independent lines of PGC-1b transgenic mice, compared

to wild-type littermate control. TG = transgenic.

(B) Relative mRNA expression levels of the transgenic PGC-1b (Tg) and endogenous muscle creatine kinase (M MCK) in the indicated tissues taken

from transgenic mice of the T37 line. n = 3 for each sample.

(C) PGC-1b protein levels in gastrocnemius and tibialis anterior muscles from transgenic mice of the T37 line versus wild-type animals (right panels),

visualized by western blotting with affinity-purified rabbit polyclonal antibody against PGC-1b. As control for the antibody, extracts from C2C12

myoblasts transfected with plasmid expressing either PGC-1a or b were used (left panel).

(D) Immunohistochemical staining of gastrocnemius fibers from WT or transgenic animals with affinity-purified antibody against PGC-1b. 1003

magnification.

(E) A transgenic mouse from the T37 line and a wild-type littermate were skinned after euthanasia and photographed. The inset shows quadriceps

from the same animals, bathed in saline solution.
in Figure 3B, a marked induction of MHC IIX protein was

detected in PGC-1b transgenic animals. MHC proteins

can also be detected by Coomassie staining of cell

extracts separated by SDS-PAGE. Under these condi-

tions, MHC IIA and IIX proteins nearly comigrate in a single

band, while MHC IIB and MHC I migrate with smaller

molecular weights. As shown in Figure 3C, the band con-

taining MHC IIA and IIX was markedly induced in extracts

from PGC-1b transgenic mice compared to wild-type

littermates, while MHC IIB was repressed.

To investigate what proportion of fibers in the trans-

genic animals had increased MHC IIX expression, in situ

immunohistochemistry using the MHC IIX-specific anti-

body and in situ mRNA hybridization using the probe

unique for MHC IIX were performed on muscles from WT

and transgenic animals. As shown in Figures 3D and

3E and Figures S8 and S9, nearly 100% of fibers in the

transgenic animals contained abundant MHC IIX mRNA

and protein, as compared to only 15%–20% in WT ani-

mals (again with the exception of the soleus muscle;
38 Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc.
Figure S8). Hence, forced expression of PGC-1b in skele-

tal muscle drives nearly all fibers to express MHC IIX.

Various transcription factors, including NFAT, MEF2,

MyoD, and myogenin (Allen et al., 2005; Beylkin et al.,

2006), have been implicated in the regulation of the

MHC genes. The mechanisms that specify expression of

each MHC in different fiber types, however, remain poorly

understood. To determine whether PGC-1b regulates the

MHC IIX promoter, a 2 kb fragment of DNA surrounding

the MHC IIX transcriptional start site was cloned 50 to a

luciferase reporter gene. Transfection of this plasmid

into 10T1/2 fibroblast cells yielded little luciferase activity

(Figure 4A), consistent with the muscle-specific expres-

sion of MHC IIX. The MEF2 transcription factors are

thought to be master regulators of skeletal muscle deter-

mination (McKinsey et al., 2002; Naya and Olson, 1999),

and the phosphatase calcineurin is also known to contrib-

ute significantly to regulation of skeletal muscle-specific

transcription by transducing Ca2+ and other signals

(Bassel-Duby and Olson, 2003, 2006). Cotransfection of
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Figure 3. PGC-1b Shifts Muscle Fibers to a IIX Type

(A) Relative mRNA expression levels of the four adult MHC isotypes in the indicated muscles, isolated from 3-month-old T37 transgenic mice or

wild-type littermates. n = 3 for each muscle. *p < 0.05.

(B) Western blotting of extracts from gastrocnemius of WT and T37 animals using the MHC IIX-specific monoclonal antibody 6H1.

(C) Coomassie staining of whole-cell extracts, separated by SDS-PAGE, isolated from the indicated muscles from T37 transgenic or wild-type mice.

(D) In situ mRNA hybridization of tibialis anterior muscle cross-sections from WT and transgenic (T37) mice with a probe specific for MHC IIX.

(E) Immunohistochemical analysis of tibialis anterior muscle from WT and T37 animals using antibodies against MHC IIX (6H1, green) and laminin (red).

