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Because several observations have suggested that replication of the gammaherpesvirus bovine herpesvirus 4 (BHV-4) is
influenced by the physiological state of the host cell, a study was carried out to determine the relationship between BHV-
4 infection and the cell cycle. The temporal expression of BHV-4 late (L) proteins in unsynchronized cell cultures was first
investigated by flow cytometry. Interestingly, L protein expression occurred in a limited number of cells infected with a high
multiplicity of infection, and a reciprocal correlation between the percentage of positive cells and the cell density at the
time of infection was demonstrated. Moreover, the finding that a BHV-4 early–late protein was expressed in nearly all the
cells suggested that a blockage in the viral replication cycle occurred in some infected cells at the stage of viral DNA
synthesis or L protein expression. Because this blockage could be the consequence of the dependence of one or both of
these events on the cell cycle, they were investigated after infection of synchronized cell cultures. The following findings
were made. (i) Cell transition through the S phase quantitatively increased the rate of BHV-4 DNA replication. (ii) BHV-4
DNA synthesis could not be detected in cells arrested in G0 . (iii) Synchronization of MDBK cells with Lovastatin before
infection increased the percentage of cells expressing L proteins. (iv) In contrast, infection of cells arrested in G0 led to
few positive cells. Taken together these results showed that BHV-4 DNA replication and consequently the expression of L
proteins are dependent on the S phase of the cell cycle. This dependence could be of importance for several biological
properties of BHV-4 infection in vitro and might have implications for the biology of the virus in vivo. q 1995 Academic

Press, Inc.

INTRODUCTION are expressed chronologically as immediate-early (IE or
alpha), early (E or beta), and late (L or gamma) proteins.

Bovine herpesvirus type 4 (BHV-4) is one of the four
Immediate-early proteins are expressed directly after re-

known bovine herpesviruses. The other three, belonging
lease of the viral genome from the capsid into the nu-

to the Alphaherpesvirinae, are bovine herpesviruses type
cleus (Costanzo et al., 1977). While E protein expression

1 (BHV-1), type 2 (BHV-2), and type 5 (BHV-5) (Roizman et
occurs after synthesis of IE proteins, L protein expression

al., 1992), which cause infectious bovine rhinotracheitis/
depends on the expression of both IE and E proteins

pustular vulvovaginitis, bovine herpes mammillitis, and
and viral DNA synthesis.

bovine encephalitis, respectively (Gibbs and Rweye-
In contrast to some simpler viruses, replication of mostmamu, 1977a,b). BHV-4 was first isolated by Bartha et

herpesviruses is generally assumed to be independental. (1966). It has been isolated both from cattle showing
of the stage of the host cell in the cell cycle (Cohenvarious clinical symptoms and from healthy cattle (Thiry
et al., 1971; DeMarchi and Kaplan, 1976; Knipe, 1990;et al., 1989). It was initially called bovine cytomegalovirus
Roizman, 1990; Shadan et al., 1994). Nevertheless, suchand was classified as a betaherpesvirus based on its
dependence has been described at least in some spe-biological characteristics (Storz et al., 1984). However,
cific cell lines for the alphaherpesvirus equine herpesvi-Bublot et al. (1992) have shown, based on molecular
rus 1 (EHV-1) (Lawrence, 1971) and for the betaherpes-data, that BHV-4 belongs to the Gammaherpesvirinae.
virus murine cytomegalovirus (MCMV) (Muller and Hud-The expression of herpesvirus proteins is temporally
son, 1977). The possibility that BHV-4 replication couldregulated. The proteins are classified into three kinetic
be dependent on the cell cycle was suggested indepen-classes depending on the order of their synthesis during
dently by two groups. First, Potgieter and Maré (1974)in vitro infection (Honess and Roizman, 1974, 1975). They
showed that there were marked differences in the kinet-
ics of BHV-4 plaque formation between confluent cells

1 To whom correspondence and reprint requests should be ad-
and actively growing cells. The time at which plaquesdressed at Department of Virology–Immunology, Faculty of Veterinary
developed was reduced from 10–12 days to 5–6 daysMedicine, University of Liège, B43 bis, B-4000 Liège, Belgium. Fax: 32-

41664261. postinfection when confluent cells and freshly seeded
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329BHV-4 CELL-CYCLE DEPENDENCE

cells were infected, respectively. Second, Dubuisson et plasschen et al., 1993b) was diluted in a medium identi-
cal to that used for mock-infected cells.al. (1988) observed a second peak in the intracellular

viral production curve in freshly seeded cells, but not in
Monoclonal antibodiesconfluent cells, despite the multiplicity of infection (m.o.i.)

of 7 PFU/cell used. The monoclonal antibodies (Mabs) used in this study
One of the major difficulties in studying events related were Mab 35 and Mabs 123, 113, and 29, which recog-

to the cell cycle is obtaining highly synchronized cell nize the early–late (E-L) glycoprotein complex gp6/gp10/
populations without metabolic imbalance. Recently, it gp17 (Dubuisson et al., 1991) and the L glycoproteins
has been demonstrated that Lovastatin (Lov) is effective gp1 (Dubuisson et al., 1992b), gp8 (Dubuisson et al.,
in reversibly synchronizing cells from different origins in 1992a), and gp11/vp24 (Dubuisson et al., 1989), respec-
the G1 phase (Jakobisiak et al., 1991; Keyomarsi et al., tively. The E-L classification of the glycoprotein complex
1991; Vanderplasschen et al., 1994). This drug blocks gp6/gp10/gp17 is based on the fact that a precursor of
cells in the G1 phase by inhibiting the synthesis of cellular two components (gp10/gp17) is already expressed in the
mevalonic acid (Mev). The cytostatic effect of Lov can be early phase, whereas the mature form (gp6/gp10/gp17)
reversed by its removal and the simultaneous addition is expressed in the L phase (Dubuisson et al., 1991).
of Mev. Mab 35 recognizes both the precursor and the mature

Because several observations have suggested that forms and was therefore used as a marker of E-L protein
BHV-4 replication is influenced by the physiological state expression (Dubuisson et al., 1991).
of the host cell, we have investigated the relationship Mab 1507 raised against BHV-1 gC glycoprotein (ex-
between BHV-4 infection and the host cell cycle. This pressed as a L protein) was kindly provided by Dr. Letch-
study demonstrates that BHV-4 DNA synthesis and con- worth (Marshall et al., 1986; Ludwig and Letchworth,
sequently L protein expression are dependent on the S 1987) and anti-b-galactosidase Mab was purchased from
phase of the cell cycle. This dependence could be of Boehringer-Mannheim (Brussels, Belgium).
importance for several biological properties of BHV-4 in-
fection in vitro and might have implications for the biology Fixation and immunological staining of cells for flow
of the virus in vivo. cytometry

Adherent cells were harvested with trypsin–EDTA,MATERIALS AND METHODS
fixed in cold acetone/phosphate-buffered saline (PBS)

Virus strains and cell cultures (66:34, v/v) (PBS: 3 mM KCl, 1.5 mM KH2PO4 , 0.14 M
NaCl, 6.5 mM Na2HPO4 , pH 7.2) for 20 min at 47, andMadin Darby bovine kidney (MDBK) (American Type
then washed with PBS. About 106 cells in PBS containingCulture Collection CCL 22) and Georgia bovine kidney
gelatine (PBSG) (0.05 mg/ml) and the appropriate prede-(GBK) cell lines and Bovine skin (BSC) and Bovine testicle
termined concentration of Mab were incubated at 377 for(BTC) primary cell cultures were used in this study. The
45 min. Cells were washed and further incubated withcells were cultured in minimum essential medium (MEM)
fluorescein isothiocyanate (FITC)-conjugated F(ab *)2(GIBCO, Gent, Belgium) containing 5% fetal calf serum
goat anti-mouse IgG (H / L chains) (1 mg/106 cells per(FCS) (GIBCO), heat inactivated at 567 for 30 min, and
0.2 ml PBSG) (Becton–Dickinson, Erembodegem, Bel-tested for the absence of antibodies against BHV-1 and
gium) at 377 for 30 min. Cells were then washed withBHV-4. Cells were used between passage levels 12 and
PBSG and analyzed by flow cytometry.22 (1:3 split ratio). The BHV-4 V. Test strain isolated from

a bull with orchitis (Thiry et al., 1981) and the BHV-1
Cell killing (CKA) and infectious center (ICA) assays

Cooper strain (kindly provided by Dr. J. T. van Oirschot,
Lelystad, The Netherlands) were used in this study. A MDBK monolayers grown to confluence in 24-well

cluster dishes were infected with BHV-4 V. Test strain atBHV-4 recombinant strain designated BHV-4 B3 lin
(kindly provided by Dr. M. Goltz, Berlin, Germany) was a m.o.i. of 10 PFU/cell in MEM containing 2% FCS. The

cells were removed with trypsin–EDTA 6 hr postinfec-also used. This strain carries the Escherichia coli b-
galactosidase gene under the control of the human cyto- tion, a time at which no infectious cell-associated prog-

eny virus could be detected (Augsburger and Metzler,megalovirus IE gene promotor/enhancer (MacGregor
and Caskey, 1989). The cassette was integrated into a 1989). Three hundred infected or mock-infected cells

(control) or three hundred cells from a mixture (1/1) ofsequence between two ORFs at the left end of the unique
coding part of the BHV-4 strain 66-p-347 genome (Storz, infected and mock-infected cells were sorted into 175-

cm2 flasks (Becton–Dickinson). The sorting was per-1968). In MDBK and GBK cells infected with the BHV-4
B3 lin strain b-galactosidase is expressed as an IE anti- formed in a fluorescence-activated cell sorter (Automatic

Cell Deposit Unit—Facstar Plus, Becton–Dickinson).gen (Dr. M. Goltz, personal communication). For infection
of cells, virus semipurified from the growth supernatant For the cell killing assay, the cells were sorted in flasks

containing MEM with 5% FCS taken from a day-old expo-of infected cells, as described previously, (Vander-
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330 VANDERPLASSCHEN ET AL.