DAPI staining of nuclei is in blue.
the MHC IIX luciferase construct with plasmids encoding

for MEF2A, C, and D as well as constitutively active calci-

neurin was sufficient to activate the MHC IIX promoter in

these cells (Figure 4A). Significantly, simultaneous expres-

sion of PGC-1b stimulated transcription from the promoter

5-fold further (Figure 4A). PGC-1b had no effect on the

promoter in the absence of MEF2 transcription factors

(data not shown). Transfection of the three MEF2s individ-

ually indicated that activation of the MHC IIX promoter

was almost entirely due to coactivation of MEF2D by

PGC-1b (Figure 4B). Interestingly, the MHC IIA and MHC

IIB promoters were less responsive to MEF2s and calci-

neurin than the MHC IIX promoter, and, importantly,

PGC-1b had no additional effect on these promoters

(Figure S10). Also of note, the abundance of MEF2 pro-

teins in muscle from transgenic animals was not increased

(Figure S11). These data strongly suggest that PGC-1b
Ce
activates the MHC IIX promoter at least in part via coacti-

vation of MEF2D.

These transfection studies also showed that PGC-1a

also strongly stimulated the MHC IIX promoter via

MEF2D (Figure 4A). We have previously described trans-

genic mice encoding for PGC-1a under the control of

the MCK promoter, similar to the PGC-1b transgenic

mice described here, but we did not study the IIX fiber

content of these mice. To determine whether PGC-1a

also activated the MHC IIX promoter in vivo, levels of

mRNA for each adult MHC were evaluated in quadriceps

muscle from PGC-1a transgenic mice. As shown in Fig-

ures 4C and 4D, MHC IIX mRNA was induced from about

2-fold in the tibialis anterior to about 6-fold in the quadri-

ceps of transgenic mice compared to wild-type littermate

controls. However, unlike in the PGC-1b transgenic mice,

type I and IIA MHCs were also induced, rather than
ll Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc. 39
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Figure 4. PGC-1b Coactivates MEF2 to Stimulate the MHC IIX Promoter

(A) Luciferase activity in 10T1/2 cells transfected with the MHC IIX promoter-luciferase construct plus plasmids encoding for the indicated proteins.

Samples were performed in triplicate. MEF2s = equal amounts of plasmids encoding MEF2A, C, and D.

(B) Luciferase activity as in (A).

(C) Relative mRNA expression levels of the four adult MHC isotypes in quadriceps muscles isolated from MCK-PGC-1a transgenic mice or wild-type

littermates. n = 8 for each muscle.

(D) Relative mRNA expression levels of MHC IIX in the indicated muscles isolated from MCK-PGC-1a transgenic mice or wild-type littermates. n = 4

for each muscle.
repressed (Figure 4C). This is consistent with the induction

of type I and IIA fibers seen in these animals (Lin et al.,

2002b). Hence, both PGC-1 proteins drive skeletal muscle

fibers in vivo to express MHC IIX at least in part via dock-

ing on MEF2D. However, PGC-1a is distinguished by its

ability to also drive type I and IIA MHCs, while PGC-1b

represses the expression of these MHCs.

PGC-1b Increases Transcription of Genes of

Mitochondrial Function In Vivo

PGC-1a and b are both potent inducers of mitochondrial

biogenesis in isolated cells (Meirhaeghe et al., 2003;

St-Pierre et al., 2003), and PGC-1a can also increase

mitochondrial biogenesis in vivo (Lehman et al., 2000).