nentially growing culture. Twelve hours after plating of hours after plating, cells were washed three times with
medium alone and incubated in MEM containing 0.2%cells, heparin (176 U/mg) (Sigma, Bornem, Belgium) was

added to the growth medium (final concentration of 50 FCS for 72 hr at 377. During virus infection, cells arrested
in G0 were maintained under conditions of serum starva-mg/ml) in order to inhibit attachment of extracellular viri-

ons (Vanderplasschen et al., 1993b). After 5 days, the tion.
colonies were fixed and stained with an aqueous alco-

Preparation of nuclei for analysis of DNA by flowholic solution containing 0.3% crystal violet for quantifica-
cytometrytion by light microscopy. For the infectious center assay,

the cells were sorted in flasks containing subconfluent The technique described by Vindelo/ v et al. (1983, 1990)
MDBK monolayers (7.8 1 104 cells/cm2). Twelve hours using the Cycle Test kit (Becton–Dickinson) was used
after plating of cells, the initial medium was replaced to determine the cell cycle phase distribution, which was
with MEM containing 5% FCS and 0.6% carboxymethyl- then analyzed by the Cell Fit program (Becton–Dick-
cellulose (Sigma). Plaques were counted 9 to 10 days inson).
later. The percentage of infected cells for the cell killing
assay was calculated as Quantitative measurement of the number of dividing

cells in the S phase

The number of cells going through the S phase per
1 0

number of colonies obtained after
sorting of 300 infected cells

number of colonies obtained after
sorting of 300 mock-infected cells

1 100. hour was estimated by measuring the incorporation of
5-bromo-2 *-deoxyuridine (BrdU) as previously described
by Gratzner (1982).

The percentage of infected cells for the infectious center
assay was calculated as Flow cytometric analysis

Flow cytometric analysis was performed using a Bec-
ton–Dickinson fluorescence-activated cell sorter (Fac-

number of plaques obtained after
sorting of 300 infected cells

300
1 100. star Plus) equipped with an argon laser (ILT air cooled

with 100 mW excitation line at 488 nm). Debris were
excluded from the analysis by the conventional scatter

Facs-b-galactosidase assay
gating method. FITC and propidium iodide emission sig-
nals were collected by using appropriate filters at 530The b-galactosidase activity in cells infected with the
nm (band pass 30 nm) and 575 nm (band pass 26 nm),BHV-4 B3 lin was revealed by the procedure described
respectively. In most cases, 10,000 events per sampleby Nolan et al. (1988). Briefly, b-galactosidase activity
were collected in a list mode fashion, stored, and ana-was detected by the analysis of cells loaded with the
lyzed by a Consort 32 system (Becton–Dickinson). Thefluorogenic substrate fluorescein di-b-D-galactopyrano-
threshold of positivity for fluorescence intensity was arbi-side (FDG) (Sigma), using a short hypotonic shock. Hy-
trarily set, based on the negative control sample.drolytic cleavage of FDG by b-galactosidase frees fluo-

rescein that is locked inside the cells kept on ice.
Extraction and purification of DNA

Synchronization of MDBK by Lovastatin
DNA from infected and mock-infected cells was ex-

tracted and purified as described elsewhere (Muller andMDBK cells were synchronized by Lov (Merck
Hudson, 1977).Sharpe & Dohme, Brussels, Belgium) as described else-

where (Vanderplasschen et al., 1994). Briefly 1 1 106

Viral DNA synthesis after infection of MDBK cells atMDBK cells in an exponential growth phase were plated
different stages of the cell cyclein 175-cm2 flasks (Becton–Dickinson) containing MEM

with 5% FCS. Twenty-four hours following initial plating, The amount of viral DNA in 100 ng of total DNA ex-
medium was removed and replaced with fresh medium tracted from infected cells was determined by dot-blot
containing 25 mM Lov. To allow the cells arrested in G1 hybridization. To allow comparison, the inoculum used
to enter the S phase synchronously, medium containing for each infection was calculated such that the m.o.i.
Lov was removed 24 hr later and replaced with fresh used would give the same stoichiometry of viral and cel-
medium containing 2.5 mM Mev (Sigma). lular DNA at the time of infection. For example, if a pure

culture in G1 is infected with a m.o.i. of X PFU/cell, then
Synchronization of MDBK cells in G0 by serum

a pure culture in G2 / M must be infected with a m.o.i.
deprivation

of 2X (i.e., one cell in G2 /M contains double the amount
of DNA in cells in G1). In our experiments, cell culturesMDBK cells were treated as described by Keyomarsi

et al. (1991) with some minor modifications. Ninety-six were infected at the ratio of 5 PFU/G1 cellular DNA con-
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331BHV-4 CELL-CYCLE DEPENDENCE

tent. The inoculum for each infection was therefore calcu- an identical conclusion. However, different percentages
(Põ 0.01) of cells positive for BHV-4 L protein expressionlated as follows: PFU/culture Å number of cells 1 5 PFU

1 (1 1 % G1 , G0/100 / MR 1 % S/100 / 2 1 % G2 / were observed between independent experiments, rang-
ing from 18.5 to 34.6% (data not shown). These percent-M/100), in which MR represents the mean relative DNA

content of the S phase population. Total DNA was ex- ages (Y) were observed to correlate with the cell density
(X) at the time of infection, i.e., the percentage of cellstracted 2, 9, and 14 hr after infection. DNA (100 ng/sam-

ple) was denatured by the addition of 1/10 volume of 3 expressing BHV-4 L proteins decreased with increasing
cell density (Y Å 105.93 0 15.027 1 Log(X), R2 Å 0.998).M NaOH. After 5 min at room temperature, the solution

was neutralized by the addition of 2 M ammonium ace- After an incubation period of at least 17 hr, the percent-
age of BHV-1 gC-positive MDBK, GBK, BSC, and BTCtate at a volume equal to the total sample volume. The

samples were then applied to a nylon membrane (Hy- cells was nearly maximum and similar for the three m.o.i.
tested (Table 1).bond-N, Amersham, Gent, Belgium) using a 96-well dot-

blot manifold (Bio-Rad, Richmond, CA). After air drying,
the immobilized samples were fixed to the membrane by Cell killing and infectious center assays
UV light irradiation (short wave) for 30 sec. The cloned
EcoRI K fragment of the BHV-4 V. Test strain (Bublot et The detection of only a fraction of cells expressing

BHV-4 L proteins despite the high m.o.i. of 10 PFU/cellal., 1990) and the cloned HindIII K fragment of the BHV-
1 Cooper strain (Mayfield et al., 1983) were used as used for infection was rather surprising (Table 1). The

cell killing and infectious center assays were chosen toprobes. These cloned fragments were labeled with [a-
32P]dCTP by the random primer labeling method using investigate this observation further, as it was thought that

either only a fraction of the cells were infected or all thea commercial kit (Boehringer-Mannheim). Conditions for
hybridization were similar to those described previously cells were infected but only a fraction of them expressed

detectable BHV-4 L proteins under these cell culture con-(Vanderplasschen et al., 1993a). Filters were dried and
the radioactivity was measured in a liquid scintillation ditions.

Percentages of MDBK cells (3.4 1 105 cell/cm2) in-counter.
fected with the BHV-4 V. Test strain (m.o.i. 10 PFU/cell)
as determined by the cell killing and infectious centerStatistical analysis
assays were 98.8 and 96.4%, respectively (Table 2). The

Student’s t test was used to test for significance of the results obtained with the mixture (1/1) of infected and
results (P õ 0.01). mock-infected cells assured us that there was no sec-

ondary infection of the cells during and/or after sorting
RESULTS (Table 2).

Although only a fraction of confluent infected cells ex-Expression of BHV-4 L proteins in infected cells
pressed detectable BHV-4 L proteins, nearly all of the
cells were shown to be infected. This observation impliesThe ability of MDBK, GBK, BSC, and BTC cells to sup-

port BHV-4 or BHV-1 L protein expression was first inves- a probable arrest or delay of the viral replication cycle
in some cells of the monolayer, either during or at a stagetigated. Confluent monolayers were inoculated at differ-

ent m.o.i. with the BHV-4 V. Test strain or the BHV-1 before the L protein expression (this includes stages of
attachment, entry, decapsidation, IE and E protein ex-Cooper strain. The percentage of cells expressing L pro-

teins was then determined by flow cytometric analysis. pression, DNA replication, or L protein expression).
In order to determine if this arrest or delay occurredPreliminary experiments showed that the highest per-

centage of MDBK cells expressing BHV-4 L proteins was at an early stage of the viral replication cycle (attachment,
entry, or decapsidation), the expression kinetics of b-observed at around 44 hr after infection (data not shown).

However, only a fraction of the BHV-4-inoculated MDBK galactosidase (expressed as an IE antigen) in MDBK
cells (4.2 1 105 cell/cm2) infected with the BHV-4 B3 lincells expressed detectable L proteins irrespective of the

high m.o.i. tested (Table 1), e.g., 21% were gp1 positive strain was investigated by a Facs-b-galactosidase assay
(Fig. 1). The results showed that b-galactosidase expres-(Mab 123) 44 hr after infection at a m.o.i. of 10 PFU/cell

(Table 1). The results obtained with the other susceptible sion in infected cells occurred synchronously in virtually
all of the cells of the monolayer. Seven hours after infec-cells (GBK, BSC, and BTC) were qualitatively similar to

those obtained with MDBK cells (Table 1). Moreover, tion 98.5% of the cells expressed b-galactosidase (Fig.
1). The control, which contained an equal proportion ofstaining with Mabs 29 and 113 raised against other BHV-

4 L proteins (gp11/vp24 and gp8, respectively) gave infected and mock-infected cells, gave 54.5% positive
cells, indicating that there was no contamination of nega-quantitatively similar results to those obtained with Mab