To determine whether PGC-1b induces expression of

genes of mitochondrial function in vivo, RNA was isolated

from quadriceps muscle from PGC-1b transgenic mice

and evaluated by quantitative PCR. As shown in Figure 5A

(left panels), a number of genes encoding for members of

the electron transport chain (cycs, somatic cyctochrome

c; nduf5, a member of the NADH dehydrogenase com-

plex; atp5o, a member of the ATPase complex; and

cox5b, a member of the cytochrome oxidase complex)

were induced up to 5-fold in transgenic mice compared

to wild-type littermates. The induction was even more
40 Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc.
potent in the T9 transgenic line that expresses more

PGC-1b (Figure 5A, lower left panel). Similarly, genes

encoding for proteins of fatty-acid metabolism (CD36,

fatty-acid transport protein; MCAD, medium-chain fatty-

acid dehydrogenase; and CPT1, carnitine transferase 1),

which occurs inside mitochondria, were also markedly

elevated in both the T37 and T9 transgenic lines (Figure 5A,

right panels). To evaluate these changes in a more sys-

tematic fashion, microarray analyses were performed

with RNA from wild-type and transgenic animals. As

shown in Figure 5B, each of the 25 most highly expressed

genes of mitochondrial function was induced in the trans-

genic mice. To determine whether these changes in gene

expression resulted in higher protein concentrations,

extracts from wild-type and transgenic muscles were

evaluated by western blotting with specific antibodies.

As shown in Figure 5C, all of the mitochondrial proteins

measured (members of electron transport chain com-

plexes I and III) were induced in the transgenic mice.

These included proteins encoded by both nuclear (e.g.,

nduf) and mitochondrial (e.g., ND6) genes.

We next investigated the transcription factor (or factors)

through which PGC-1b functions in vivo. To do this,

we used the unbiased informatics approach developed

by Mootha et al. (2004). This program examines the
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Figure 5. PGC-1b Stimulates Genes of Oxidative Phosphorylation and Fatty-Acid Oxidation In Vivo

(A) Relative mRNA expression levels of the indicated genes in quadriceps muscles isolated from 3-month-old T9 (top panels) or T37 (bottom panels)

transgenic mice versus wild-type littermates. OXPHOS, genes of oxidative phosphorylation; FAO, genes of fatty-acid oxidation and transport. n = 3

for each muscle.

(B) Microarray analysis of RNAs from T37 quadriceps and wild-type littermates. The mitochondrial genes that are most highly expressed are shown.

Green and red indicate lower and higher expression, respectively.

(C) Western blots of extracts, separated by SDS-PAGE, made from gastrocnemius muscles of the indicated transgenic lines and wild-type littermates.

(D) motifADE analysis of the microarray data described in (B). Shown are 6-, 7-, and 8-mers that are present statistically more frequently in the

promoter regions of genes that are more highly expressed in transgenic animals. A consensus motif is shown in the box and is compared to known

consensus motifs for ERRa binding and nuclear receptor binding.

(E) PGC-1b coactivates ERRa to stimulate expression of the PGC-1a and b promoters (top panels) and coactivates PPARa to stimulate expression

of a nuclear receptor consensus binding site. 10T1/2 cells were transfected with luciferase (luc) reporter plasmids and plasmids encoding for ERRa

and/or PGC-1b (top panels) or PPARa + RXR and/or PGC-1b (bottom panels). Cells were simultaneously treated with the PPARa agonist WY14848

where indicated. Luciferase activity was assayed 48 hr later.
expression data in entire Affymetrix-based microarrays

and compares it to known gene promoter sequences.

Short DNA sequences are then identified that are dispro-

portionately represented in promoter regions of genes

either increased or decreased by a given intervention.

The sensitivity of the program is such that it favors the

detection of relatively large coordinated gene sets, such

as those genes involved in mitochondrial biogenesis. We

successfully used this originally to identify the orphan

nuclear receptor ERRa as an early target of PGC-1a in

mitochondrial biogenesis (Mootha et al., 2004). A similar

analysis had not been performed with PGC-1b. When

the gene sets from wild-type and PGC-1b transgenic
animals were compared, a number of sequences were

found with significantly higher frequency in genes more

highly expressed in the transgenic mice (Figure 5D). All

of these sequences were homologous to the consensus

sequence for binding to nuclear receptors, most closely

to that of ERRa (Figure 5D).