123 (data not shown). tive cells with leaked fluorescein generated by b-galac-
tosidase-positive cells (Fig. 1F).These experiments were independently repeated four

times with MDBK cells, with each replication leading to Since results of L protein and b-galactosidase expres-
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TABLE 1

Percentages of L Proteins Expressing Cells after Infection at Different m.o.i. with BHV-4 or BHV-1a,b

m.o.i. MDBK GBK BSC BTC

Detection of BHV-4 gp1 (Mab 123) 0 0.29 { 0.13 0.22 { 0.08 0.37 { 0.11 1.43 { 0.29
0.1 1.31 { 0.35 8.66 { 0.92 NDc ND
1 8.01 { 0.61 16.4 { 0.19 18.01 { 0.91 14.50 { 0.70

10 21.45 { 0.81 24.57 { 0.49 31.14 { 1.13 28.17 { 1.01

Detection of BHV-1 gC (Mab 1507) 0 1.71 { 0.32 0.79 { 0.31 1.24 { 0.17 1.89 { 0.03
0.1 99.18 { 0.17 98.49 { 0.41 ND ND
1 99.39 { 0.07 98.67 { 0.16 99.75 { 0.07 99.40 { 0.78

10 99.15 { 0.11 99.81 { 0.04 ND 99.08 { 0.19

a Each reported value represents the average { SD for triplicate cultures.
b Confluent monolayers of MDBK, GBK, BSC, and BTC cells in six-well cluster dishes were inoculated with the BHV-4 V. Test strain or with the

BHV-1 Cooper strain. After an incubation period (44 and 17 hr for BHV-4- and BHV-1-infected cells, respectively), the cells were harvested and
treated for immunological detection of BHV-4 gp1 (Mab 123) or BHV-1 gC (Mab 1507), followed by flow cytometric analysis.

c Not done.

sion were obtained with two different strains of BHV-4 cycle was blocked at a stage after E protein expression.
This includes stages of DNA replication or L protein ex-(V. Test and B3 lin strains, respectively), analysis of L

protein expression for the BHV-4 B3 lin strain was also pression. Because this blockage could be the conse-
quence of the dependence of one or both of these eventscarried out. The highest percentage of cells expressing

BHV-4 L gp1 protein was observed at around 42 hr after on the cell cycle, they were further investigated in syn-
chronized cells infected at different stages of the cellinfection. At this time, 91 and 30% of cells were positive

for b-galactosidase (immunological staining) and gp1 ex- cycle. The Lov and serum deprivation methods were
used for cell synchronization. The same stocks of syn-pression, respectively (Fig. 2).

In order to characterize further the rate-limiting step chronized MDBK cells were used to study concurrently:
(i) the synchronization of mock-infected cells (cell cyclein the replication cycle of BHV-4, monolayers of MDBK

cells (61 104 cell/cm2) infected with BHV-4 (V. Test strain, distribution and BrdU incorporation), (ii) viral DNA repli-
cation, and (iii) expression of L and E-L proteins afterm.o.i. 10 PFU/cell) were harvested and stained with Mabs

35 and 123. Of the infected cells 93% were positive for infection at different stages of the cell cycle.
gp6/gp10/gp17 in contrast to 31% of the gp1-positive
cells (Fig. 3). The distribution of cells positive for gp6/ Synchronization of MDBK cells by Lovastatin and by
gp10/gp17 was in two populations, in which 34% of the serum deprivation
cells presented a bright fluorescence and 58% had a
dim fluorescence (Fig. 3D). The results suggest that E The synchronization of mock-infected cells by Lov is

illustrated in Figs. 4A and 6. It was noted that (i) cellsproteins (at least for the E-L gp6/gp10/gp17 protein com-
plex) were expressed in nearly all of the cells, whereas treated with Lov for 24 hr (25 mM) were reversibly blocked

primarily in G1 (65%) and secondarily in G2 / M (28%)the expression of L proteins was only in a fraction of the
infected cells. It therefore seems that the viral replication cell cycle phases (Fig. 4A, time 0; Fig. 6A); (ii) removal

TABLE 2

Determination of the Percentage of Infected Cells by a Cell Killing Assay and an Infectious Center Assay a

Percentage of infected
cells

CKA ICA
(colonies) (plaques) CKA ICA

Mock-infected cells 269.3 { 12.9 0 0 0
BHV-4-infected cellsb 3.3 { 3.2 289.3 { 5.0 98.8 96.4
Mixture (1/1) of infected and

mock-infected cellsb 139.3 { 12.7 153.7 { 13.2 48.3 51.2

a Each reported value represents the average { SD for triplicate cultures.
b MDBK cells were infected at a m.o.i. of 10 PFU/cell with the BHV-4 V. Test strain. After an incubation period of 6 hr, the percentage of infected

cells was determined by CKA and ICA as described under Materials and Methods.
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FIG. 1. Expression of b-galactosidase in MDBK cells infected with the BHV-4 B3 lin strain. Monolayers of MDBK cells were infected with the
BHV-4 B3 lin strain at a m.o.i. of 10 PFU/cell. After different time periods (1, 3, 5, and 7 hr), the cells were harvested and treated for quantification
of b-galactosidase-expressing cells by a Facs-b-galactosidase assay. (A) Mock-infected cells; (B to E) cells harvested 1, 3, 5, and 7 hr after infection,
respectively; and (F) a mixture (1/1) of mock-infected and infected (7 hr postinfection) cells. The percentage of positive cells is indicated in each
panel.