Both PGC-1 coactivators have previously been shown

to coactivate ERRa in cultured cells (Huss et al., 2002;

Kamei et al., 2003; Mootha et al., 2004). Moreover,

PGC-1a has been shown to act, in part via ERRa, in a pos-

itive feedback loop on its own promoter (Handschin et al.,

2003; Mootha et al., 2004). To determine whether PGC-1b

participates in a similar feedback loop, 10T1/2 cells were
Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc. 41
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Figure 6. PGC-1b Stimulates Mitochondrial Biogenesis and Formation of Oxidative Fibers In Vivo

(A) Transmission electron micrographs from cross- (top panels) and longitudinal (bottom panels) sections taken from tibialis anterior muscles from T37

and T9 transgenic and wild-type animals.

(B) Top panels show NADH staining of cross-sections from tibialis anterior muscles from T37 and wild-type littermate animals. Middle panel shows

average fiber area (in cross-section) in tibialis anterior of wild-type and transgenic animals. n = 6 for each group. Bottom panel shows average fiber

size in the same samples as above, separated according to oxidative capacity as determined by NADH staining.
transfected with a PGC-1b promoter-luciferase construct

and plasmids encoding for PGC-1b and ERRa. As shown

in Figure 5E, PGC-1b and ERRa acted synergistically to

activate the PGC-1b promoter. Similarly, PGC-1b and

ERRa also acted synergistically on the PGC-1a promoter

(Figure 5E, right panel). Hence, PGC-1b efficiently coacti-

vates ERRa to participate in a positive feedback loop with

both itself and PGC-1a. The gene set induced in the

muscles from PGC-1b transgenic mice also contains a

number of genes known to be targets of the nuclear

receptor PPARa, such as genes of fatty-acid import and

oxidation (Kelly and Scarpulla, 2004). Figure 5E also

shows that PGC-1b coactivates PPARa on a reporter

containing repeated nuclear binding sites. Together, these

data strongly suggest that PGC-1b drives genes of

mitochondrial function in vivo, including genes of fatty-

acid metabolism and oxidative phosphorylation, at least

in part via coactivation of nuclear receptors such as

ERRa and PPARa.

PGC-1b Drives the Formation of Oxidative Fibers

Figure 6A shows electron micrographs of transverse

sections from wild-type mice and two lines of MCK-

PGC-1b transgenic mice. In both transgenic mice, the

presence of mitochondria is markedly induced. In the

high PGC-1b expressor (T9), the mitochondrial biogenesis

is so extreme as to displace and disorganize the myofibril-

lar apparatus (Figure 6A, right panels). The lower PGC-1b
42 Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc.
expressor (T37) induced mitochondria to a lesser extent

(middle panels), and myofibrillar architecture is preserved.

Hence, PGC-1b not only activates the genes of mitochon-

drial function but also activates the full program of

mitochondrial biogenesis in vivo.

Normally, skeletal muscle displays a patchwork of

glycolytic and oxidative fibers. Certain muscles such as

the soleus and deeper sections of muscles such as the

gastrocnemius tend to contain more oxidative fibers,

while muscles such as the tibialis anterior contain mostly

glycolytic fibers interspersed with a few oxidative fibers.

To address whether this pattern is disturbed in PGC-1b

transgenic mice, sections from muscles were stained in

situ for the activity of NADH dehydrogenase, the first com-

plex of the electron transport chain and a marker of oxida-

tive fibers. Strikingly, in the PGC-1b transgenic mice,

every fiber in the tibialis anterior was oxidative (Figure 6B,

top panel). This was also true in all other muscles exam-

ined (data not shown). Oxidative fibers are typically

smaller in diameter than glycolytic fibers. As shown in

Figure 6B (middle and lower graphs), tibialis anterior

from wild-type mice contained a mix of large, glycolytic

fibers and smaller, oxidative fibers, while the same muscle

from transgenic mice contained only the latter fibers. Con-

sistent with this, muscles from transgenic mice were

slightly smaller (data not shown). Taken together, these

data demonstrate that PGC-1b coordinately induces in

vivo fibers with type IIX characteristics, including the
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Figure 7. PGC-1b Increases Functional Capacity In Vivo

(A) Transgenic (T37) and wild-type littermate controls were made to run on a treadmill set at a 10% incline, following the protocol outlined in the lower

panel: after a 5 minute run-in period at 10 meters/minute, the speed was increased by 2 meters/minute every 2 minutes. The time that the mice

remained on the treadmill before exhaustion is indicated on the left bars, and the distance run during that time is indicated on the right. All experiments

were performed blinded to the genotype of the animals. n = 9 each group.

(B) Work achieved by wild-type and transgenic animals in (A) was calculated as outlined in methods.
induction of MHC IIX protein and a coordinated increase in

oxidative capacity.

PGC-1b Transgenic Mice Have Increased Capacity

for Oxidative Work

Oxidative phosphorylation is by far the most efficient

way to generate ATP. For this reason, endurance exercise

relies largely on oxidative fibers in skeletal muscle. The

oxidative capacity in the skeletal muscle of PGC-1b

mice therefore suggested that these mice might have an

altered capacity for aerobic exercise. To test this hypoth-

esis, transgenic mice and wild-type littermate controls

were subjected to treadmill exercise. The treadmill was

set to a constant 10% incline and the speed was in-

creased by 2 m/min every 2 min, and mice were forced

to run to exhaustion. Exhaustion closely follows the attain-

ment of the anaerobic threshold, which in turn closely

correlates with oxidative capacity. Transgenic mice were

able to run, on average, for 32.5 min to exhaustion, com-

pared to 26 min for wild-type littermates (p = 0.01), which

reflects a distance run of 746 meters, versus 516 meters

with wild-type animals (Figure 7A). This indicated that

PGC-1b transgenic mice could perform significantly

more work than the wild-type controls, calculated as

1174 joules versus 886 joules (Figure 7B). Hence, increas-

ing PGC-1b in skeletal muscle is sufficient to increase

the capacity to perform work under oxidative conditions

in vivo.
C

DISCUSSION

Skeletal muscles perform a variety of different kinds of

work. In response to these requirements, animals have

evolved different muscle fibers, with different energetic

capacities and biophysical properties. At one extreme,

type I fibers are highly oxidative, with the highest content

of mitochondria of any muscle fibers, and rich in slow-

twitch type I MHC. At the other extreme, type IIB fibers

have an MHC with rapid and powerful contraction proper-

ties, are poor in mitochondria, and rely mainly on glycolytic

metabolism. Type IIX fibers are the least understood of the

skeletal muscle fibers, partly because there is no muscle

bed that is dramatically enriched in these fibers. Whereas

soleus muscle can be studied as a model of type I fibers,

because these fibers make up as much as 70% of the

soleus, there is no equivalent model for IIX fibers. Type

IIX fibers are also unusual in that their MHC is ‘‘faster

twitch’’ than type I or IIA fibers, but they are also generally

more oxidative and mitochondria rich than IIB fibers.

Fibers with such attributes are likely important since the

requirements for muscle action do not always fall precisely

into the stereotypic dichotomy of slow, high-endurance

actions versus fast, low-endurance actions.

Our data show that PGC-1b strongly regulates the

development of type IIX fibers and present a valuable

animal model appropriate to study the physiology of

type IIX-rich muscle in vivo. While skeletal muscle with
ell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc. 43



Cell Metabolism

PGC-1b Drives Type IIX Muscle Fibers
elevated PGC-1a shows an increase in fibers of all oxida-

tive types, we show here that expression of PGC-1b drives

only the development of type IIX fibers. Importantly, the

transgenic mice show both an increase in the expression

of type IIX MHC and a large increase in mitochondrial con-

tent. Furthermore, the expression of transgenic PGC-1b

actually suppresses the expression of MHC I and IIA, in

contrast to the induction seen with transgenic expression

of PGC-1a. That the effects described here of PGC-1b on

fiber types are likely to be of physiological relevance is

strongly suggested by the fact that levels of PGC-1b

correlate well with those of MHC IIX gene expression. It

is important to note that PGC-1b is unlikely to be the

sole determinant of IIX fibers. In particular, PGC-1b

expression is high in the soleus, but this muscle contains

almost no IIX fibers. Clearly, other factors must also be

involved in this fiber type decision.