of Lov from the G1-arrested cultures, followed by addition chronization could be followed to at least a second cell
cycle. Thirty hours after removal of Lov, a second peakof Mev (2.5 mM), resulted in the synchronous recovery

of DNA synthesis after a 5- to 10-hr lag period and of BrdU-incorporating cells was observed (68% of the
cells) (data not shown).reached a peak after 15 hr. At this time 85% of the cells

were proliferating as shown by the BrdU incorporation Following the G0 synchronization procedure, 94% of the
cells were arrested in G0, as determined by the percentageexperiment (cells were pulse labeled during 1 hr) (Figs.

4A and 6C); (iii) 20 hr after Lov removal and Mev addition, of BrdU-negative cells after an incubation period of 15 hr (a
duration of one cell cycle) (Vanderplasschen et al., 1993a).72% of the cells were in G2 / M phases, although 11%

of the cells remained in S phase (Fig. 4A); and (iv) syn- When G0-synchronized cells were maintained under condi-
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FIG. 2. Quantification of BHV-4 gp1 (A and B)- and b-galactosidase (C and D)-expressing cells 42 hr after infection with the BHV-4 B3 lin strain
(m.o.i. 10 PFU/cell). A and C represent mock-infected cells; B and D represent infected cells. The percentage of positive cells is indicated in each
panel.

tions of serum starvation for an additional period of 44 hr, sively increased the amount of viral DNA synthesized.
The highest amount of BHV-4 DNA was synthesizedthe amount of cells arrested in G0 increased to 97%.
when MDBK cells were infected 5 hr after Lov removal
(Fig. 4B). This time corresponds to G1/S boundary–earlyBHV-4 DNA replication in Lov-synchronized, G0-
S phase (Fig. 4A). At the end of the 9- and 14-hr infectionarrested, and randomly growing MDBK cells
periods, most of the mock-infected cells were in mid S

The rate of the BHV-4 DNA synthesis was compared and G2 / M phases, respectively (Fig. 4A). Late infection
in synchronized MDBK cells infected at different stages of the cells 5 hr post-Lov removal, up to 15 hr, progres-
of the cell cycle by a Southern dot blot assay. Preliminary sively lowered the amount of BHV-4 DNA synthesized.
experiments with MDBK-synchronized and unsynchro- Little or no BHV-4 DNA synthesis could be demonstrated
nized cell cultures showed that at 2 hr postinfection BHV- 9 and 14 hr after infection of cells arrested in the G0
4 and BHV-1 DNA replication could not be demonstrated phase (Fig. 4B). Nevertheless, the percentages of G0-
by the dot blot assay used (data not shown). Therefore, infected cells as determined by the cell killing and infec-
the amount of viral DNA detected at this time of infection tious center assays were 97.4 and 96.1%, respectively.
represents the amount of virus taken up. The results presented in Fig. 4C indicate that both viral

The results in Fig. 4B show that the uptake of BHV-4 uptake and the rate of BHV-1 DNA synthesis are not
was similar among cells infected at different stages of influenced by the phase at which the cell is in the cell
the cell cycle. However, the stage of the cells in the cell cycle. Similar amounts of viral DNA were found in DNA
cycle during the infection period had an effect on the samples extracted from cells infected at different stages
rate of BHV-4 DNA synthesis. Experiments performed of the cell cycle.
with Lov-synchronized MDBK cells revealed that the

BHV-4 L and E-L protein expression in Lov-amount of BHV-4 DNA synthesized increased in a quanti-
synchronized, G0-arrested, and randomly growingtative manner during cell transition through the S phase
MDBK cells(Fig. 4B). Data from DNA extracted 9 and 14 hr after

infection led to similar conclusions. Infection of the cells The percentages of MDBK cells expressing the BHV-
4 L gp1 and E-L gp6/gp10/gp17 glycoproteins were com-from 5 hr before, up to 5 hr after Lov removal, progres-
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FIG. 3. Quantification of BHV-4 gp1 (A and B)- and gp6/gp10/gp17 (C and D)-expressing cells 44 hr after infection with the BHV-4 V. Test strain
(m.o.i. 10 PFU/cell). A and C represent mock-infected cells; B and D represent infected cells. The percentage of positive cells is indicated in each
panel.

pared after infection at different stages of the cell cycle. tion on the S phase of the cell cycle. This was suggested
The percentage of BHV-4 gp1-positive cells increased by the following results. (i) BHV-4 L proteins are ex-
when MDBK cells were synchronized by Lov before infec- pressed by a limited number of MDBK-infected cells (Ta-
tion. Sixty-seven and twenty-nine percent of positive cells ble 1), although nearly all the cells expressed a BHV-4
were observed after infection of Lov-synchronized and E-L protein (Fig. 3). (ii) Cell transition through the S phase
unsynchronized cell cultures, respectively (Fig. 5). In con- quantitatively increased the rate of BHV-4 DNA replica-
trast, only 3% of gp1-positive cells was observed after tion (Fig. 4B). (iii) Synchronization of MDBK cells with
infection of G0-arrested cells (Fig. 5). Lov before infection increased the percentage of cells