PGC-1a mRNA is repressed in PGC-1b transgenic ani-

mals, and this may contribute to the observed reduction

in MHC I and IIA expression. It is unlikely, however, that

repression of PGC-1a contributes to the induction of IIX

fibers since PGC-1a seems to promote IIX formation (Fig-

ure 4) and since complete absence of PGC-1a in �/�
animals does not lead to increased IIX fibers (data not

shown). It is also formally possible that some of the effects

seen in the PGC-1b transgenic animals stem from altered

expression of PGC-1b during development.

Having mice with a greatly increased content of type IIX

fibers allowed us to analyze the actual performance of

muscles enriched in these fibers in a way that has not

been possible before. We show here that elevated oxida-

tive IIX fiber content increases the ‘‘athletic’’ performance

of mice and allows them to run further and do more work

before exhaustion. Since the transgene is expressed only

in muscle, we can reasonably ascribe these changes to

the muscles themselves. However, whether this increased

performance in running is due to alteration in the contrac-

tile apparatus or altered fuel homeostasis will require

further study.

A key aspect of transcriptional control in development

and homeostasis is the coordinated induction of multiple

genetic programs. For example, the determination of

skeletal muscle fiber type requires the coordinated acti-

vation of specific myofibrillar proteins and the appropri-

ate metabolic program. Transcriptional coactivators are

well suited to play a role in such coordinated regulation

by superimposing their regulatory activity on underlying

core programs that are controlled by transcription factors.

The data presented here provide a strong example of such

a mechanism: PGC-1b coordinates the coactivation of at

least MEF2, ERRa, and PPARa, and likely a number of

other transcription factors, to activate both MHC IIX ex-

pression and the full program of mitochondrial biogenesis.

Previous work showed that PGC-1a can drive the for-

mation of type I and IIA fibers in skeletal muscle in vivo.

In sharp contrast, PGC-1b in fact repressed expression

of MHC type I and IIA. Since PGC-1a also binds to and

coactivates MEF2D, it is not immediately apparent why

PGC-1b drives only type IIX MHC in vivo. The simplest
44 Cell Metabolism 5, 35–46, January 2007 ª2007 Elsevier Inc.
interpretation of these data is that while coactivation of

MEF2 is important, there are likely to be other transcrip-

tional components in the muscle fiber type systems that

distinguish the actions of PGC-1a and b. Indeed, studies

in liver have already shown that these highly related coac-

tivators can nevertheless bind to and coactivate overlap-

ping but nonidentical transcription factors.

What stimuli alter the content of type IIX fibers and how

PGC-1b is regulated in muscle are poorly understood.

PGC-1b expression appears less sensitive to acute

exercise than PGC-1a, but how PGC-1b is altered during

chronic exercise, when fiber type switching is expected

to occur, is not known. As stated earlier, type IIX fibers

also appear to be an important transition stage when

fibers switch from IIB to IIA. It will therefore be of interest

to evaluate the role of PGC-1b during these transition

periods. PGC-1b is also repressed in diabetic muscle,

along with PGC-1a and a significant part of the repertoire

of mitochondrial genes. However, whether this relates

to the content of fiber types in diabetic muscle, and

whether type IIX fibers have different metabolic profiles

that may be protective against diabetes, awaits further

investigation.

Finally, these data have potential importance for the

therapy of a number of muscular and neuromuscular dis-

eases in humans. Many conditions accompanied by loss

of physical mobility, including paraplegia, prolonged bed

rest, and muscular dystrophies, involve a loss of oxidative

fibers and their replacement with glycolytic fibers. This, in

turn, results in a further loss of resistance to fatigue, exac-

erbating the patient’s condition in a downward spiral. The

identification of PGC-1b as a potential mediator of the

development of oxidative type IIX fibers suggests new

ways to modulate muscle fiber type in health and disease.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were performed according to procedures

approved by the Dana-Farber Cancer Institute’s Institutional Animal

Care and Use Committee. Mice were maintained on a standard rodent

chow diet with 12 hr light and dark cycles. To generate transgenic

mice, the complete PGC-1b cDNA was cloned 30 to 4.8 kb of the

promoter of muscle creatine kinase (MCK) (Johnson et al., 1989),

and the human growth hormone polyadenylation site was inserted 30

to the cDNA. Mouse oocytes were injected with this construct by the

Dana-Farber Cancer Institute Core Facility. Exercise tolerance was

measured by performing the above described protocol on a motor-

driven treadmill (Columbus Instruments) following 3 days of acclima-

tion at 14 m/min and 0% grade for 5 min. MCK-PGC-1a mice have

been described previously (Lin et al., 2002b).