In spite of the infection of cells at different stages of positive for BHV-4 L protein expression (Fig. 5B). (iv) BHV-
the cell cycle, the percentage of gp6/gp10/gp17-positive 4 DNA synthesis and L protein expression could barely
cells did not differ significantly and remained at an ele- be detected in cells arrested in G0 (Figs. 4B and 5D).
vated level (Fig. 5). A mean percentage of 93% of positive Only a fraction of BHV-4-infected cells expressed de-
cells was observed. However, it is clear that the relative tectable L proteins. This observation was not limited to
distribution of positive cells between the dim and bright one specific cell type or to one BHV-4 strain (Table 1
populations was influenced by the cell synchronization. and Fig. 2), suggesting that the phenomenon is not arti-
The percentage of bright gp6/gp10/gp17-positive cells factual to a specific cell type and is a general property
evolved similar to that of gp1-positive cells (Fig. 5). of BHV-4.

Results from synchronized BHV-1-infected cells (Lov- The replication cycle of BHV-4 is blocked at a late
synchronized and G0-arrested cells) harvested 17 hr stage and not earlier. Although only a fraction of infected
postinfection showed similar percentages of gC-positive cells expressed detectable BHV-4 L proteins (Table 1),
cells, and a mean of 98.6% of positive cells was obtained nearly of all the cells were shown to be infected by the
(data not shown). cell killing and infectious center assays (Table 2). The

inability of some of the infected cells to express BHV-4
DISCUSSION L proteins is likely due to the arrest of the viral replication

cycle in these cells, either during or at a stage beforeThis study shows that the success of BHV-4 infection
in vitro is restricted by the dependence of its DNA replica- L protein expression. The detection of b-galactosidase
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activity in 98.5% of cells infected with the BHV-4 B3 lin
strain (Fig. 2E) gave the indication that the arrest did not
occur at an earlier stage (attachment, entry, or decapsi-
dation) as reported for herpesvirus saimiri (Randall et al.,
1985). Unfortunately, a thorough characterization of the
rate-limiting step in the replication cycle of BHV-4 could
not be determined due to the nonavailability of specific
Mab probes for IE and E proteins. However, since 93%
of the BHV-4-infected cells were positive for expression
of the E-L gp6/gp10/gp17 (Mab 35) in contrast to 31% of
the L gp1-positive cells (Fig. 3), it seems very probable
that the viral replication cycle was arrested at a stage
after E protein expression. Glycoprotein gp6/gp10/gp17-
positive cells were distributed into two populations (Figs.
3 and 5). The percentage of bright fluorescent cells was
similar to the percentage of gp1-positive cells (Figs. 3
and 5). Nevertheless, these results were not sufficient to
clearly and unambiguously show that the dim and bright
fluorescences of gp6/gp10/gp17 corresponded to ex-
pression of E (p(gp10/gp17)) and L (gp6/gp10/gp17) pro-
teins, respectively.

BHV-4 DNA replication and consequently L protein ex-
pression are dependent on the cell cycle. The observa-
tions in this study suggested that the replication cycle
of BHV-4 was blocked at the stage of DNA replication
and/or L protein expression in some cells of the mono-
layer. The results obtained with Lov-synchronized cells
revealed that cell transition through the S phase in-
creased quantitatively the amount of BHV-4 DNA synthe-
sized (Fig. 4B). This observation could not be accounted
for by the quantitative differences in the rate of viral up-
take according to the stage of the cells in the cell cycle.
Indeed, similar amounts of viral DNA were detected in
samples extracted 2 hr postinfection (before viral DNA
replication could be detected) (Fig. 4B). Moreover, the
experiment with the BHV-4 B3 lin strain presented in this
study showed that attachment, entry, and decapsidation
occurred in nearly all of the cells of a nonsynchronized
confluent MDBK monolayer (Fig. 1). The observed in-
crease in the rate of BHV-4 DNA synthesis associated
with the S phase does not seem to be due to the adjust-
ment of the m.o.i. (used to infect the cells at the ratio of
5 PFU/G1 cellular DNA content), as the highest BHV-4
DNA synthesis rate was observed after infection with
one of the lowest m.o.i. used (Fig. 4B). The observed
results could not be artifactual consequences of the cell