Cells and Reagents

C2C12 and 10T1/2 cells were from ATCC and were grown in DMEM

10% FBS. Antibodies against cytochrome c and electron transport

chain proteins were from Pharmingen and MitoSciences, respectively.

The affinity-purified rabbit antibody against PGC-1b has been

described previously (Lin et al., 2005b). The MHC IIX-specific mono-

clonal antibody 6H1 was a kind gift of L.A. Leinwand. The probe

specific for MHC IIX mRNA, used for in situ mRNA hybridization, was

created by PCR amplification of cDNA from skeletal muscle using

primers 50-GGGAGAAGTGAGCTTCAACC-30 and 50-CGAGAGGAG
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CAGGCTGAGCCAGAC-30. The PGC-1a and b promoter-luciferase

plasmids; the DR1-luciferase plasmid; and plasmids encoding for

PGC-1a, PGC-1b, ERRa, and PPARa have been described previously

(Handschin et al., 2003; Lin et al., 2005b). The MHC IIX promoter-

luciferase plasmid was generated by amplifying a 2 kb fragment of

DNA encompassing 1.7 kb 50 to 300 bases 30 of the MHC IIX start

site and subcloning into the pGL3-Basic plasmid (Promega). The

MHC IIA promoter-luciferase plasmid was a kind gift of D.L. Allen.

Transfections were done using Superfect (QIAGEN) according to the

manufacturer’s instructions. Wy14848 was from Wyeth.

Histological Analyses

Electron microscopy was performed at the Brigham and Women’s

Core Facility. For all other histologies, tissues were snap frozen in liq-

uid nitrogen immediately after harvesting. Fiber typing was performed

with cryostat sections using metachromatic dye-ATPase methods as

described previously (Ogilvie and Feeback, 1990). The cross-sectional

area of fibers was determined using MetaMorph software after immu-

nocytochemical labeling of cryostat sections with anti-laminin anti-

body. Five separate slides from five separate animals were used for

each group.

Protein Studies

Protein lysates were prepared in a buffer containing PBS, 1% NP-40,

0.5% sodium deoxycholate, 0.1% SDS, and a cocktail of protease

inhibitors; separated on 4%–12% NuPAGE gels (Invitrogen); and im-

munoblotted with the indicated antibodies in the presence of 5%

Blotto. Separation of proteins for determination of MHC composition

was performed by SDS-PAGE as described (Talmadge and Roy,

1993), followed by Coomassie staining.

Gene Expression Studies

Total RNAs were isolated from mouse tissue or cultured cells using the

Trizol method (Invitrogen). Samples for real-time PCR analyses were

reverse transcribed (Invitrogen), and quantitative real-time PCR reac-

tions were performed on the cDNAs in the presence of fluorescent

dye (SYBR Green, Bio-Rad). DNA product of the expected size was

confirmed for each primer pair. All results are expressed as means ±

SEM. Two-tailed independent Student’s t tests were used to deter-

mine all p values. Microarrays were performed by the Dana-Farber

Cancer Institute Core Facility using Affymetrix MOE430A chips.

motifADE (Mootha et al., 2004) was applied to the comparison

between expression arrays derived from three wild-type versus

three transgenic quadriceps muscles. All 6-, 7-, and 8-mers with a

modified p value < 0.05 were sought.

Supplemental Data

Supplemental Data include eleven figures and can be found with

this article online at http://www.cellmetabolism.org/cgi/content/full/

5/1/35/DC1/.
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