BHV-4 V. Test strain (B) or BHV-1 Cooper strain (C) for 1 hr. After infection,
cells were washed and incubated with medium identical to that of mock-FIG. 4. BHV-1 and BHV-4 DNA replication in MDBK randomly growing

cells (Rd) or in MDBK-synchronized cultures infected at different stages infected cells. The m.o.i. used to infect the cell cultures with a ratio of
5 PFU/G1 DNA content are in brackets. The relative amount of BHV-4of the cell cycle. MDBK cells were synchronized by Lov (Lov) or by

serum deprivation (G0) as described under Materials and Methods. (B) or BHV-1 (C) DNA in 100 ng of total DNA extracted 2 (s), 9 (n), and
14 ()) hr after infection was determined by dot-blot hybridization. EachThe cell cycle distribution and the fraction of BrdU-incorporating cells

were determined for each time of infection of Lov-synchronized cells value represents the average { SD for triplicate measures corrected for
background (113 { 17 and 104 { 12 cpm were detected in BHV-4 and(5 hr before removal of Lov, at the time of Lov removal, and 5, 10,

15, 20, and 25 hr after removal of Lov) (A). Cells were infected with BHV-1 mock-infected cells, respectively) (B and C).
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FIG. 5. Quantification of BHV-4 gp1 (A to D)- and gp6/gp10/gp17 (E to H)-expressing MDBK cells 44 hr after infection of randomly growing cells
(C and G) and synchronized cell cultures. MDBK cells were synchronized by Lov (B and F) or by serum deprivation (D and H) as described under
Materials and Methods. Cells were infected with the BHV-4 V. Test strain (m.o.i. 10 PFU/cell). Lov-synchronized cell cultures were infected at the
time of Lov removal and Mev addition. A and E represent mock-infected cells. The percentage of positive cells is indicated in each panel.

synchronization, as similar amounts of BHV-1 DNA were (Fig. 5). A maximum of 67% positive cells was observed
when MDBK cells were infected at the time of Lov re-detected in Lov-synchronized cells infected at different

stages of the cell cycle (Fig. 4C). Cell synchronization by moval. The inability to obtain nearly 100% of positive cells
could be explained by either (i) the inability of completeLov prior to BHV-4 infection increased the percentage of

cells expressing L proteins (as compared with the results Lov synchronization of the cell cycle, which is clearly
shown in Fig. 4A, or (ii) the use of adherent cell stainingobtained with nonsynchronized confluent monolayers)
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FIG. 6. A quantitative measurement of the number of dividing cells (S phase). Lovastatin-synchronized MDBK cells were pulsed with BrdU (1 hr
at 377) at the time of Lov removal and Mev addition (A) and 10 (B), 15 (C), and 17 (D) hr later. The percentage of positive cells is indicated in each
panel.

for detection of viral antigen to avoid nonspecific attach- scribed for the alphaherpesvirus EHV-1 (Lawrence, 1971)
and the betaherpesvirus MCMV (Muller and Hudson,ment of Mab on fixed dead cells, leading to the exclusion

of cells, which had been killed by the virus, and which 1977). The present study has demonstrated that the DNA
replication of the gammaherpesvirus BHV-4 is dependentcertainly contained L proteins.

Synthesis of BHV-4 DNA could not be demonstrated on the S phase of the cell cycle and therefore extends
to include a member of the Gammaherpesvirinae in thein cells arrested in G0 . This observation further supports

the dependence of BHV-4 DNA replication on the S group of herpesviruses known to be dependent on the
S phase for their DNA replication. The mechanism byphase. Since viral DNA replication is a prerequisite for

L protein expression, it is not surprising that BHV-4 L which EHV-1 and MCMV DNA replication are dependent
on the S phase of the cell cycle is at present unknown.protein expression did not occur in cells arrested in G0 .

These observations do not seem to be an artifact of the In this communication, we did not determine the S phase
factor(s) required for BHV-4 DNA replication. Any event(s)G0 synchronization, as it was proved that G0-arrested

cells are capable of supporting BHV-1 DNA replication displaying a transient appearance in the cell cycle limited
to the S phase would be a candidate (Wintersberger,(Fig. 4C) and L protein expression. The inability of BHV-

4 L protein expression to occur in G0-arrested cells can 1991). The cellular factor(s) whose presence is critical
for replication of certain herpesviruses is currently un-explain why the percentage of cells expressing BHV-4 L

proteins decreased with increasing cell density at the known. It is also not determined whether these factors
are identical, linked, or different in alpha-, beta-, andtime of infection. Indeed, normal cells are sensitive to

contact inhibition, which induces cell growth arrest in gammaherpesviruses. These points require further work
and are important for our understanding of herpesvirusthe G0 phase. Therefore, the fraction of G0-arrested cells

in a monolayer increases with the cell density. evolution.
The S phase dependence in BHV-4 replication estab-In order to achieve their DNA replication irrespective

of the status of the cell cycle, herpesviruses encode a lished in this study could be of importance for some
biological properties of the infection in vitro. First, theset of proteins which is involved directly in DNA replica-

tion and nucleotide biosynthesis (Hammerschmidt and slow replicative cycle of BHV-4 could be due to its slow
rate of thymidine kinase induction in infected cells asSugden, 1990; Hammerschmidt and Mankertz, 1991; Sha-

dan et al., 1994). Nevertheless, the dependence of her- suggested by Kit et al. (1986). However, another explana-
tion could be the dependence of BHV-4 DNA replicationpesvirus DNA replication on the cell cycle has been de-
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